首页 > 最新文献

Artificial intelligence research最新文献

英文 中文
Artificial Intelligence Research: Third Southern African Conference, SACAIR 2022, Stellenbosch, South Africa, December 5–9, 2022, Proceedings 人工智能研究:第三届南部非洲会议,SACAIR 2022,南非Stellenbosch, 2022年12月5日至9日,会议录
Pub Date : 2022-01-01 DOI: 10.1007/978-3-031-22321-1
{"title":"Artificial Intelligence Research: Third Southern African Conference, SACAIR 2022, Stellenbosch, South Africa, December 5–9, 2022, Proceedings","authors":"","doi":"10.1007/978-3-031-22321-1","DOIUrl":"https://doi.org/10.1007/978-3-031-22321-1","url":null,"abstract":"","PeriodicalId":91658,"journal":{"name":"Artificial intelligence research","volume":"26 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50987324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial Intelligence Research: Second Southern African Conference, SACAIR 2021, Durban, South Africa, December 6–10, 2021, Proceedings 人工智能研究:第二届南部非洲会议,SACAIR 2021,南非德班,2021年12月6日至10日,会议录
Pub Date : 2022-01-01 DOI: 10.1007/978-3-030-95070-5
{"title":"Artificial Intelligence Research: Second Southern African Conference, SACAIR 2021, Durban, South Africa, December 6–10, 2021, Proceedings","authors":"","doi":"10.1007/978-3-030-95070-5","DOIUrl":"https://doi.org/10.1007/978-3-030-95070-5","url":null,"abstract":"","PeriodicalId":91658,"journal":{"name":"Artificial intelligence research","volume":"4 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50985757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Full Rotation Hyper-ellipsoid Multivariate Adaptive Bandwidth Kernel Density Estimator 全旋转超椭球多元自适应带宽核密度估计
Pub Date : 2021-01-01 DOI: 10.1007/978-3-030-95070-5_19
Terence L van Zyl
{"title":"Full Rotation Hyper-ellipsoid Multivariate Adaptive Bandwidth Kernel Density Estimator","authors":"Terence L van Zyl","doi":"10.1007/978-3-030-95070-5_19","DOIUrl":"https://doi.org/10.1007/978-3-030-95070-5_19","url":null,"abstract":"","PeriodicalId":91658,"journal":{"name":"Artificial intelligence research","volume":"2 3","pages":"287-303"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50985769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Application of Artificial Intelligence (AI) and Internet of Things (IoT) in Agriculture: A Systematic Literature Review 人工智能(AI)和物联网(IoT)在农业中的应用:系统文献综述
Pub Date : 2021-01-01 DOI: 10.1007/978-3-030-95070-5_3
C. Abreu, J. V. Deventer
{"title":"The Application of Artificial Intelligence (AI) and Internet of Things (IoT) in Agriculture: A Systematic Literature Review","authors":"C. Abreu, J. V. Deventer","doi":"10.1007/978-3-030-95070-5_3","DOIUrl":"https://doi.org/10.1007/978-3-030-95070-5_3","url":null,"abstract":"","PeriodicalId":91658,"journal":{"name":"Artificial intelligence research","volume":"11 4","pages":"32-46"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50985812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Artificial Intelligence Research: First Southern African Conference for AI Research, SACAIR 2020, Muldersdrift, South Africa, February 22-26, 2021, Proceedings 人工智能研究:第一届南部非洲人工智能研究会议,SACAIR 2020, Muldersdrift,南非,2021年2月22日至26日,论文集
Pub Date : 2020-01-01 DOI: 10.1007/978-3-030-66151-9
J. Filipe, Ashish Ghosh, R. Prates, A. Gerber
{"title":"Artificial Intelligence Research: First Southern African Conference for AI Research, SACAIR 2020, Muldersdrift, South Africa, February 22-26, 2021, Proceedings","authors":"J. Filipe, Ashish Ghosh, R. Prates, A. Gerber","doi":"10.1007/978-3-030-66151-9","DOIUrl":"https://doi.org/10.1007/978-3-030-66151-9","url":null,"abstract":"","PeriodicalId":91658,"journal":{"name":"Artificial intelligence research","volume":"35 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-030-66151-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50971838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Cost-sensitive performance metric for comparing multiple ordinal classifiers 用于比较多个有序分类器的成本敏感性能度量
Pub Date : 2016-01-15 DOI: 10.5430/air.v5n1p135
N. George, T. Lu, Ching-Wei Chang
