首页 > 最新文献

Molecular imaging, reconstruction and analysis of moving body organs, and stroke imaging and treatment : Fifth International Workshop, CMMI 2017, Second International Workshop, RAMBO 2017, and First International Workshop, SWITCH 2017, ...最新文献

英文 中文
3D Alpha Matting Based Co-segmentation of Tumors on PET-CT Images. 基于 PET-CT 图像上肿瘤的 3D Alpha Matting 协同分割。
Zisha Zhong, Yusung Kim, John Buatti, Xiaodong Wu

Positron emission tomography - computed tomography (PET-CT) has been widely used in modern cancer imaging. Accurate tumor delineation from PET and CT plays an important role in radiation therapy. The PET-CT co-segmentation technique, which makes use of advantages of both modalities, has achieved impressive performance for tumor delineation. In this work, we propose a novel 3D image matting based semi-automated co-segmentation method for tumor delineation on dual PET-CT scans. The "matte" values generated by 3D image matting are employed to compute the region costs for the graph based co-segmentation. Compared to previous PET-CT co-segmentation methods, our method is completely data-driven in the design of cost functions, thus using much less hyper-parameters in our segmentation model. Comparative experiments on 54 PET-CT scans of lung cancer patients demonstrated the effectiveness of our method.

正电子发射计算机断层扫描(PET-CT)已广泛应用于现代癌症成像。PET 和 CT 对肿瘤的精确划分在放射治疗中发挥着重要作用。PET-CT 协同分割技术利用了两种模式的优势,在肿瘤划分方面取得了令人瞩目的成就。在这项工作中,我们提出了一种基于三维图像消隐的新型半自动共同分割方法,用于 PET-CT 双扫描的肿瘤划分。三维图像消隐生成的 "消隐 "值被用于计算基于图的共分割的区域成本。与之前的 PET-CT 协同分割方法相比,我们的方法在设计成本函数时完全由数据驱动,因此在分割模型中使用的超参数更少。54 例肺癌患者 PET-CT 扫描的对比实验证明了我们方法的有效性。
{"title":"3D Alpha Matting Based Co-segmentation of Tumors on PET-CT Images.","authors":"Zisha Zhong, Yusung Kim, John Buatti, Xiaodong Wu","doi":"10.1007/978-3-319-67564-0_4","DOIUrl":"10.1007/978-3-319-67564-0_4","url":null,"abstract":"<p><p>Positron emission tomography - computed tomography (PET-CT) has been widely used in modern cancer imaging. Accurate tumor delineation from PET and CT plays an important role in radiation therapy. The PET-CT co-segmentation technique, which makes use of advantages of both modalities, has achieved impressive performance for tumor delineation. In this work, we propose a novel 3D image matting based semi-automated co-segmentation method for tumor delineation on dual PET-CT scans. The \"matte\" values generated by 3D image matting are employed to compute the region costs for the graph based co-segmentation. Compared to previous PET-CT co-segmentation methods, our method is completely data-driven in the design of cost functions, thus using much less hyper-parameters in our segmentation model. Comparative experiments on 54 PET-CT scans of lung cancer patients demonstrated the effectiveness of our method.</p>","PeriodicalId":92268,"journal":{"name":"Molecular imaging, reconstruction and analysis of moving body organs, and stroke imaging and treatment : Fifth International Workshop, CMMI 2017, Second International Workshop, RAMBO 2017, and First International Workshop, SWITCH 2017, ...","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6886662/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78698800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Motion-Robust Spatially Constrained Parameter Estimation in Renal Diffusion-Weighted MRI by 3D Motion Tracking and Correction of Sequential Slices. 基于三维运动跟踪和序列切片校正的肾弥散加权MRI运动鲁棒空间约束参数估计。
Sila Kurugol, Bahram Marami, Onur Afacan, Simon K Warfield, Ali Gholipour

