首页 > 最新文献

Simplifying medical ultrasound : second international workshop, ASMUS 2021 : held in conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021 : proceedings. ASMUS (Workshop) (2nd : 2021 : Online)最新文献

英文 中文
Simplifying Medical Ultrasound: Third International Workshop, ASMUS 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings 简化医学超声:第三届国际研讨会,ASMUS 2022,与MICCAI 2022一起举行,新加坡,2022年9月18日,会议录
{"title":"Simplifying Medical Ultrasound: Third International Workshop, ASMUS 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings","authors":"","doi":"10.1007/978-3-031-16902-1","DOIUrl":"https://doi.org/10.1007/978-3-031-16902-1","url":null,"abstract":"","PeriodicalId":93620,"journal":{"name":"Simplifying medical ultrasound : second international workshop, ASMUS 2021 : held in conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021 : proceedings. ASMUS (Workshop) (2nd : 2021 : Online)","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77090353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards Scale and Position Invariant Task Classification using Normalised Visual Scanpaths in Clinical Fetal Ultrasound. 应用归一化视觉扫描路径在临床胎儿超声中实现尺度和位置不变任务分类。
Clare Teng, Harshita Sharma, Lior Drukker, Aris T Papageorghiou, J Alison Noble

We present a method for classifying tasks in fetal ultrasound scans using the eye-tracking data of sonographers. The visual attention of a sonographer captured by eye-tracking data over time is defined by a scanpath. In routine fetal ultrasound, the captured standard imaging planes are visually inconsistent due to fetal position, movements, and sonographer scanning experience. To address this challenge, we propose a scale and position invariant task classification method using normalised visual scanpaths. We describe a normalisation method that uses bounding boxes to provide the gaze with a reference to the position and scale of the imaging plane and use the normalised scanpath sequences to train machine learning models for discriminating between ultrasound tasks. We compare the proposed method to existing work considering raw eyetracking data. The best performing model achieves the F1-score of 84% and outperforms existing models.

我们提出了一种方法分类任务在胎儿超声扫描中使用超声医师的眼动追踪数据。超声医师通过眼动追踪数据捕捉到的视觉注意力通过扫描路径来定义。在常规的胎儿超声中,由于胎儿的位置、运动和超声医师的扫描经验,捕获的标准成像平面在视觉上不一致。为了解决这一挑战,我们提出了一种使用归一化视觉扫描路径的尺度和位置不变任务分类方法。我们描述了一种归一化方法,该方法使用边界框为凝视提供成像平面位置和尺度的参考,并使用归一化扫描路径序列来训练机器学习模型,以区分超声波任务。我们将提出的方法与考虑原始眼动追踪数据的现有工作进行比较。表现最好的模型达到了f1分数的84%,优于现有的模型。
{"title":"Towards Scale and Position Invariant Task Classification using Normalised Visual Scanpaths in Clinical Fetal Ultrasound.","authors":"Clare Teng, Harshita Sharma, Lior Drukker, Aris T Papageorghiou, J Alison Noble","doi":"10.1007/978-3-030-87583-1_13","DOIUrl":"10.1007/978-3-030-87583-1_13","url":null,"abstract":"<p><p>We present a method for classifying tasks in fetal ultrasound scans using the eye-tracking data of sonographers. The visual attention of a sonographer captured by eye-tracking data over time is defined by a scanpath. In routine fetal ultrasound, the captured standard imaging planes are visually inconsistent due to fetal position, movements, and sonographer scanning experience. To address this challenge, we propose a scale and position invariant task classification method using normalised visual scanpaths. We describe a normalisation method that uses bounding boxes to provide the gaze with a reference to the position and scale of the imaging plane and use the normalised scanpath sequences to train machine learning models for discriminating between ultrasound tasks. We compare the proposed method to existing work considering raw eyetracking data. The best performing model achieves the F1-score of 84% and outperforms existing models.</p>","PeriodicalId":93620,"journal":{"name":"Simplifying medical ultrasound : second international workshop, ASMUS 2021 : held in conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021 : proceedings. ASMUS (Workshop) (2nd : 2021 : Online)","volume":"10 1","pages":"129-138"},"PeriodicalIF":0.0,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612565/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83220001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multimodal Continual Learning with Sonographer Eye-Tracking in Fetal Ultrasound. 超声仪眼动在胎儿超声中的多模态持续学习。
Arijit Patra, Yifan Cai, Pierre Chatelain, Harshita Sharma, Lior Drukker, Aris T Papageorghiou, J Alison Noble