The surge of interest in personalized and precision medicine during recent years has increased the application of ordinal classification problems in biomedical science. Currently, accuracy, Kendall's τb , and average mean absolute error are three commonly used metrics for evaluating the effectiveness of an ordinal classifier. Although there are benefits to each, no single metric considers the benefits of predictive accuracy with the tradeoffs of misclassification cost. In addition, decision analysis that considers pairwise analysis of the metrics is not trivial due to inconsistent findings. A new cost-sensitive metric is proposed to find the optimal tradeoff between the two most critical performance measures of a classification task - accuracy and cost. The proposed method accounts for an inherent ordinal data structure, total misclassification cost of a classifier, and imbalanced class distribution. The strengths of the new methodology are demonstrated through analyses of three real cancer datasets and four simulation studies. The new cost-sensitive metric proved better performance in its ability to identify the best ordinal classifier for a given analysis. The performance metric devised in this study provides a comprehensive tool for comparative analysis of multiple (and competing) ordinal classifiers. Consideration of the tradeoff between accuracy and misclassification cost in decisions regarding ordinal classification problems is imperative in real-world application. The work presented here is a precursor to the possibility of incorporating the proposed metric into a prediction modeling algorithm for ordinal data as a means of integrating misclassification cost in final model selection.
近年来,人们对个性化和精准医疗的兴趣激增,增加了有序分类问题在生物医学科学中的应用。目前,准确率、肯德尔τb和平均绝对误差是评估有序分类器有效性的三个常用指标。虽然每一种方法都有好处,但没有一种度量标准考虑到预测准确性的好处与错误分类成本的权衡。此外,考虑对指标进行两两分析的决策分析也不是微不足道的,因为结果不一致。提出了一种新的成本敏感度量,用于在分类任务的两个最关键的性能度量-准确率和成本之间找到最佳权衡。该方法考虑了固有的有序数据结构、分类器的总误分类代价和类分布不平衡等问题。通过对三个真实癌症数据集和四个模拟研究的分析,证明了新方法的优势。对于给定的分析,新的成本敏感度量在识别最佳有序分类器的能力方面证明了更好的性能。本研究设计的性能指标为多个(和竞争的)有序分类器的比较分析提供了一个全面的工具。在实际应用中,在有序分类问题的决策中考虑准确率和误分类代价之间的权衡是必要的。这里提出的工作是将所提出的度量纳入有序数据的预测建模算法的可能性的先驱,作为在最终模型选择中整合错误分类成本的手段。
{"title":"Cost-sensitive performance metric for comparing multiple ordinal classifiers","authors":"N. George, T. Lu, Ching-Wei Chang","doi":"10.5430/air.v5n1p135","DOIUrl":"https://doi.org/10.5430/air.v5n1p135","url":null,"abstract":"The surge of interest in personalized and precision medicine during recent years has increased the application of ordinal classification problems in biomedical science. Currently, accuracy, Kendall's τb , and average mean absolute error are three commonly used metrics for evaluating the effectiveness of an ordinal classifier. Although there are benefits to each, no single metric considers the benefits of predictive accuracy with the tradeoffs of misclassification cost. In addition, decision analysis that considers pairwise analysis of the metrics is not trivial due to inconsistent findings. A new cost-sensitive metric is proposed to find the optimal tradeoff between the two most critical performance measures of a classification task - accuracy and cost. The proposed method accounts for an inherent ordinal data structure, total misclassification cost of a classifier, and imbalanced class distribution. The strengths of the new methodology are demonstrated through analyses of three real cancer datasets and four simulation studies. The new cost-sensitive metric proved better performance in its ability to identify the best ordinal classifier for a given analysis. The performance metric devised in this study provides a comprehensive tool for comparative analysis of multiple (and competing) ordinal classifiers. Consideration of the tradeoff between accuracy and misclassification cost in decisions regarding ordinal classification problems is imperative in real-world application. The work presented here is a precursor to the possibility of incorporating the proposed metric into a prediction modeling algorithm for ordinal data as a means of integrating misclassification cost in final model selection.","PeriodicalId":91658,"journal":{"name":"Artificial intelligence research","volume":"5 1 1","pages":"135-143"},"PeriodicalIF":0.0,"publicationDate":"2016-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5430/air.v5n1p135","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71195199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
期刊
Artificial intelligence research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1