In this work, we introduce a novel motion-robust spatially constrained parameter estimation (MOSCOPE) technique for kidney diffusion-weighted MRI. The proposed motion compensation technique does not require a navigator, trigger, or breath-hold but only uses the intrinsic features of the acquired data to track and compensate for motion to reconstruct precise models of the renal diffusion signal. We have developed a technique for physiological motion tracking based on robust state estimation and sequential registration of diffusion sensitized slices acquired within 200ms. This allows a sampling rate of 5Hz for state estimation in motion tracking that is sufficiently faster than both respiratory and cardiac motion rates in children and adults, which range between 0.8 to 0.2Hz, and 2.5 to 1Hz, respectively. We then apply the estimated motion parameters to data from each slice and use motion-compensated data for 1) robust intra-voxel incoherent motion (IVIM) model estimation in the kidney using a spatially constrained model fitting approach, and 2) robust weighted least squares estimation of the diffusion tensor model. Experimental results, including precision of IVIM model parameters using bootstrap-sampling and in-vivo whole kidney tractography, showed significant improvement in precision and accuracy of these models using the proposed method compared to models based on the original data and volumetric registration.

在这项工作中,我们介绍了一种新的运动鲁棒空间约束参数估计(MOSCOPE)技术,用于肾脏弥散加权MRI。所提出的运动补偿技术不需要导航器、触发器或屏气,而是仅使用所获取数据的固有特征来跟踪和补偿运动,以重建肾脏弥散信号的精确模型。我们已经开发了一种基于鲁棒状态估计和在200ms内获得的扩散敏化切片的顺序配准的生理运动跟踪技术。这允许5Hz的采样率用于运动跟踪中的状态估计,这比儿童和成人的呼吸和心脏运动速率(分别在0.8至0.2Hz和2.5至1Hz之间)快得多。然后,我们将估计的运动参数应用于来自每个切片的数据,并使用运动补偿数据进行1)使用空间约束模型拟合方法对肾脏的体素内非相干运动(IVIM)模型进行鲁棒估计,以及2)对扩散张量模型进行鲁棒加权最小二乘估计。实验结果显示,与基于原始数据和体积配准的模型相比,采用该方法获得的IVIM模型参数精度有了显著提高。
{"title":"Motion-Robust Spatially Constrained Parameter Estimation in Renal Diffusion-Weighted MRI by 3D Motion Tracking and Correction of Sequential Slices.","authors":"Sila Kurugol,&nbsp;Bahram Marami,&nbsp;Onur Afacan,&nbsp;Simon K Warfield,&nbsp;Ali Gholipour","doi":"10.1007/978-3-319-67564-0_8","DOIUrl":"https://doi.org/10.1007/978-3-319-67564-0_8","url":null,"abstract":"<p><p>In this work, we introduce a novel motion-robust spatially constrained parameter estimation (MOSCOPE) technique for kidney diffusion-weighted MRI. The proposed motion compensation technique does not require a navigator, trigger, or breath-hold but only uses the intrinsic features of the acquired data to track and compensate for motion to reconstruct precise models of the renal diffusion signal. We have developed a technique for physiological motion tracking based on robust state estimation and sequential registration of diffusion sensitized slices acquired within 200ms. This allows a sampling rate of 5Hz for state estimation in motion tracking that is sufficiently faster than both respiratory and cardiac motion rates in children and adults, which range between 0.8 to 0.2Hz, and 2.5 to 1Hz, respectively. We then apply the estimated motion parameters to data from each slice and use motion-compensated data for 1) robust intra-voxel incoherent motion (IVIM) model estimation in the kidney using a spatially constrained model fitting approach, and 2) robust weighted least squares estimation of the diffusion tensor model. Experimental results, including precision of IVIM model parameters using bootstrap-sampling and <i>in-vivo</i> whole kidney tractography, showed significant improvement in precision and accuracy of these models using the proposed method compared to models based on the original data and volumetric registration.</p>","PeriodicalId":92268,"journal":{"name":"Molecular imaging, reconstruction and analysis of moving body organs, and stroke imaging and treatment : Fifth International Workshop, CMMI 2017, Second International Workshop, RAMBO 2017, and First International Workshop, SWITCH 2017, ...","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-67564-0_8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35842725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
期刊
Molecular imaging, reconstruction and analysis of moving body organs, and stroke imaging and treatment : Fifth International Workshop, CMMI 2017, Second International Workshop, RAMBO 2017, and First International Workshop, SWITCH 2017, ...
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1