首页 > 最新文献

Asian Control Conference. Asian Control Conference最新文献

英文 中文
A 2-step algorithm for the estimation of time-varying single particle tracking models using Maximum Likelihood. 基于极大似然的时变单粒子跟踪模型两步估计算法。
Pub Date : 2019-06-01 Epub Date: 2019-07-18
Boris I Godoy, Ye Lin, Juan C Agüero, Sean B Andersson

Single particle tracking (SPT) is a powerful class of methods for studying the dynamics of biomolecules inside living cells. The techniques reveal both trajectories of individual particles, with a resolution well below the diffraction limit of light, and the parameters defining the motion model, such as diffusion coefficients and confinement lengths. Existing algorithms assume these parameters are constant throughout an experiment. However, it has been demonstrated that they often vary with time as the tracked particles move through different regions in the cell or as conditions inside the cell change in response to stimuli. In this work we apply the method of local Maximum Likelihood (ML) estimation to the SPT application combined with change detection. Local ML uses a sliding window over the data, estimating the model parameters in each window. Once we have found the values for the parameters before and after the change, we apply offline change detection to know the exact time of the change. Then, we reestimate these parameters and show that there is an improvement in the estimation of key parameters found in SPT. Preliminary results using simulated data with a basic diffusion model with additive Gaussian noise show that our proposed algorithm is able to track abrupt changes in the parameters as they evolve during a trajectory.

单粒子跟踪(SPT)是研究活细胞内生物分子动力学的一种强有力的方法。该技术揭示了单个粒子的轨迹,分辨率远低于光的衍射极限,以及定义运动模型的参数,如扩散系数和约束长度。现有的算法假设这些参数在整个实验过程中是恒定的。然而,已经证明,它们通常随着时间的推移而变化,因为跟踪的颗粒在细胞内的不同区域移动,或者随着细胞内部条件对刺激的反应而变化。在这项工作中,我们将局部最大似然(ML)估计方法结合变化检测应用于SPT应用。局部机器学习在数据上使用滑动窗口,估计每个窗口中的模型参数。一旦我们找到了更改前后的参数值,我们就可以应用离线更改检测来了解更改的确切时间。然后,我们重新估计这些参数,并表明在SPT中发现的关键参数估计有改进。初步结果表明,本文提出的算法能够跟踪参数在轨迹演化过程中的突变。
{"title":"A 2-step algorithm for the estimation of time-varying single particle tracking models using Maximum Likelihood.","authors":"Boris I Godoy,&nbsp;Ye Lin,&nbsp;Juan C Agüero,&nbsp;Sean B Andersson","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Single particle tracking (SPT) is a powerful class of methods for studying the dynamics of biomolecules inside living cells. The techniques reveal both trajectories of individual particles, with a resolution well below the diffraction limit of light, and the parameters defining the motion model, such as diffusion coefficients and confinement lengths. Existing algorithms assume these parameters are constant throughout an experiment. However, it has been demonstrated that they often vary with time as the tracked particles move through different regions in the cell or as conditions inside the cell change in response to stimuli. In this work we apply the method of local Maximum Likelihood (ML) estimation to the SPT application combined with change detection. Local ML uses a sliding window over the data, estimating the model parameters in each window. Once we have found the values for the parameters before and after the change, we apply offline change detection to know the exact time of the change. Then, we reestimate these parameters and show that there is an improvement in the estimation of key parameters found in SPT. Preliminary results using simulated data with a basic diffusion model with additive Gaussian noise show that our proposed algorithm is able to track abrupt changes in the parameters as they evolve during a trajectory.</p>","PeriodicalId":93267,"journal":{"name":"Asian Control Conference. Asian Control Conference","volume":"2019 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8277157/pdf/nihms-1611718.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39185079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cooperative capture by multi-agent using reinforcement learning application for security patrol systems 基于强化学习的多智能体协同捕获安全巡逻系统
Pub Date : 2015-01-01 DOI: 10.1109/ASCC.2015.7244682
Y. Shimada, H. Ohtsuka, Tadashi Matsumoto, M. Harada
{"title":"Cooperative capture by multi-agent using reinforcement learning application for security patrol systems","authors":"Y. Shimada, H. Ohtsuka, Tadashi Matsumoto, M. Harada","doi":"10.1109/ASCC.2015.7244682","DOIUrl":"https://doi.org/10.1109/ASCC.2015.7244682","url":null,"abstract":"","PeriodicalId":93267,"journal":{"name":"Asian Control Conference. Asian Control Conference","volume":"31 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81938197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The construction method of GIS for autonomous vehicles 自动驾驶汽车GIS的构建方法
Pub Date : 2013-06-23 DOI: 10.1109/ASCC.2013.6606147
Meiling Wang, Yong Yu, Qizhen Wang, Yi Yang, Tong Liu
In order to achieve the dynamic construction of GIS which shows the environment information around the driving autonomous vehicle, this paper introduces a method, including the data fusion of laser radar, GPS and IMU, the registration of point cloud data, the rasterisation and the extraction of isosurface. The geographic objects which influence the driving characteristics of the autonomous vehicle can be extracted from the processed isosurface according to the analysis of the feature of the autonomous vehicle. This construction method improves some limited ability of GIS, which can provide the navigation information for the autonomous vehicle.
{"title":"The construction method of GIS for autonomous vehicles","authors":"Meiling Wang, Yong Yu, Qizhen Wang, Yi Yang, Tong Liu","doi":"10.1109/ASCC.2013.6606147","DOIUrl":"https://doi.org/10.1109/ASCC.2013.6606147","url":null,"abstract":"In order to achieve the dynamic construction of GIS which shows the environment information around the driving autonomous vehicle, this paper introduces a method, including the data fusion of laser radar, GPS and IMU, the registration of point cloud data, the rasterisation and the extraction of isosurface. The geographic objects which influence the driving characteristics of the autonomous vehicle can be extracted from the processed isosurface according to the analysis of the feature of the autonomous vehicle. This construction method improves some limited ability of GIS, which can provide the navigation information for the autonomous vehicle.","PeriodicalId":93267,"journal":{"name":"Asian Control Conference. Asian Control Conference","volume":"88 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76172479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Marketing capabilities of IT listed company in China: A empirical study based on stochastic frontier method 中国IT上市公司营销能力:基于随机前沿法的实证研究
Pub Date : 2013-01-01 DOI: 10.1109/ASCC.2013.6606380
Ge-Hua Chen, Hongsheng Xia
{"title":"Marketing capabilities of IT listed company in China: A empirical study based on stochastic frontier method","authors":"Ge-Hua Chen, Hongsheng Xia","doi":"10.1109/ASCC.2013.6606380","DOIUrl":"https://doi.org/10.1109/ASCC.2013.6606380","url":null,"abstract":"","PeriodicalId":93267,"journal":{"name":"Asian Control Conference. Asian Control Conference","volume":"62 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74069001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Asian Control Conference. Asian Control Conference
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1