Pub Date : 2020-01-01DOI: 10.7524/AJE.1673-5897.20191119001
Zhang Jiawei, Qi Guanjing, Zhao Haoduo, G. Hui, L. Qingwei, Shi Jianghong, Yuan Xiangyi, Mao Yan, Guo Wei, Meng Yaobin, L. Xiaoyan
Nonylphenol (NP) is a typical type of persistent organic pollutants (POPs) with endocrine-disrupting effect. Its ecological risk has caused increasing concerns owing to its degradation-resistance, bioaccumulation, and widespread distribution in the environment. The species sensitivity distribution (SSD) method has been widely used for establishing water quality criteria (WQC) and performing ecological risk assessment (ERA) of the water environment. However, the selected sensitive species may exhibit different toxicity sensitivity in different geographical regions, which would affect the results of WQC and ERA. In this study, SSD was applied to calculate the predicted no effect concentrations (PNECs) based on the acute and chronic toxicity data of the general sensitive species and native sensitive species in China. The results showed that there was little difference between the PNECs derived from the general sensitive species and native sensitive species based on the acute toxicity data, which indicated that the sensitivity of native species towards the acute toxicity effect of NP is similar to that of general species. However, the PNECs based on the chronic toxicity data were quite different, and the Chinese native species appeared to be more sensitive than general species to the chronic toxicity effect of NP. As a result, direct use of the PNECs derived from non-local species may lead to insufficient protection of Chinese native species. Based on the PNECs derived from the acute and chronic toxicity data, the risk quotient (RQ) method was used to characterize the ecological risk of NP in the surface waters of Yangtze River Delta. The results showed that the RQ based on PNECs derived from the acute data and chronic data of general sensitive species may lead to an underestimation of the ecological risk. The mean RQ values based on the PNECs derived from the chronic data of Chinese native sensitive species ranged from 0.23 to 1.55. Luoma Lake was found at a high risk, and the maximum RQ values of Taihu Lake and Yangtze River (Nanjing) exceeded 1, indicating the high risk of the individual areas which deserve further attentions. In conclusion, the chronic toxic effect of NP on Chinese native aquatic organisms can be identified, and continuous attention should be paid to the long-term adverse effect of NP, for which actions should be taken to ensure the health of the aquatic ecosystem.
{"title":"Ecological Risk Assessment of Nonylphenol in Surface Waters of the Yangtze River Delta Based on Species Sensitivity Distribution Model","authors":"Zhang Jiawei, Qi Guanjing, Zhao Haoduo, G. Hui, L. Qingwei, Shi Jianghong, Yuan Xiangyi, Mao Yan, Guo Wei, Meng Yaobin, L. Xiaoyan","doi":"10.7524/AJE.1673-5897.20191119001","DOIUrl":"https://doi.org/10.7524/AJE.1673-5897.20191119001","url":null,"abstract":"Nonylphenol (NP) is a typical type of persistent organic pollutants (POPs) with endocrine-disrupting effect. Its ecological risk has caused increasing concerns owing to its degradation-resistance, bioaccumulation, and widespread distribution in the environment. The species sensitivity distribution (SSD) method has been widely used for establishing water quality criteria (WQC) and performing ecological risk assessment (ERA) of the water environment. However, the selected sensitive species may exhibit different toxicity sensitivity in different geographical regions, which would affect the results of WQC and ERA. In this study, SSD was applied to calculate the predicted no effect concentrations (PNECs) based on the acute and chronic toxicity data of the general sensitive species and native sensitive species in China. The results showed that there was little difference between the PNECs derived from the general sensitive species and native sensitive species based on the acute toxicity data, which indicated that the sensitivity of native species towards the acute toxicity effect of NP is similar to that of general species. However, the PNECs based on the chronic toxicity data were quite different, and the Chinese native species appeared to be more sensitive than general species to the chronic toxicity effect of NP. As a result, direct use of the PNECs derived from non-local species may lead to insufficient protection of Chinese native species. Based on the PNECs derived from the acute and chronic toxicity data, the risk quotient (RQ) method was used to characterize the ecological risk of NP in the surface waters of Yangtze River Delta. The results showed that the RQ based on PNECs derived from the acute data and chronic data of general sensitive species may lead to an underestimation of the ecological risk. The mean RQ values based on the PNECs derived from the chronic data of Chinese native sensitive species ranged from 0.23 to 1.55. Luoma Lake was found at a high risk, and the maximum RQ values of Taihu Lake and Yangtze River (Nanjing) exceeded 1, indicating the high risk of the individual areas which deserve further attentions. In conclusion, the chronic toxic effect of NP on Chinese native aquatic organisms can be identified, and continuous attention should be paid to the long-term adverse effect of NP, for which actions should be taken to ensure the health of the aquatic ecosystem.","PeriodicalId":8845,"journal":{"name":"生态毒理学报","volume":"1 1","pages":"134-148"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71146684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.7524/AJE.1673-5897.20190804003
