首页 > 最新文献

Genomics and computational biology最新文献

英文 中文
Computational Systems Biology Approach for the Study of Rheumatoid Arthritis: From a Molecular Map to a Dynamical Model. 类风湿关节炎研究的计算系统生物学方法:从分子图谱到动态模型。
Pub Date : 2018-01-01 Epub Date: 2017-12-06 DOI: 10.18547/gcb.2018.vol4.iss1.e100050
Vidisha Singh, Marek Ostaszewski, George D Kalliolias, Gilles Chiocchia, Robert Olaso, Elisabeth Petit-Teixeira, Tomáš Helikar, Anna Niarakis

In this work we present a systematic effort to summarize current biological pathway knowledge concerning Rheumatoid Arthritis (RA). We are constructing a detailed molecular map based on exhaustive literature scanning, strict curation criteria, re-evaluation of previously published attempts and most importantly experts' advice. The RA map will be web-published in the coming months in the form of an interactive map, using the MINERVA platform, allowing for easy access, navigation and search of all molecular pathways implicated in RA, serving thus, as an on line knowledgebase for the disease. Moreover the map could be used as a template for Omics data visualization offering a first insight about the pathways affected in different experimental datasets. The second goal of the project is a dynamical study focused on synovial fibroblasts' behavior under different initial conditions specific to RA, as recent studies have shown that synovial fibroblasts play a crucial role in driving the persistent, destructive characteristics of the disease. Leaning on the RA knowledgebase and using the web platform Cell Collective, we are currently building a Boolean large scale dynamical model for the study of RA fibroblasts' activation.

在这项工作中,我们系统地总结了当前有关类风湿关节炎(RA)的生物通路知识。我们正在构建一个详细的分子图谱,该图谱基于详尽的文献扫描、严格的编辑标准、对以前发表的尝试的重新评估,以及最重要的专家建议。未来几个月,我们将利用 MINERVA 平台,以交互式地图的形式在网上发布 RA 地图,以便于访问、导航和搜索与 RA 有关的所有分子通路,从而成为该疾病的在线知识库。此外,该地图还可作为 Omics 数据可视化的模板,让人们初步了解不同实验数据集中受影响的通路。该项目的第二个目标是对滑膜成纤维细胞在RA特有的不同初始条件下的行为进行动态研究,因为最近的研究表明,滑膜成纤维细胞在驱动该疾病的持久性和破坏性特征方面发挥着至关重要的作用。借助 RA 知识库和网络平台 Cell Collective,我们目前正在建立一个布尔大规模动力学模型,用于研究 RA 成纤维细胞的活化。
{"title":"Computational Systems Biology Approach for the Study of Rheumatoid Arthritis: From a Molecular Map to a Dynamical Model.","authors":"Vidisha Singh, Marek Ostaszewski, George D Kalliolias, Gilles Chiocchia, Robert Olaso, Elisabeth Petit-Teixeira, Tomáš Helikar, Anna Niarakis","doi":"10.18547/gcb.2018.vol4.iss1.e100050","DOIUrl":"10.18547/gcb.2018.vol4.iss1.e100050","url":null,"abstract":"<p><p>In this work we present a systematic effort to summarize current biological pathway knowledge concerning Rheumatoid Arthritis (RA). We are constructing a detailed molecular map based on exhaustive literature scanning, strict curation criteria, re-evaluation of previously published attempts and most importantly experts' advice. The RA map will be web-published in the coming months in the form of an interactive map, using the MINERVA platform, allowing for easy access, navigation and search of all molecular pathways implicated in RA, serving thus, as an on line knowledgebase for the disease. Moreover the map could be used as a template for Omics data visualization offering a first insight about the pathways affected in different experimental datasets. The second goal of the project is a dynamical study focused on synovial fibroblasts' behavior under different initial conditions specific to RA, as recent studies have shown that synovial fibroblasts play a crucial role in driving the persistent, destructive characteristics of the disease. Leaning on the RA knowledgebase and using the web platform Cell Collective, we are currently building a Boolean large scale dynamical model for the study of RA fibroblasts' activation.</p>","PeriodicalId":92363,"journal":{"name":"Genomics and computational biology","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6016388/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"36265491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Histone Code and Higher-Order Chromatin Folding: A Hypothesis. 组蛋白编码和高阶染色质折叠:一个假说。
Pub Date : 2017-01-01 Epub Date: 2017-01-30 DOI: 10.18547/gcb.2017.vol3.iss2.e41
Kirti Prakash, David Fournier

Histone modifications alone or in combination are thought to modulate chromatin structure and function; a concept termed histone code. By combining evidence from several studies, we investigated if the histone code can play a role in higher-order folding of chromatin. Firstly using genomic data, we analyzed associations between histone modifications at the nucleosome level. We could dissect the composition of individual nucleosomes into five predicted clusters of histone modifications. Secondly, by assembling the raw reads of histone modifications at various length scales, we noticed that the histone mark relationships that exist at nucleosome level tend to be maintained at the higher orders of chromatin folding. Recently, a high-resolution imaging study showed that histone marks belonging to three of the five predicted clusters show structurally distinct and anti-correlated chromatin domains at the level of chromosomes. This made us think that the histone code can have a significant impact in the overall compaction of DNA: at the level of nucleosomes, at the level of genes, and finally at the level of chromosomes. As a result, in this article, we put forward a theory where the histone code drives not only the functionality but also the higher-order folding and compaction of chromatin.

