首页 > 最新文献

Journal of personalized nanomedicine最新文献

英文 中文
Macrophage Targeted Nanoparticles for Antiretroviral (ARV) Delivery. 用于递送抗逆转录病毒 (ARV) 的巨噬细胞靶向纳米颗粒。
Pub Date : 2015-11-01 Epub Date: 2015-11-14
Hilliard L Kutscher, Faithful Makita-Chingombe, Sara DiTursi, Ajay Singh, Admire Dube, Charles C Maponga, Gene D Morse, Jessica L Reynolds

Objective: To reduce the amount of the antiretroviral (ARV) nevirapine necessary to achieve therapeutic concentrations using macrophage targeted nanoparticles.

Methods: Core-shell nanoparticles were prepared from FDA approved, biodegradable and biocompatible polymers, with poly(lactic-co-glycolic) acid (PLGA) as the core and chitosan (CS) as the shell using a water/oil/water method. Nevirapine was encapsulated in the core of the nanoparticles. β-glucan (GLU) was adsorbed to the surface of the nanoparticle. Macrophage uptake and intracellular nevirapine concentrations were determined by fluorescence imaging and ultra-performance liquid chromatography/mass spectroscopy (UPLC-MS). Optical imaging was employed to characterize the biodistribution of nanoparticles following intravenous injection in CD-1 mice.

Results: We synthesized spherical shaped 190 nm GLU-CS-PLGA nanoparticles that provide controlled release of nevirapine. In THP-1 macrophage the uptake of PLGA and CS- PLGA nanoparticles was less compared to targeted GLU-CS-PLGA nanoparticles. THP-1 macrophage were dosed with free nevirapine (10 μg/well) and GLU-CS- PLGA nanoparticles containing 1/10 the concentration of free nevirapine (1 μg nevirapine/well). The intracellular concentration of nevirapine was the same for both nanoparticles and free nevirapine at 2 and 24 hrs. No significant change in THP-1 macrophage viability was observed in the presence of nanoparticles relative to the control. Ex vivo imaging demonstrates that nanoparticles are predominantly found in the liver and kidney and at 24 hr there is still a large amount of nanoparticles in the body.

Conclusion: These data demonstrate that the total dose of nevirapine delivered by GLU-CS-PLGA nanoparticles can be greatly reduced, to limit side effects, while still providing maximal ARV activity in a known cellular reservoir.

目的利用巨噬细胞靶向纳米颗粒减少抗逆转录病毒(ARV)奈韦拉平达到治疗浓度所需的用量:方法:采用水/油/水方法,用美国食品药物管理局批准的可生物降解且生物相容的聚合物制备核壳纳米粒子,以聚(乳酸-共聚乙醇)酸(PLGA)为核,壳聚糖(CS)为壳。奈韦拉平被封装在纳米颗粒的核心中。纳米颗粒表面吸附了β-葡聚糖(GLU)。通过荧光成像和超高效液相色谱/质谱(UPLC-MS)测定巨噬细胞的摄取量和细胞内奈韦拉平的浓度。采用光学成像技术描述了纳米颗粒在 CD-1 小鼠静脉注射后的生物分布特征:结果:我们合成了190 nm的球形GLU-CS-PLGA纳米颗粒,它能控制奈韦拉平的释放。在 THP-1 巨噬细胞中,PLGA 和 CS- PLGA 纳米粒子的吸收率低于靶向 GLU-CS-PLGA 纳米粒子。给 THP-1 巨噬细胞注射游离奈韦拉平(10 μg/孔)和含有游离奈韦拉平浓度 1/10 的 GLU-CS- PLGA 纳米颗粒(1 μg 奈韦拉平/孔)。纳米颗粒和游离奈韦拉平在 2 小时和 24 小时后的细胞内浓度相同。与对照组相比,纳米颗粒存在时 THP-1 巨噬细胞的存活率没有明显变化。体内外成像显示,纳米颗粒主要存在于肝脏和肾脏,24 小时后体内仍有大量纳米颗粒:这些数据表明,GLU-CS-PLGA 纳米颗粒可大大降低奈韦拉平的总剂量,从而限制副作用,同时仍能在已知的细胞储库中提供最大的抗逆转录病毒活性。
{"title":"Macrophage Targeted Nanoparticles for Antiretroviral (ARV) Delivery.","authors":"Hilliard L Kutscher, Faithful Makita-Chingombe, Sara DiTursi, Ajay Singh, Admire Dube, Charles C Maponga, Gene D Morse, Jessica L Reynolds","doi":"","DOIUrl":"","url":null,"abstract":"<p><strong>Objective: </strong>To reduce the amount of the antiretroviral (ARV) nevirapine necessary to achieve therapeutic concentrations using macrophage targeted nanoparticles.</p><p><strong>Methods: </strong>Core-shell nanoparticles were prepared from FDA approved, biodegradable and biocompatible polymers, with poly(lactic-co-glycolic) acid (PLGA) as the core and chitosan (CS) as the shell using a water/oil/water method. Nevirapine was encapsulated in the core of the nanoparticles. β-glucan (GLU) was adsorbed to the surface of the nanoparticle. Macrophage uptake and intracellular nevirapine concentrations were determined by fluorescence imaging and ultra-performance liquid chromatography/mass spectroscopy (UPLC-MS). Optical imaging was employed to characterize the biodistribution of nanoparticles following intravenous injection in CD-1 mice.</p><p><strong>Results: </strong>We synthesized spherical shaped 190 nm GLU-CS-PLGA nanoparticles that provide controlled release of nevirapine. In THP-1 macrophage the uptake of PLGA and CS- PLGA nanoparticles was less compared to targeted GLU-CS-PLGA nanoparticles. THP-1 macrophage were dosed with free nevirapine (10 μg/well) and GLU-CS- PLGA nanoparticles containing 1/10 the concentration of free nevirapine (1 μg nevirapine/well). The intracellular concentration of nevirapine was the same for both nanoparticles and free nevirapine at 2 and 24 hrs. No significant change in THP-1 macrophage viability was observed in the presence of nanoparticles relative to the control. <i>Ex vivo</i> imaging demonstrates that nanoparticles are predominantly found in the liver and kidney and at 24 hr there is still a large amount of nanoparticles in the body.</p><p><strong>Conclusion: </strong>These data demonstrate that the total dose of nevirapine delivered by GLU-CS-PLGA nanoparticles can be greatly reduced, to limit side effects, while still providing maximal ARV activity in a known cellular reservoir.</p>","PeriodicalId":91128,"journal":{"name":"Journal of personalized nanomedicine","volume":"1 2","pages":"40-48"},"PeriodicalIF":0.0,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5826576/pdf/nihms859399.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35873868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanostructured Gas Sensors for Health Care: An Overview. 用于医疗保健的纳米结构气体传感器:概述。
Pub Date : 2015-07-01 Epub Date: 2015-07-27
Ajeet Kaushik, Rajesh Kumar, Rahul Dev Jayant, Madhavan Nair

