One of the newer classes of targeted cancer therapeutics is monoclonal antibodies. Monoclonal antibody therapeutics are a successful and rapidly expanding drug class due to their high specificity, activity, favourable pharmacokinetics, and standardized manufacturing processes. Antibodies are capable of recruiting the immune system to attack cancer cells through complement-dependent cytotoxicity or antibody dependent cellular cytotoxicity. In an ideal scenario the initial tumor cell destruction induced by administration of a therapeutic antibody can result in uptake of tumor associated antigens by antigen-presenting cells, establishing a prolonged memory effect. Mechanisms of direct tumor cell killing by antibodies include antibody recognition of cell surface bound enzymes to neutralize enzyme activity and signaling, or induction of receptor agonist or antagonist activity. Both approaches result in cellular apoptosis. In another and very direct approach, antibodies are used to deliver drugs to target cells and cause cell death. Such antibody drug conjugates (ADCs) direct cytotoxic compounds to tumor cells, after selective binding to cell surface antigens, internalization, and intracellular drug release. Efficacy and safety of ADCs for cancer therapy has recently been greatly advanced based on innovative approaches for site-specific drug conjugation to the antibody structure. This technology enabled rational optimization of function and pharmacokinetics of the resulting conjugates, and is now beginning to yield therapeutics with defined, uniform molecular characteristics, and unprecedented promise to advance cancer treatment.
Current anti-retroviral treatment (ART) for HIV is effective in maintaining HIV at undetectable levels. However, cessation of ART results in immediate and brisk rebound of viremia to high levels. This rebound is driven by an HIV reservoir mainly enriched in memory CD4+ T cells. In order to provide any form of functional HIV Cure, elimination of this viral reservoir has become the focus of current HIV cure strategies. Alefacept was initially developed for the treatment of chronic plaque psoriasis. Alefacept is a chimeric fusion protein consisting of the CD2-binding portion of human leukocyte function antigen-3 (LFA3) linked to the Fc region of human IgG1 (LFA3-Fc). Alefacept was designed to inhibit memory T cell activation that contributes to the chronic autoimmune disease psoriasis by blocking the CD2 coreceptor. However, it was found to deplete memory T cells that express high levels of CD2 via NK cell-mediated antibody dependent cell cytotoxicity (ADCC) in vivo. Phase II and phase III clinical trials of alefacept with psoriasis patients demonstrated promising results and an excellent safety profile. Subsequently, alefacept has been successfully repurposed for other memory T cell-mediated autoimmune diseases including skin diseases other than psoriasis, organ transplantation and type I diabetes (T1D). Herein, we review our specific strategy to repurpose the FDA approved biologic alefacept to decrease and hopefully someday eliminate the HIV reservoir, for which CD2hi memory CD4+ T cells are a significant contributor.