首页 > 最新文献

The 2010 ACM International Conference on Bioinformatics and Computational Biology : ACM-BCB 2010 : Niagara Falls, New York, U.S.A., August 2-4, 2010. ACM International Conference on Bioinformatics and Computational Biology (1st : 2010 :...最新文献

英文 中文
Genome-wide compatible SNP intervals and their properties. 全基因组兼容SNP间隔及其性质。
Jeremy Wang, Fernando Pardo-Manual de Villena, Kyle J Moore, Wei Wang, Qi Zhang, Leonard McMillan

Intraspecific genomes can be subdivided into blocks with limited diversity. Understanding the distribution and structure of these blocks will help to unravel many biological problems including the identification of genes associated with complex diseases, finding the ancestral origins of a given population, and localizing regions of historical recombination, gene conversion, and homoplasy. We present methods for partitioning a genome into blocks for which there are no apparent recombinations, thus providing parsimonious sets of compatible genome intervals based on the four-gamete test. Our contribution is a thorough analysis of the problem of dividing a genome into compatible intervals, in terms of its computational complexity, and by providing an achievable lower-bound on the minimal number of intervals required to cover an entire data set. In general, such minimal interval partitions are not unique. However, we identify properties that are common to every possible solution. We also define the notion of an interval set that achieves the interval lower-bound, yet maximizes interval overlap. We demonstrate algorithms for partitioning both haplotype data from inbred mice as well as outbred heterozygous genotype data using extensions of the standard four-gamete test. These methods allow our algorithms to be applied to a wide range of genomic data sets.

种内基因组可以被细分为具有有限多样性的块。了解这些片段的分布和结构将有助于解开许多生物学问题,包括识别与复杂疾病相关的基因,寻找特定人群的祖先起源,以及定位历史重组、基因转换和同源性的区域。我们提出了将基因组划分为没有明显重组的块的方法,从而提供了基于四配子测试的简约的相容基因组间隔集。我们的贡献是对将基因组划分为兼容区间的问题进行了彻底的分析,就其计算复杂性而言,并提供了覆盖整个数据集所需的最小区间数量的可实现的下限。一般来说,这样的最小间隔分区不是唯一的。然而,我们确定了每个可能的解决方案的共同属性。我们还定义了区间集的概念,它既达到区间下界,又使区间重叠最大化。我们演示了使用标准四配子测试的扩展来划分近交小鼠的单倍型数据以及近交杂合基因型数据的算法。这些方法允许我们的算法应用于广泛的基因组数据集。
{"title":"Genome-wide compatible SNP intervals and their properties.","authors":"Jeremy Wang,&nbsp;Fernando Pardo-Manual de Villena,&nbsp;Kyle J Moore,&nbsp;Wei Wang,&nbsp;Qi Zhang,&nbsp;Leonard McMillan","doi":"10.1145/1854776.1854788","DOIUrl":"https://doi.org/10.1145/1854776.1854788","url":null,"abstract":"<p><p>Intraspecific genomes can be subdivided into blocks with limited diversity. Understanding the distribution and structure of these blocks will help to unravel many biological problems including the identification of genes associated with complex diseases, finding the ancestral origins of a given population, and localizing regions of historical recombination, gene conversion, and homoplasy. We present methods for partitioning a genome into blocks for which there are no apparent recombinations, thus providing parsimonious sets of compatible genome intervals based on the four-gamete test. Our contribution is a thorough analysis of the problem of dividing a genome into compatible intervals, in terms of its computational complexity, and by providing an achievable lower-bound on the minimal number of intervals required to cover an entire data set. In general, such minimal interval partitions are not unique. However, we identify properties that are common to every possible solution. We also define the notion of an interval set that achieves the interval lower-bound, yet maximizes interval overlap. We demonstrate algorithms for partitioning both haplotype data from inbred mice as well as outbred heterozygous genotype data using extensions of the standard four-gamete test. These methods allow our algorithms to be applied to a wide range of genomic data sets.</p>","PeriodicalId":90977,"journal":{"name":"The 2010 ACM International Conference on Bioinformatics and Computational Biology : ACM-BCB 2010 : Niagara Falls, New York, U.S.A., August 2-4, 2010. ACM International Conference on Bioinformatics and Computational Biology (1st : 2010 :...","volume":"2010 ","pages":"43-52"},"PeriodicalIF":0.0,"publicationDate":"2010-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/1854776.1854788","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35619386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
A Novel Network Model for Molecular Prognosis. 一种新的分子预后网络模型。
Ying-Wooi Wan, Swetha Bose, James Denvir, Nancy Lan Guo