Nanostructured platforms have been utilized for fabrication of small, sensitive and reliable gas sensing devices owing to high functionality, enhanced charge transport and electro-catalytic property. As a result of globalization, rapid, sensitive and selective detection of gases in environment is essential for health care and security. Nonmaterial such as metal, metal oxides, organic polymers, and organic-inorganic hybrid nanocomposites exhibit interesting optical, electrical, magnetic and molecular properties, and hence are found potential gas sensing materials. Morphological, electrical, and optical properties of such nanostructures can be tailored via controlling the precursor concentration and synthesis conditions resulting to achieve desired sensing. This review presents applications of nano-enabling gas sensors to detect gases for environment monitoring. The recent update, challenges, and future vision for commercial applications of such sensor are also described here.

纳米结构平台具有高功能性、增强的电荷传输和电催化特性,已被用于制造小型、灵敏和可靠的气体传感设备。随着全球化的发展,快速、灵敏和选择性地检测环境中的气体对于医疗保健和安全至关重要。金属、金属氧化物、有机聚合物和有机-无机杂化纳米复合材料等非物质具有有趣的光学、电学、磁学和分子特性,因此被认为是潜在的气体传感材料。通过控制前驱体浓度和合成条件,可以定制此类纳米结构的形态、电学和光学特性,从而实现理想的传感效果。本综述介绍了纳米气体传感器在环境监测气体检测方面的应用。本文还介绍了此类传感器的最新进展、面临的挑战以及未来的商业应用前景。
{"title":"Nanostructured Gas Sensors for Health Care: An Overview.","authors":"Ajeet Kaushik, Rajesh Kumar, Rahul Dev Jayant, Madhavan Nair","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Nanostructured platforms have been utilized for fabrication of small, sensitive and reliable gas sensing devices owing to high functionality, enhanced charge transport and electro-catalytic property. As a result of globalization, rapid, sensitive and selective detection of gases in environment is essential for health care and security. Nonmaterial such as metal, metal oxides, organic polymers, and organic-inorganic hybrid nanocomposites exhibit interesting optical, electrical, magnetic and molecular properties, and hence are found potential gas sensing materials. Morphological, electrical, and optical properties of such nanostructures can be tailored via controlling the precursor concentration and synthesis conditions resulting to achieve desired sensing. This review presents applications of nano-enabling gas sensors to detect gases for environment monitoring. The recent update, challenges, and future vision for commercial applications of such sensor are also described here.</p>","PeriodicalId":91128,"journal":{"name":"Journal of personalized nanomedicine","volume":"1 1","pages":"10-23"},"PeriodicalIF":0.0,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610411/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"34107076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of personalized nanomedicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1