Deep networks have been shown to achieve impressive accuracy for some medical image analysis tasks where large datasets and annotations are available. However, tasks involving learning over new sets of classes arriving over extended time is a different and difficult challenge due to the tendency of reduction in performance over old classes while adapting to new ones. Controlling such a 'forgetting' is vital for deployed algorithms to evolve with new arrivals of data incrementally. Usually, incremental learning approaches rely on expert knowledge in the form of manual annotations or active feedback. In this paper, we explore the role that other forms of expert knowledge might play in making deep networks in medical image analysis immune to forgetting over extended time. We introduce a novel framework for mitigation of this forgetting effect in deep networks considering the case of combining ultrasound video with point-of-gaze tracked for expert sonographers during model training. This is used along with a novel weighted distillation strategy to reduce the propagation of effects due to class imbalance.

深度网络已被证明在一些医学图像分析任务中取得了令人印象深刻的准确性,这些任务需要大量数据集和注释。然而,涉及学习新课程的任务是一个不同的和困难的挑战,因为在适应新课程的过程中,学生的表现往往会比老课程有所下降。控制这种“遗忘”对于部署的算法随着新数据的到来而逐步发展是至关重要的。通常,增量学习方法依赖于手工注释或主动反馈形式的专家知识。在本文中,我们探讨了其他形式的专家知识可能在医学图像分析中的深度网络中发挥的作用,使其不受长时间遗忘的影响。我们引入了一种新的框架来缓解深度网络中的这种遗忘效应,考虑到在模型训练期间将超声视频与专家超声医师的注视点跟踪相结合的情况。这与一种新的加权蒸馏策略一起使用,以减少由于类不平衡造成的影响的传播。
{"title":"Multimodal Continual Learning with Sonographer Eye-Tracking in Fetal Ultrasound.","authors":"Arijit Patra, Yifan Cai, Pierre Chatelain, Harshita Sharma, Lior Drukker, Aris T Papageorghiou, J Alison Noble","doi":"10.1007/978-3-030-87583-1_2","DOIUrl":"10.1007/978-3-030-87583-1_2","url":null,"abstract":"<p><p>Deep networks have been shown to achieve impressive accuracy for some medical image analysis tasks where large datasets and annotations are available. However, tasks involving learning over new sets of classes arriving over extended time is a different and difficult challenge due to the tendency of reduction in performance over old classes while adapting to new ones. Controlling such a 'forgetting' is vital for deployed algorithms to evolve with new arrivals of data incrementally. Usually, incremental learning approaches rely on expert knowledge in the form of manual annotations or active feedback. In this paper, we explore the role that other forms of expert knowledge might play in making deep networks in medical image analysis immune to forgetting over extended time. We introduce a novel framework for mitigation of this forgetting effect in deep networks considering the case of combining ultrasound video with point-of-gaze tracked for expert sonographers during model training. This is used along with a novel weighted distillation strategy to reduce the propagation of effects due to class imbalance.</p>","PeriodicalId":93620,"journal":{"name":"Simplifying medical ultrasound : second international workshop, ASMUS 2021 : held in conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021 : proceedings. ASMUS (Workshop) (2nd : 2021 : Online)","volume":"44 1","pages":"14-24"},"PeriodicalIF":0.0,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612563/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86853980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simplifying Medical Ultrasound: Second International Workshop, ASMUS 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings 简化医学超声:第二届国际研讨会,ASMUS 2021,与MICCAI 2021一起举行,斯特拉斯堡,法国,2021年9月27日,论文集
{"title":"Simplifying Medical Ultrasound: Second International Workshop, ASMUS 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings","authors":"","doi":"10.1007/978-3-030-87583-1","DOIUrl":"https://doi.org/10.1007/978-3-030-87583-1","url":null,"abstract":"","PeriodicalId":93620,"journal":{"name":"Simplifying medical ultrasound : second international workshop, ASMUS 2021 : held in conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021 : proceedings. ASMUS (Workshop) (2nd : 2021 : Online)","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75246038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Simplifying medical ultrasound : second international workshop, ASMUS 2021 : held in conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021 : proceedings. ASMUS (Workshop) (2nd : 2021 : Online)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1