首页 > 最新文献

International journal of computational science最新文献

英文 中文
Survey on Neural Networks Used for Medical Image Processing. 神经网络在医学图像处理中的应用综述。
Zhenghao Shi, Lifeng He, Kenji Suzuki, Tsuyoshi Nakamura, Hidenori Itoh

This paper aims to present a review of neural networks used in medical image processing. We classify neural networks by its processing goals and the nature of medical images. Main contributions, advantages, and drawbacks of the methods are mentioned in the paper. Problematic issues of neural network application for medical image processing and an outlook for the future research are also discussed. By this survey, we try to answer the following two important questions: (1) What are the major applications of neural networks in medical image processing now and in the nearby future? (2) What are the major strengths and weakness of applying neural networks for solving medical image processing tasks? We believe that this would be very helpful researchers who are involved in medical image processing with neural network techniques.

本文综述了神经网络在医学图像处理中的应用。我们根据神经网络的处理目标和医学图像的性质对其进行分类。本文介绍了各种方法的主要贡献、优缺点。讨论了神经网络在医学图像处理中的应用存在的问题,并对今后的研究进行了展望。通过这项调查,我们试图回答以下两个重要问题:(1)神经网络在医学图像处理中的主要应用是什么?(2)应用神经网络解决医学图像处理任务的主要优点和缺点是什么?我们相信这将对从事医学图像处理神经网络技术的研究人员非常有帮助。
{"title":"Survey on Neural Networks Used for Medical Image Processing.","authors":"Zhenghao Shi, Lifeng He, Kenji Suzuki, Tsuyoshi Nakamura, Hidenori Itoh","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>This paper aims to present a review of neural networks used in medical image processing. We classify neural networks by its processing goals and the nature of medical images. Main contributions, advantages, and drawbacks of the methods are mentioned in the paper. Problematic issues of neural network application for medical image processing and an outlook for the future research are also discussed. By this survey, we try to answer the following two important questions: (1) What are the major applications of neural networks in medical image processing now and in the nearby future? (2) What are the major strengths and weakness of applying neural networks for solving medical image processing tasks? We believe that this would be very helpful researchers who are involved in medical image processing with neural network techniques.</p>","PeriodicalId":88523,"journal":{"name":"International journal of computational science","volume":"3 1","pages":"86-100"},"PeriodicalIF":0.0,"publicationDate":"2009-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4699299/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144183133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finding Occurrences of Relevant Functional Elements in Genomic Signatures. 在基因组特征中发现相关功能元件的出现。
Edwin Jacox, Laura Elnitski

For genomic applications, signature-finding algorithms identify over-represented signatures (words) in collections of DNA sequences. The results can be presented as a specific sequence of bases, a consensus sequence showing possible combination of bases, or a matrix of weighted possibilities at each position. These results are often compared to a biological set of binding sites (i.e., known functional elements), which are usually represented as weighted matrices. The comparison is made by scoring the signatures against each weight matrix to identify the best option for a positive hit. However, this approach can misclassify results when applied to short sequences, which are a frequent result of signature finders. We describe a novel method using a window around the original sequences (those which the signature is based upon) to improve the comparison and identify a more significant measure of similarity. In doing so, our method transforms a list of DNA signatures into a resource of characterized binding sites with known functional roles and identifies novel elements in need of further elucidation.

对于基因组应用,签名查找算法识别DNA序列集合中过度代表的签名(单词)。结果可以呈现为一个特定的碱基序列,一个共识序列显示可能的碱基组合,或在每个位置加权可能性的矩阵。这些结果通常与结合位点(即已知的功能元件)的生物学集进行比较,后者通常表示为加权矩阵。通过对每个权重矩阵的签名进行评分来进行比较,以确定正面命中的最佳选择。但是,当应用于短序列时,这种方法可能会对结果进行错误分类,而短序列是签名查找器的常见结果。我们描述了一种新的方法,使用原始序列周围的窗口(签名所基于的那些)来改进比较并识别更重要的相似性度量。在此过程中,我们的方法将DNA签名列表转换为具有已知功能作用的特征结合位点资源,并确定需要进一步阐明的新元素。
{"title":"Finding Occurrences of Relevant Functional Elements in Genomic Signatures.","authors":"Edwin Jacox, Laura Elnitski","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>For genomic applications, signature-finding algorithms identify over-represented signatures (words) in collections of DNA sequences. The results can be presented as a specific sequence of bases, a consensus sequence showing possible combination of bases, or a matrix of weighted possibilities at each position. These results are often compared to a biological set of binding sites (i.e., known functional elements), which are usually represented as weighted matrices. The comparison is made by scoring the signatures against each weight matrix to identify the best option for a positive hit. However, this approach can misclassify results when applied to short sequences, which are a frequent result of signature finders. We describe a novel method using a window around the original sequences (those which the signature is based upon) to improve the comparison and identify a more significant measure of similarity. In doing so, our method transforms a list of DNA signatures into a resource of characterized binding sites with known functional roles and identifies novel elements in need of further elucidation.</p>","PeriodicalId":88523,"journal":{"name":"International journal of computational science","volume":"2 5","pages":"599-606"},"PeriodicalIF":0.0,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800375/pdf/nihms70363.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"28625952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International journal of computational science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1