W. Shuang, Lu Zhen, L. Fei, Cong Ming, J. Chenglong, Hui-hong Wu
With hexabromocyclododecane (HBCDs) and poly brominated diphenyl ethers (PBDEs) listed as persistent organic pollutants (POPs), tetrabromobisphenol A (TBBPA) and decabromodiphenyl ethane (DBDPE) have become two of the most widely produced and used brominated flame retardants (BFRs). The underlying ecological risk of TBBPA and DBDPE have received increasing attentions since these two typical BFRs are being detected at high concentrations in environmental media. This paper summarized the pollution status of TBBPA and DBDPE and their toxicological effects. TBBPA and DBDPE have been detected in multiple environmental media, such as atmosphere, waters, soil, sediment and organisms. In addition, more severe pollution could be found in industrial areas. TBBPA and DBDPE were even found in human body and breast milk. Overall, TBBPA presented developmental toxicity, hepatorenal toxicity, endocrine disruption effect, reproductive toxicity, and neurotoxicity, while DBDPE showed developmental toxicity, hepatorenal toxicity, and endocrine disruption effect. According to the limited reports on DBDPE toxicity, we concluded that DBDPE was of relatively low toxicity. The aim of this review is to help evaluate the environmental risk, analyze the environmental capacity, and governmentally control the production of TBBPA and DBDPE.
{"title":"A Review of Pollution Status and Toxicological Researches of Typical Brominated Flame Retardants Tetrabromobisphenol A (TBBPA) and Decabromodiphenyl Ethane (DBDPE)","authors":"W. Shuang, Lu Zhen, L. Fei, Cong Ming, J. Chenglong, Hui-hong Wu","doi":"10.7524/AJE.1673-5897.20190804003","DOIUrl":"https://doi.org/10.7524/AJE.1673-5897.20190804003","url":null,"abstract":"With hexabromocyclododecane (HBCDs) and poly brominated diphenyl ethers (PBDEs) listed as persistent organic pollutants (POPs), tetrabromobisphenol A (TBBPA) and decabromodiphenyl ethane (DBDPE) have become two of the most widely produced and used brominated flame retardants (BFRs). The underlying ecological risk of TBBPA and DBDPE have received increasing attentions since these two typical BFRs are being detected at high concentrations in environmental media. This paper summarized the pollution status of TBBPA and DBDPE and their toxicological effects. TBBPA and DBDPE have been detected in multiple environmental media, such as atmosphere, waters, soil, sediment and organisms. In addition, more severe pollution could be found in industrial areas. TBBPA and DBDPE were even found in human body and breast milk. Overall, TBBPA presented developmental toxicity, hepatorenal toxicity, endocrine disruption effect, reproductive toxicity, and neurotoxicity, while DBDPE showed developmental toxicity, hepatorenal toxicity, and endocrine disruption effect. According to the limited reports on DBDPE toxicity, we concluded that DBDPE was of relatively low toxicity. The aim of this review is to help evaluate the environmental risk, analyze the environmental capacity, and governmentally control the production of TBBPA and DBDPE.","PeriodicalId":8845,"journal":{"name":"生态毒理学报","volume":"1 1","pages":"24-42"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71146868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.7524/AJE.1673-5897.20191130001
Chen Jinlin, Xu Yujie, G. Liang, Cai Jiahong, Liang Jiahui, Yuan Mingxuan, Xiao Yijin, Chen Guilan, Feng Baoxin, Huo Jiawei, Mei Chengfang, Zeng Guoqu
Diuron is a biocidal active substance commonly and typically used in antifouling paints, and capsaicin is a new-type of natural products used for antifouling paints. To evaluate acute and chronic toxicity of diuron and capsaicin on aquatic organism, Daphnia magna was selected as a model test organism. Based on the toxicity effects on fatality, time of the first reproduction, number of brood per female, body length, number of total offspring in acute and chronic test, a dose-response relationship was established and the most sensitive biological indices were proposed. The acute toxicity test showed that the 48 h-EC50 of diuron to Daphnia magna was 17.1 mg·L-1, the 48 h-EC50 of capsaicin to Daphnia magna was 12.4 mg·L-1. The chronic toxicity test showed that there were signifi-cant effects on all observed biological indices. The sensitive biological indices for diuron from strong to weak were number of total offspring > time of the first reproduction > body length > number of brood per female, and the sensitive biological indices for capsaicin from strong to weak were number of total offspring > body length > number of brood per female > time of the first reproduction. Based on the number of total offspring, the 21 d-EC10 of diuron was calculated to be 0.830 mg·L-1, the 21d-EC10 of capsaicin was 1.63 mg·L-1. Capsaicin was readily biodegradable and its EC10 of reproduction to Daphnia magna was greater than 1 mg·L-1. According to the "Rules for Classification and Labeling of Chemicals-Part 28:Hazardous to the Aquatic Environment" (GB 30000.28-2013), capsaicin can be considered to have low chronic risk for aquatic environment and an environment-friendly potential.
