首页 > 最新文献

JSM biomedical imaging data papers最新文献

英文 中文
Evaluation of GPU-Based CT Reconstruction for Morbidly Obese Patients. 基于gpu的CT重建对病态肥胖患者的评价。
Pub Date : 2017-01-01 Epub Date: 2017-01-09
Rui Liu, Mannudeep K Kalra, Jiang Hsieh, Hengyong Yu

The obese population is increasing in the United States. There have been modest improvements in scanner hardware and image processing to address some specific challenges associated with imaging of the morbidly obese patients. However, most legacy CT systems lack capabilities to provide sufficient delivery of image-based diagnosis in this increasing subset of population. One of the most common problems is the projection data truncation in CT imaging due to the massive girths of obese patients. In the past decade, it was proved that the image can be accurately and stably reconstructed from locally truncated projections if certain prior knowledge is known, and this technique is named interior tomogrpahy. To overcome the time-consuming issue of the iterative algorithms, we apply GPU techniques to speed up the reconstruction process. In this paper, we evaluate the GPU-based CT reconstruction algorithms (one analytic algorithm and one iterative reconstruction algorithm) for obese patients with both simulated and real clinical datasets. While the approximate analytic reconstruction algorithm outperforms the iterative reconstruction (IR) algorithm in terms of computational cost, the IR algorithm outperforms the analytic one in terms of image quality especially when the projection data is suffered from patient motion, which can happen when the obese patients are not able to hold a breath during the scan.

美国的肥胖人口正在增加。在扫描仪硬件和图像处理方面已经有了适度的改进,以解决与病态肥胖患者成像相关的一些具体挑战。然而,大多数传统CT系统缺乏在这一不断增长的人群中提供足够的基于图像的诊断的能力。肥胖患者的巨大腰围导致CT成像中投影数据截断是最常见的问题之一。在过去的十年里,人们已经证明,在一定的先验知识已知的情况下,可以精确而稳定地从局部截断的投影重建图像,这种技术被称为内部层析成像。为了克服迭代算法耗时的问题,我们采用GPU技术来加快重建过程。在本文中,我们评估了基于gpu的CT重建算法(一种解析算法和一种迭代重建算法)对肥胖患者的模拟和真实临床数据集。虽然近似解析重建算法在计算成本上优于迭代重建(IR)算法,但IR算法在图像质量方面优于解析重建算法,特别是当投影数据受到患者运动的影响时,当肥胖患者在扫描过程中无法屏气时可能会发生这种情况。
{"title":"Evaluation of GPU-Based CT Reconstruction for Morbidly Obese Patients.","authors":"Rui Liu,&nbsp;Mannudeep K Kalra,&nbsp;Jiang Hsieh,&nbsp;Hengyong Yu","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The obese population is increasing in the United States. There have been modest improvements in scanner hardware and image processing to address some specific challenges associated with imaging of the morbidly obese patients. However, most legacy CT systems lack capabilities to provide sufficient delivery of image-based diagnosis in this increasing subset of population. One of the most common problems is the projection data truncation in CT imaging due to the massive girths of obese patients. In the past decade, it was proved that the image can be accurately and stably reconstructed from locally truncated projections if certain prior knowledge is known, and this technique is named interior tomogrpahy. To overcome the time-consuming issue of the iterative algorithms, we apply GPU techniques to speed up the reconstruction process. In this paper, we evaluate the GPU-based CT reconstruction algorithms (one analytic algorithm and one iterative reconstruction algorithm) for obese patients with both simulated and real clinical datasets. While the approximate analytic reconstruction algorithm outperforms the iterative reconstruction (IR) algorithm in terms of computational cost, the IR algorithm outperforms the analytic one in terms of image quality especially when the projection data is suffered from patient motion, which can happen when the obese patients are not able to hold a breath during the scan.</p>","PeriodicalId":92259,"journal":{"name":"JSM biomedical imaging data papers","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5931393/pdf/nihms907920.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36074903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
JSM biomedical imaging data papers
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1