Pub Date : 2025-03-07DOI: 10.1016/j.etap.2025.104671
Therese Ncheuveu Nkwatoh, Patricia Bi Asanga Fai, Alvine Larissa Meyabeme Elono, Louis Sevitenyi Nkwatoh, Sali Atanga Ndindeng
This study aimed to assess the risk of pesticides on bee pollinators and propose strategies to conserve entomophilous angiosperm species in the Ndop wetlands. Results showed that the applied pesticide doses were often excessive, increasing the exposure toxicity ratios (ETR). Among the pesticides, insecticides posed the highest risk to bee pollinators, with Emamectin benzoate (ETR=591.4) presenting the highest risk, followed by imidacloprid (ETR=517.5), fipronil (ETR=496.4), chlorpyrifos (ETR=240.7), and cypermethrin (ETR=131). Lambda-cyhalothrin (ETR=50.53) posed a possible risk. The study found that imidacloprid, fipronil, and chlorpyrifos posed definite risks through dietary exposure, while Emamectin benzoate, fipronil, and cypermethrin posed risks through direct contact. Approximately 46.03% of angiosperms are anemophilous while 53% are entomophilous with bee pollinators facilitating the pollination of nearly 90% of the entomophilous species. To mitigate pesticide risks and for conservation purposes, farmers should refrain from applying pesticides during blooming and peak pollinator activity times, particularly midday.
{"title":"Mitigating pesticide risk on bee pollinators and angiosperm biodiversity in the Ndop wetlands: A conservation approach.","authors":"Therese Ncheuveu Nkwatoh, Patricia Bi Asanga Fai, Alvine Larissa Meyabeme Elono, Louis Sevitenyi Nkwatoh, Sali Atanga Ndindeng","doi":"10.1016/j.etap.2025.104671","DOIUrl":"https://doi.org/10.1016/j.etap.2025.104671","url":null,"abstract":"<p><p>This study aimed to assess the risk of pesticides on bee pollinators and propose strategies to conserve entomophilous angiosperm species in the Ndop wetlands. Results showed that the applied pesticide doses were often excessive, increasing the exposure toxicity ratios (ETR). Among the pesticides, insecticides posed the highest risk to bee pollinators, with Emamectin benzoate (ETR=591.4) presenting the highest risk, followed by imidacloprid (ETR=517.5), fipronil (ETR=496.4), chlorpyrifos (ETR=240.7), and cypermethrin (ETR=131). Lambda-cyhalothrin (ETR=50.53) posed a possible risk. The study found that imidacloprid, fipronil, and chlorpyrifos posed definite risks through dietary exposure, while Emamectin benzoate, fipronil, and cypermethrin posed risks through direct contact. Approximately 46.03% of angiosperms are anemophilous while 53% are entomophilous with bee pollinators facilitating the pollination of nearly 90% of the entomophilous species. To mitigate pesticide risks and for conservation purposes, farmers should refrain from applying pesticides during blooming and peak pollinator activity times, particularly midday.</p>","PeriodicalId":93992,"journal":{"name":"Environmental toxicology and pharmacology","volume":" ","pages":"104671"},"PeriodicalIF":0.0,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143588764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The most recent dam rupture in Brazil released tons of mining tailings into the upper course of the Paraopeba River, affecting this river in an unprecedented way. The present study aimed to evaluate the influence of heavy metals on Prochilodus costatus, an important commercial species in Brazil, four years after the dam colapse. To this end, biomarkers of heavy metals, oxidative stress, and environmental stress were analyzed, and histological analyses of target organs were performed. The results demonstrated critical contamination of fish from the Paraopeba River. Increased expression of Metallothioneins - MTs, Heat Shock Protein - HSP70, and inducible nitric oxide synthase - iNOS, as well as greater rates of histological changes in the liver, spleen, and gonads, were observed in P. costatus. These findings demonstrate that, despite past contamination, the metals present in mining tailings have significantly increased the contamination of the Paraopeba River basin.