{"title":"Acute and Chronic Toxicity to Daphnia magna of Diuron and Capsaicin Used in Antifouling Paints","authors":"Chen Jinlin, Xu Yujie, G. Liang, Cai Jiahong, Liang Jiahui, Yuan Mingxuan, Xiao Yijin, Chen Guilan, Feng Baoxin, Huo Jiawei, Mei Chengfang, Zeng Guoqu","doi":"10.7524/AJE.1673-5897.20191130001","DOIUrl":"https://doi.org/10.7524/AJE.1673-5897.20191130001","url":null,"abstract":"Diuron is a biocidal active substance commonly and typically used in antifouling paints, and capsaicin is a new-type of natural products used for antifouling paints. To evaluate acute and chronic toxicity of diuron and capsaicin on aquatic organism, Daphnia magna was selected as a model test organism. Based on the toxicity effects on fatality, time of the first reproduction, number of brood per female, body length, number of total offspring in acute and chronic test, a dose-response relationship was established and the most sensitive biological indices were proposed. The acute toxicity test showed that the 48 h-EC50 of diuron to Daphnia magna was 17.1 mg·L-1, the 48 h-EC50 of capsaicin to Daphnia magna was 12.4 mg·L-1. The chronic toxicity test showed that there were signifi-cant effects on all observed biological indices. The sensitive biological indices for diuron from strong to weak were number of total offspring > time of the first reproduction > body length > number of brood per female, and the sensitive biological indices for capsaicin from strong to weak were number of total offspring > body length > number of brood per female > time of the first reproduction. Based on the number of total offspring, the 21 d-EC10 of diuron was calculated to be 0.830 mg·L-1, the 21d-EC10 of capsaicin was 1.63 mg·L-1. Capsaicin was readily biodegradable and its EC10 of reproduction to Daphnia magna was greater than 1 mg·L-1. According to the \"Rules for Classification and Labeling of Chemicals-Part 28:Hazardous to the Aquatic Environment\" (GB 30000.28-2013), capsaicin can be considered to have low chronic risk for aquatic environment and an environment-friendly potential.","PeriodicalId":8845,"journal":{"name":"生态毒理学报","volume":"1 1","pages":"90-99"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71146782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.7524/AJE.1673-5897.20200706003
S. Jing, Ouyang Shaohu, Hu Xiangang, Zhou Qi-xing
As an important part of artificial nanomaterials, carbonaceous nanomaterials (CNMs) are widely applied in a plenty of areas such as energy, manufacturing and pharmaceutical industries. In the present study, the developmental toxicity, induced by three typical CNMs including graphene oxide (GO), carbon nanotube (CNT) and graphene oxide quantum dot (GOQD) was investigated in the typical model animal, zebrafish larva. The induced sub-acute toxicity at the low concentration of GO, CNT and GOQD was investigated in adult zebrafish, either. Moreover, the molecular mechanisms at the level of metabolomics were also explored. The results showed that there was a significant increase in reactive oxygen species (ROS), and mitochondrial membrane damage was caused by GO, CNT and GOQD in zebrafish larva. However, there was no significant developmental toxicity on zebrafish larva. The toxicity order in terms of the ROS increase and mitochondrial membrane damage was GOQD > CNT > GO. The chronic exposure at the typical environment-associated concentration (0.01 mg·L-1) of CNMs can induce gill and kidney cell senescence of adult zebrafish. Meanwhile, it can also inhibit total superoxide dismutase (T-SOD) activity in adult zebrafish in the subacute toxicity test (21 d) at the concentration of 0.01 mg·L-1. The metabolomics research revealed that the toxicity order at the environment-associated concentration acting on adult zebrafish was GOQD > CNT > GO; and it showed that fatty acids and proline turbulence may be responsible for one of the molecular mechanisms of T-SOD inhibition in adult zebrafish. This work can supply rationale to evaluate the potential risk of ecosystems and human health induced by the three typical CNMs.