组蛋白修饰单独或联合被认为可以调节染色质结构和功能;这个概念被称为组蛋白密码。通过结合几项研究的证据,我们研究了组蛋白密码是否可以在染色质的高阶折叠中发挥作用。首先使用基因组数据,我们分析了核小体水平上组蛋白修饰之间的关联。我们可以将单个核小体的组成分解为五个预测的组蛋白修饰簇。其次,通过组装不同长度尺度的组蛋白修饰的原始reads,我们注意到存在于核小体水平的组蛋白标记关系倾向于维持在染色质折叠的更高阶。最近,一项高分辨率成像研究表明,属于五个预测簇中的三个的组蛋白标记在染色体水平上显示出结构上不同和抗相关的染色质结构域。这让我们想到组蛋白密码可以对DNA的整体压缩产生重大影响:在核小体水平上,在基因水平上,最后在染色体水平上。因此,在本文中,我们提出了一种理论,即组蛋白编码不仅驱动染色质的功能,而且还驱动染色质的高阶折叠和压实。
{"title":"Histone Code and Higher-Order Chromatin Folding: A Hypothesis.","authors":"Kirti Prakash,&nbsp;David Fournier","doi":"10.18547/gcb.2017.vol3.iss2.e41","DOIUrl":"https://doi.org/10.18547/gcb.2017.vol3.iss2.e41","url":null,"abstract":"<p><p>Histone modifications alone or in combination are thought to modulate chromatin structure and function; a concept termed histone code. By combining evidence from several studies, we investigated if the histone code can play a role in higher-order folding of chromatin. Firstly using genomic data, we analyzed associations between histone modifications at the nucleosome level. We could dissect the composition of individual nucleosomes into five predicted clusters of histone modifications. Secondly, by assembling the raw reads of histone modifications at various length scales, we noticed that the histone mark relationships that exist at nucleosome level tend to be maintained at the higher orders of chromatin folding. Recently, a high-resolution imaging study showed that histone marks belonging to three of the five predicted clusters show structurally distinct and anti-correlated chromatin domains at the level of chromosomes. This made us think that the histone code can have a significant impact in the overall compaction of DNA: at the level of nucleosomes, at the level of genes, and finally at the level of chromosomes. As a result, in this article, we put forward a theory where the histone code drives not only the functionality but also the higher-order folding and compaction of chromatin.</p>","PeriodicalId":92363,"journal":{"name":"Genomics and computational biology","volume":"3 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6594697/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37094217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Histone Code and Higher-Order Chromatin Folding: A Hypothesis 组蛋白编码和高阶染色质折叠:一个假说
Pub Date : 2016-11-04 DOI: 10.1101/085860
Kirti Prakash, D. Fournier
Histone modifications alone or in combination are thought to modulate chromatin structure and function; a concept termed histone code. By combining evidence from several studies, we investigated if the histone code can play a role in higher-order folding of chromatin. Firstly using genomic data, we analyzed associations between histone modifications at the nucleosome level. We could dissect the composition of individual nucleosomes into five predicted clusters of histone modifications. Secondly, by assembling the raw reads of histone modifications at various length scales, we noticed that the histone mark relationships that exist at nucleosome level tend to be maintained at the higher orders of chromatin folding. Recently, a high-resolution imaging study showed that histone marks belonging to three of the five predicted clusters show structurally distinct and anti-correlated chromatin domains at the level of chromosomes. This made us think that the histone code can have a significant impact in the overall compaction of DNA: at the level of nucleosomes, at the level of genes, and finally at the level of chromosomes. As a result, in this article, we put forward a theory where the histone code drives not only the functionality but also the higher-order folding and compaction of chromatin.
组蛋白修饰单独或联合被认为可以调节染色质结构和功能;这个概念被称为组蛋白密码。通过结合几项研究的证据,我们研究了组蛋白密码是否可以在染色质的高阶折叠中发挥作用。首先使用基因组数据,我们分析了核小体水平上组蛋白修饰之间的关联。我们可以将单个核小体的组成分解为五个预测的组蛋白修饰簇。其次,通过组装不同长度尺度的组蛋白修饰的原始reads,我们注意到存在于核小体水平的组蛋白标记关系倾向于维持在染色质折叠的更高阶。最近,一项高分辨率成像研究表明,属于五个预测簇中的三个的组蛋白标记在染色体水平上显示出结构上不同和抗相关的染色质结构域。这让我们想到组蛋白密码可以对DNA的整体压缩产生重大影响:在核小体水平上,在基因水平上,最后在染色体水平上。因此,在本文中,我们提出了一种理论,即组蛋白编码不仅驱动染色质的功能,而且还驱动染色质的高阶折叠和压实。
{"title":"Histone Code and Higher-Order Chromatin Folding: A Hypothesis","authors":"Kirti Prakash, D. Fournier","doi":"10.1101/085860","DOIUrl":"https://doi.org/10.1101/085860","url":null,"abstract":"Histone modifications alone or in combination are thought to modulate chromatin structure and function; a concept termed histone code. By combining evidence from several studies, we investigated if the histone code can play a role in higher-order folding of chromatin. Firstly using genomic data, we analyzed associations between histone modifications at the nucleosome level. We could dissect the composition of individual nucleosomes into five predicted clusters of histone modifications. Secondly, by assembling the raw reads of histone modifications at various length scales, we noticed that the histone mark relationships that exist at nucleosome level tend to be maintained at the higher orders of chromatin folding. Recently, a high-resolution imaging study showed that histone marks belonging to three of the five predicted clusters show structurally distinct and anti-correlated chromatin domains at the level of chromosomes. This made us think that the histone code can have a significant impact in the overall compaction of DNA: at the level of nucleosomes, at the level of genes, and finally at the level of chromosomes. As a result, in this article, we put forward a theory where the histone code drives not only the functionality but also the higher-order folding and compaction of chromatin.","PeriodicalId":92363,"journal":{"name":"Genomics and computational biology","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2016-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"62292462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
期刊
Genomics and computational biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1