{"title":"Histopathology and changes in the expression of metallothioneins, heat shock proteins and inducible nitric oxide synthase in Prochilodus costatus from a neotropical river contaminated by heavy metals.","authors":"Alessandro Loureiro Paschoalini, Yves Moreira Ribeiro, Breno Thuller, Camila Leandro Gomes Soares, Elizete Rizzo, Nilo Bazzoli","doi":"10.1016/j.etap.2024.104473","DOIUrl":"10.1016/j.etap.2024.104473","url":null,"abstract":"<p><p>The most recent dam rupture in Brazil released tons of mining tailings into the upper course of the Paraopeba River, affecting this river in an unprecedented way. The present study aimed to evaluate the influence of heavy metals on Prochilodus costatus, an important commercial species in Brazil, four years after the dam colapse. To this end, biomarkers of heavy metals, oxidative stress, and environmental stress were analyzed, and histological analyses of target organs were performed. The results demonstrated critical contamination of fish from the Paraopeba River. Increased expression of Metallothioneins - MTs, Heat Shock Protein - HSP70, and inducible nitric oxide synthase - iNOS, as well as greater rates of histological changes in the liver, spleen, and gonads, were observed in P. costatus. These findings demonstrate that, despite past contamination, the metals present in mining tailings have significantly increased the contamination of the Paraopeba River basin.</p>","PeriodicalId":93992,"journal":{"name":"Environmental toxicology and pharmacology","volume":" ","pages":"104473"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We analyzed gene expression in THP-1 cells exposed to metal-based nanomaterials (NMs) [TiO2 (NM-100), ZnO (NM-110), SiO2 (NM-200), Ag (NM-300 K)]. A functional enrichment analysis of the significant differentially expressed genes (DEGs) identified the key modulated biological processes and pathways. DEGs were used to construct protein-protein interaction networks. NM-110 and NM-300 K induced changes in the expression of genes involved in oxidative and genotoxic stress, immune response, alterations of cell cycle, detoxification of metal ions and regulation of redox-sensitive pathways. Both NMs shared a number of highly connected protein nodes (hubs) including CXCL8, ATF3, HMOX1, and IL1B. NM-200 induced limited transcriptional changes, mostly related to the immune response; however, several hubs (CXCL8, ATF3) were identical with NM-110 and NM-300 K. No effects of NM-100 were observed. Overall, soluble nanomaterials NM-110 and NM-300 K exerted a wide variety of toxic effects, while insoluble NM-200 induced immunotoxicity; NM-100 caused no detectable changes on the gene expression level.
我们分析了暴露于金属基纳米材料(NMs)[TiO2(NM-100)、ZnO(NM-110)、SiO2(NM-200)、Ag(NM-300 K)]的 THP-1 细胞的基因表达。对显著差异表达基因(DEGs)的功能富集分析确定了关键的调节生物过程和途径。DEGs 被用于构建蛋白质-蛋白质相互作用网络。NM-110 和 NM-300 K 诱导了涉及氧化和基因毒性应激、免疫反应、细胞周期改变、金属离子解毒和氧化还原敏感通路调控的基因表达变化。两种 NMs 都共享一些高度连接的蛋白质节点(枢纽),包括 CXCL8、ATF3、HMOX1 和 IL1B。NM-200 诱导了有限的转录变化,主要与免疫反应有关;然而,几个枢纽(CXCL8、ATF3)与 NM-110 和 NM-300 K 相同。总之,可溶性纳米材料 NM-110 和 NM-300 K 产生了多种毒性效应,而不溶性纳米材料 NM-200 引发了免疫毒性;NM-100 在基因表达水平上没有引起可检测到的变化。