{"title":"Effects of Three Carbonaceous Nanomaterials on the Developmental Toxicity, Oxidative Stress, and Metabolic Profile in Zebrafish","authors":"S. Jing, Ouyang Shaohu, Hu Xiangang, Zhou Qi-xing","doi":"10.7524/AJE.1673-5897.20200706003","DOIUrl":"https://doi.org/10.7524/AJE.1673-5897.20200706003","url":null,"abstract":"As an important part of artificial nanomaterials, carbonaceous nanomaterials (CNMs) are widely applied in a plenty of areas such as energy, manufacturing and pharmaceutical industries. In the present study, the developmental toxicity, induced by three typical CNMs including graphene oxide (GO), carbon nanotube (CNT) and graphene oxide quantum dot (GOQD) was investigated in the typical model animal, zebrafish larva. The induced sub-acute toxicity at the low concentration of GO, CNT and GOQD was investigated in adult zebrafish, either. Moreover, the molecular mechanisms at the level of metabolomics were also explored. The results showed that there was a significant increase in reactive oxygen species (ROS), and mitochondrial membrane damage was caused by GO, CNT and GOQD in zebrafish larva. However, there was no significant developmental toxicity on zebrafish larva. The toxicity order in terms of the ROS increase and mitochondrial membrane damage was GOQD > CNT > GO. The chronic exposure at the typical environment-associated concentration (0.01 mg·L-1) of CNMs can induce gill and kidney cell senescence of adult zebrafish. Meanwhile, it can also inhibit total superoxide dismutase (T-SOD) activity in adult zebrafish in the subacute toxicity test (21 d) at the concentration of 0.01 mg·L-1. The metabolomics research revealed that the toxicity order at the environment-associated concentration acting on adult zebrafish was GOQD > CNT > GO; and it showed that fatty acids and proline turbulence may be responsible for one of the molecular mechanisms of T-SOD inhibition in adult zebrafish. This work can supply rationale to evaluate the potential risk of ecosystems and human health induced by the three typical CNMs.","PeriodicalId":8845,"journal":{"name":"生态毒理学报","volume":"1 1","pages":"101-114"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71146569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.7524/AJE.1673-5897.20191008002
L. Qingchun, Huang Chunxiu, Xu Shipeng, Guan Cuicui, X. Xichao, Dai Hongmei, W. Wen, Z. Ke, Yao Lunguang
Catalase (CAT) is a major reactive oxygen species (ROS) scavenger enzyme that plays a significant role in the antioxidant defense mechanism of organisms by reducing toxic hydrogen peroxide molecules into a nontoxic form of oxygen and water with a high turnover rate. Polybrominated diphenyl ethers (PBDEs) are currently important components in flame retardants. Excess PBDEs deposited in organism could catalyze the production of ROS. In current study, one complete CAT sequence was isolated from Anodonta woodiana and named AwCAT . The full-length AwCAT cDNA of A. woodiana consists of 1 784 nucleotides. The open reading frame contains 1 536 bp nucleotides and encodes 512 amino acids. Compared with that of control group, AwCAT mRNA level of hepatopancreas increased more than 66.66% (P<0.05), 1.35 times (P<0.05), 1.54 times (P<0.05), 1.97 times (P<0.01) and 2.39 times (P<0.01) in the 6.25, 12.5, 25, 50 and 100 μg·L-1 of PBDE-47 treated groups, respectively; AwCAT mRNA level of hepatopancreas increased more than 7.84%, 35.38%, 61.53% (P<0.05), 1.03 times (P<0.05) and 1.09 times (P<0.05) in the 10, 20, 40, 80 and 160 μg·L-1 of PBDE-209 treated group, respectively. Compared with that of control group, AwCAT mRNA level of gill significantly increased in the PBDE-47 treated groups. Compared with that of control group, AwCAT mRNA level of gill increased more than 85.71% (P<0.05) in the PBDE-209 treated goups. These results indicate that up-regulations of AwCAT expression of hepatopancreas and gill in the freshwater bivalve A. woodiana are contributed to eliminate stress derived from PBDE-47 and PBDE-209 challenge.