Network-based genome-wide association studies (NWAS) utilize the molecular interactions between genes and functional pathways in biomarker identification. This study presents a novel network-based methodology for identifying prognostic gene signatures to predict cancer recurrence. The methodology contains the following steps: 1) Constructing genome-wide coexpression networks for different disease states (metastatic vs. non-metastatic). Prediction logic is used to induct valid implication relations between each pair of gene expression profiles in terms of formal logic rules. 2) Identifying differential components associated with specific disease states from the genome-wide coexpression networks. 3) Dissecting network modules that are tightly connected with major disease signal hallmarks from the disease specific differential components. 4) Identifying most significant genes/probes associated with clinical outcome from the pathway connected network modules. Using this methodology, a 14-gene prognostic signature was identified for accurate patient stratification in early stage lung cancer.

基于网络的全基因组关联研究(NWAS)利用基因和功能途径之间的分子相互作用来鉴定生物标志物。本研究提出了一种新的基于网络的方法来识别预后基因特征以预测癌症复发。该方法包括以下步骤:1)构建不同疾病状态(转移性和非转移性)的全基因组共表达网络。预测逻辑是根据形式逻辑规则来归纳每对基因表达谱之间有效的隐含关系。2)从全基因组共表达网络中识别与特定疾病状态相关的差异组分。3)从疾病特异性差异成分剖析与主要疾病信号标志紧密相连的网络模块。4)从通路连接的网络模块中识别与临床结果相关的最重要基因/探针。使用这种方法,确定了早期肺癌患者准确分层的14个基因预后特征。
{"title":"A Novel Network Model for Molecular Prognosis.","authors":"Ying-Wooi Wan,&nbsp;Swetha Bose,&nbsp;James Denvir,&nbsp;Nancy Lan Guo","doi":"10.1145/1854776.1854825","DOIUrl":"https://doi.org/10.1145/1854776.1854825","url":null,"abstract":"<p><p>Network-based genome-wide association studies (NWAS) utilize the molecular interactions between genes and functional pathways in biomarker identification. This study presents a novel network-based methodology for identifying prognostic gene signatures to predict cancer recurrence. The methodology contains the following steps: 1) Constructing genome-wide coexpression networks for different disease states (metastatic vs. non-metastatic). Prediction logic is used to induct valid implication relations between each pair of gene expression profiles in terms of formal logic rules. 2) Identifying differential components associated with specific disease states from the genome-wide coexpression networks. 3) Dissecting network modules that are tightly connected with major disease signal hallmarks from the disease specific differential components. 4) Identifying most significant genes/probes associated with clinical outcome from the pathway connected network modules. Using this methodology, a 14-gene prognostic signature was identified for accurate patient stratification in early stage lung cancer.</p>","PeriodicalId":90977,"journal":{"name":"The 2010 ACM International Conference on Bioinformatics and Computational Biology : ACM-BCB 2010 : Niagara Falls, New York, U.S.A., August 2-4, 2010. ACM International Conference on Bioinformatics and Computational Biology (1st : 2010 :...","volume":"2010 ","pages":"342-345"},"PeriodicalIF":0.0,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/1854776.1854825","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33205637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
期刊
The 2010 ACM International Conference on Bioinformatics and Computational Biology : ACM-BCB 2010 : Niagara Falls, New York, U.S.A., August 2-4, 2010. ACM International Conference on Bioinformatics and Computational Biology (1st : 2010 :...
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1