Calcium plays an important role in regulating hundreds of biological processes due to its primary role as one of the most ubiquitous second messengers. As a result, the levels of calcium are tightly regulated as are the peak and trough calcium concentrations during a calcium signal. Calcium levels are controlled via a variety of feedback mechanisms and exchangers/transporters. Here the role of calcium in the feedback regulation of ion channel function is reviewed, with an emphasis on the molecular mechanisms governing calcium-dependent function. In particular, the role of calcium in the regulation of voltage-gated sodium, calcium, and potassium channels are reviewed as well as its effects on the ryanodine receptor.
{"title":"Calcium-Dependent Regulation of Ion Channels.","authors":"Vikas N Shah, Benjamin Chagot, Walter J Chazin","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Calcium plays an important role in regulating hundreds of biological processes due to its primary role as one of the most ubiquitous second messengers. As a result, the levels of calcium are tightly regulated as are the peak and trough calcium concentrations during a calcium signal. Calcium levels are controlled via a variety of feedback mechanisms and exchangers/transporters. Here the role of calcium in the feedback regulation of ion channel function is reviewed, with an emphasis on the molecular mechanisms governing calcium-dependent function. In particular, the role of calcium in the regulation of voltage-gated sodium, calcium, and potassium channels are reviewed as well as its effects on the ryanodine receptor.</p>","PeriodicalId":89538,"journal":{"name":"Calcium binding proteins","volume":"1 4","pages":"203-212"},"PeriodicalIF":0.0,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5531595/pdf/nihms883778.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35275350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zuleika Sanoguet, Muriel Campbell, Sindia Ramos, Christina Seda, Luis Pérez Moreno, Belinda Pastrana-Rios
Centrin is a conserved calcium binding protein belonging to the EF-hand superfamily with two independent structural domains. This protein is found to be phosphorylated near the carboxyl terminal end. Our goal was to perform a novel comparative study of phosphorylated and unphosphorylated centrin by Fourier transform infrared (FT-IR) spectroscopy, two-dimensional correlation spectroscopy (2D-COS) analysis and differential scanning calorimetry (DSC). To achieve this goal, we have bacterially expressed, isolated, purified and phosphorylated centrin. We verified the extent of phosphorylation to be >97% for centrin by MALDI MS analysis and determined the absence of aggregated protein. The thermal denaturation temperature and ΔCp were determined to be T(m) = 112.1 °C (ΔCp = 7.8 Kcal/mole/ΔC) and T(m) = 111.0°C (ΔCp = 5.0 Kcal/mole/°C) for holo-centrin and phosphorylated centrin, respectively. We have also described the molecular dynamics leading up to the thermal denaturation of the protein: for holo-centrin the vibrational modes associated with the calcium binding sites aspartates and glutamates, loops then the arginines, followed by the structured backbone vibrational modes the α-helix at 1635 cm(-1) then β-sheet and finally the more exposed α-helix at 1650 cm(-1); while for phosphorylated centrin aspartate, glutamate and arginine, followed by the backbone associated vibrational modes α-helix (1650 cm(-1)), loop then the β-sheet (1633 cm(-1)) and finally the α-helix (1637 cm(-1)). Therefore, the effect on domain stability due to phosphorylation at Ser(167) was observed in the loops as well as the α-helix at 1650 cm(-1).
{"title":"Effects of Phosphorylation in Chlamydomonas Centrin Ser 167.","authors":"Zuleika Sanoguet, Muriel Campbell, Sindia Ramos, Christina Seda, Luis Pérez Moreno, Belinda Pastrana-Rios","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Centrin is a conserved calcium binding protein belonging to the EF-hand superfamily with two independent structural domains. This protein is found to be phosphorylated near the carboxyl terminal end. Our goal was to perform a novel comparative study of phosphorylated and unphosphorylated centrin by Fourier transform infrared (FT-IR) spectroscopy, two-dimensional correlation spectroscopy (2D-COS) analysis and differential scanning calorimetry (DSC). To achieve this goal, we have bacterially expressed, isolated, purified and phosphorylated centrin. We verified the extent of phosphorylation to be >97% for centrin by MALDI MS analysis and determined the absence of aggregated protein. The thermal denaturation temperature and ΔCp were determined to be T(m) = 112.1 °C (ΔCp = 7.8 Kcal/mole/ΔC) and T(m) = 111.0°C (ΔCp = 5.0 Kcal/mole/°C) for holo-centrin and phosphorylated centrin, respectively. We have also described the molecular dynamics leading up to the thermal denaturation of the protein: for holo-centrin the vibrational modes associated with the calcium binding sites aspartates and glutamates, loops then the arginines, followed by the structured backbone vibrational modes the α-helix at 1635 cm(-1) then β-sheet and finally the more exposed α-helix at 1650 cm(-1); while for phosphorylated centrin aspartate, glutamate and arginine, followed by the backbone associated vibrational modes α-helix (1650 cm(-1)), loop then the β-sheet (1633 cm(-1)) and finally the α-helix (1637 cm(-1)). Therefore, the effect on domain stability due to phosphorylation at Ser(167) was observed in the loops as well as the α-helix at 1650 cm(-1).</p>","PeriodicalId":89538,"journal":{"name":"Calcium binding proteins","volume":"1 2","pages":"108-114"},"PeriodicalIF":0.0,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232031/pdf/nihms66457.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30319729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}