{"title":"Cloning of AwCAT from Anodonta woodiana and the Effect of PBDE on Its Transcription","authors":"L. Qingchun, Huang Chunxiu, Xu Shipeng, Guan Cuicui, X. Xichao, Dai Hongmei, W. Wen, Z. Ke, Yao Lunguang","doi":"10.7524/AJE.1673-5897.20191008002","DOIUrl":"https://doi.org/10.7524/AJE.1673-5897.20191008002","url":null,"abstract":"Catalase (CAT) is a major reactive oxygen species (ROS) scavenger enzyme that plays a significant role in the antioxidant defense mechanism of organisms by reducing toxic hydrogen peroxide molecules into a nontoxic form of oxygen and water with a high turnover rate. Polybrominated diphenyl ethers (PBDEs) are currently important components in flame retardants. Excess PBDEs deposited in organism could catalyze the production of ROS. In current study, one complete CAT sequence was isolated from Anodonta woodiana and named AwCAT . The full-length AwCAT cDNA of A. woodiana consists of 1 784 nucleotides. The open reading frame contains 1 536 bp nucleotides and encodes 512 amino acids. Compared with that of control group, AwCAT mRNA level of hepatopancreas increased more than 66.66% (P<0.05), 1.35 times (P<0.05), 1.54 times (P<0.05), 1.97 times (P<0.01) and 2.39 times (P<0.01) in the 6.25, 12.5, 25, 50 and 100 μg·L-1 of PBDE-47 treated groups, respectively; AwCAT mRNA level of hepatopancreas increased more than 7.84%, 35.38%, 61.53% (P<0.05), 1.03 times (P<0.05) and 1.09 times (P<0.05) in the 10, 20, 40, 80 and 160 μg·L-1 of PBDE-209 treated group, respectively. Compared with that of control group, AwCAT mRNA level of gill significantly increased in the PBDE-47 treated groups. Compared with that of control group, AwCAT mRNA level of gill increased more than 85.71% (P<0.05) in the PBDE-209 treated goups. These results indicate that up-regulations of AwCAT expression of hepatopancreas and gill in the freshwater bivalve A. woodiana are contributed to eliminate stress derived from PBDE-47 and PBDE-209 challenge.","PeriodicalId":8845,"journal":{"name":"生态毒理学报","volume":"1 1","pages":"203-214"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71146647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.7524/AJE.1673-5897.20191204001
Wang Mengzhen, Sun Haoyu, Longchang Xi, Lin Zhifen
The abuse of antibiotics has caused increasingly serious problem of bacterial resistance, thus it is urgent to develop new antibacterial drugs to alleviate this problem. The nanosilver composites that was synthesized from single nanosilver can not only overcome the shortcomings of nanosilver, such as the rapid release rate of Ag+ and unstable physicochemical property, but also reduce the bacterial resistance, which are regarded as a new kind of antibacterial agents with broad application prospects. Previous studies have showed that the combination of single nanosilver and some antibiotics could exhibit the synergistic antibacterial effect. However, little information is available on the performance and mechanism of nanosilver composites combined with antibiotics. In this paper, three kinds of nanosilver composites with different structures were synthesized: silica-polydopamine-nanosilver (SiO2-PD-AgNPs), nanosilver@silica (AgNPs@SiO2) and nanosilver@silica-polydopamine-nanosilver (AgNPs@SiO2-PD-AgNPs). Subsequently, the single toxicity of nanosilver composites to Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) was determined. The results showed that the toxicity of AgNPs@SiO2-PD-AgNPs to the two kinds of bacteria were greater than that of the other two nanosilver composites. Therefore, AgNPs@SiO2-PD-AgNPs was selected as the representative to determine its combined antibacterial property with KS (kanamycin sulfate)/OH (oxytetracycline hydrochloride), and it was found that the combination of AgNPs@SiO2-PD-AgNPs and KS could display synergistic effect on E. coli/. The nanosilver released by AgNPs@SiO2-PD-AgNPs could react with KS to form the KS-nanosilver complex, resulting in a large amount of Ag+ released from nanosilver. The increase of Ag+ enhanced the permeability of cell membrane, so the amount of Ag+ and KS entering the bacteria were more than that of the antibacterial agents when acting alone, which resulted in greater antibacterial property and a synergistic effect. This study explores the optimal combination and related mechanism of new nanosilver composite and specific antibiotics based on the combined toxicity experiments, which will provide new insight into the development of new antibacterial materials and give a reference for the related combination application of drugs.
{"title":"Combined Antibacterial Property and Mechanism of Nanosilver Composites and Antibiotics against Bacteria","authors":"Wang Mengzhen, Sun Haoyu, Longchang Xi, Lin Zhifen","doi":"10.7524/AJE.1673-5897.20191204001","DOIUrl":"https://doi.org/10.7524/AJE.1673-5897.20191204001","url":null,"abstract":"The abuse of antibiotics has caused increasingly serious problem of bacterial resistance, thus it is urgent to develop new antibacterial drugs to alleviate this problem. The nanosilver composites that was synthesized from single nanosilver can not only overcome the shortcomings of nanosilver, such as the rapid release rate of Ag+ and unstable physicochemical property, but also reduce the bacterial resistance, which are regarded as a new kind of antibacterial agents with broad application prospects. Previous studies have showed that the combination of single nanosilver and some antibiotics could exhibit the synergistic antibacterial effect. However, little information is available on the performance and mechanism of nanosilver composites combined with antibiotics. In this paper, three kinds of nanosilver composites with different structures were synthesized: silica-polydopamine-nanosilver (SiO2-PD-AgNPs), nanosilver@silica (AgNPs@SiO2) and nanosilver@silica-polydopamine-nanosilver (AgNPs@SiO2-PD-AgNPs). Subsequently, the single toxicity of nanosilver composites to Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) was determined. The results showed that the toxicity of AgNPs@SiO2-PD-AgNPs to the two kinds of bacteria were greater than that of the other two nanosilver composites. Therefore, AgNPs@SiO2-PD-AgNPs was selected as the representative to determine its combined antibacterial property with KS (kanamycin sulfate)/OH (oxytetracycline hydrochloride), and it was found that the combination of AgNPs@SiO2-PD-AgNPs and KS could display synergistic effect on E. coli/. The nanosilver released by AgNPs@SiO2-PD-AgNPs could react with KS to form the KS-nanosilver complex, resulting in a large amount of Ag+ released from nanosilver. The increase of Ag+ enhanced the permeability of cell membrane, so the amount of Ag+ and KS entering the bacteria were more than that of the antibacterial agents when acting alone, which resulted in greater antibacterial property and a synergistic effect. This study explores the optimal combination and related mechanism of new nanosilver composite and specific antibiotics based on the combined toxicity experiments, which will provide new insight into the development of new antibacterial materials and give a reference for the related combination application of drugs.","PeriodicalId":8845,"journal":{"name":"生态毒理学报","volume":"1 1","pages":"39-49"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71147011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.7524/AJE.1673-5897.20200325001
Duan Yujing, Wu Xinyan, Chen Zeyou, Chen Ying, Liu Linyun, Zhu Siyuan, Mao Da-qing, Luo Yi
Human gut microbiota is the reservoir of antibiotic resistance genes (ARGs) and it plays an important role to human health. The abuse of antibiotics is still severe at present, which further aggravates the spread of ARGs. Bacterial resistance seriously affects human health, food safety and ecological safety, and pathogens carrying ARGs pose a great threat to clinical treatment. In combination with the research progress in China and abroad, this paper discussed in detail about gut resistome from the aspects including the composition, origin, propagation and evolution. In addition, the research methods of human gut resistome and the future prospect were summarized. This study could promote the public’s understanding of gut resistome and provide theoretical support for rational use of antibiotics.
{"title":"Advances in Human Gut Resistome","authors":"Duan Yujing, Wu Xinyan, Chen Zeyou, Chen Ying, Liu Linyun, Zhu Siyuan, Mao Da-qing, Luo Yi","doi":"10.7524/AJE.1673-5897.20200325001","DOIUrl":"https://doi.org/10.7524/AJE.1673-5897.20200325001","url":null,"abstract":"Human gut microbiota is the reservoir of antibiotic resistance genes (ARGs) and it plays an important role to human health. The abuse of antibiotics is still severe at present, which further aggravates the spread of ARGs. Bacterial resistance seriously affects human health, food safety and ecological safety, and pathogens carrying ARGs pose a great threat to clinical treatment. In combination with the research progress in China and abroad, this paper discussed in detail about gut resistome from the aspects including the composition, origin, propagation and evolution. In addition, the research methods of human gut resistome and the future prospect were summarized. This study could promote the public’s understanding of gut resistome and provide theoretical support for rational use of antibiotics.","PeriodicalId":8845,"journal":{"name":"生态毒理学报","volume":"1 1","pages":"1-10"},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71146894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}