{"title":"Gene expression profiles and protein-protein interaction networks in THP-1 cells exposed to metal-based nanomaterials.","authors":"Šíma Michal, Líbalová Helena, Závodná Táňa, Vrbová Kristýna, Kléma Jiří, Rössner Pavel","doi":"10.1016/j.etap.2024.104469","DOIUrl":"https://doi.org/10.1016/j.etap.2024.104469","url":null,"abstract":"<p><p>We analyzed gene expression in THP-1 cells exposed to metal-based nanomaterials (NMs) [TiO<sub>2</sub> (NM-100), ZnO (NM-110), SiO<sub>2</sub> (NM-200), Ag (NM-300 K)]. A functional enrichment analysis of the significant differentially expressed genes (DEGs) identified the key modulated biological processes and pathways. DEGs were used to construct protein-protein interaction networks. NM-110 and NM-300 K induced changes in the expression of genes involved in oxidative and genotoxic stress, immune response, alterations of cell cycle, detoxification of metal ions and regulation of redox-sensitive pathways. Both NMs shared a number of highly connected protein nodes (hubs) including CXCL8, ATF3, HMOX1, and IL1B. NM-200 induced limited transcriptional changes, mostly related to the immune response; however, several hubs (CXCL8, ATF3) were identical with NM-110 and NM-300 K. No effects of NM-100 were observed. Overall, soluble nanomaterials NM-110 and NM-300 K exerted a wide variety of toxic effects, while insoluble NM-200 induced immunotoxicity; NM-100 caused no detectable changes on the gene expression level.</p>","PeriodicalId":93992,"journal":{"name":"Environmental toxicology and pharmacology","volume":" ","pages":"104469"},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chlorpyrifos, widely used for pest control, is known to have various harmful effects, although its toxic effects in macrophages and the mechanisms underlying its toxicity remain unclear. The present study investigated the toxic effects of chlorypyrifos in a macrophage cell line. Here, we found that chlorpyrifos induced cytotoxicity and genotoxicity in RAW264.7 macrophages. Moreover, chlorpyrifos induced intracellular ROS production, subsequently leading to lipid peroxidation. Chlorpyrifos reduced the activation of antioxidative enzymes including superoxide dismutase, catalase, and glutathione peroxidase. Chlorpyrifos upregulated HO-1 expression and activated the Keap1-Nrf2 pathway, as indicated by enhanced Nrf2 phosphorylation and Keap1 degradation. Chlorpyrifos exerted effects on the following in a dose-dependent manner: cytotoxicity, genotoxicity, lipid peroxidation, intracellular ROS production, antioxidative enzyme activity reduction, HO-1 expression, Nrf2 phosphorylation, and Keap1 degradation. Notably, N-acetyl-L-cysteine successfully inhibited chlorpyrifos-induced intracellular ROS generation, cytotoxicity, and genotoxicity. Thus, chlorpyrifos may induce cytotoxicity and genotoxicity by promoting intracellular ROS production and suppressing the antioxidative defense system activation in macrophages.
{"title":"Chlorpyrifos-induced suppression of the antioxidative defense system leads to cytotoxicity and genotoxicity in macrophages.","authors":"Yin-Che Lu, Chen-Yu Chiang, Shih-Pin Chen, Yu-Wei Hsu, Wen-Ying Chen, Chun-Jung Chen, Yu-Hsiang Kuan, Sheng-Wen Wu","doi":"10.1016/j.etap.2024.104468","DOIUrl":"https://doi.org/10.1016/j.etap.2024.104468","url":null,"abstract":"<p><p>Chlorpyrifos, widely used for pest control, is known to have various harmful effects, although its toxic effects in macrophages and the mechanisms underlying its toxicity remain unclear. The present study investigated the toxic effects of chlorypyrifos in a macrophage cell line. Here, we found that chlorpyrifos induced cytotoxicity and genotoxicity in RAW264.7 macrophages. Moreover, chlorpyrifos induced intracellular ROS production, subsequently leading to lipid peroxidation. Chlorpyrifos reduced the activation of antioxidative enzymes including superoxide dismutase, catalase, and glutathione peroxidase. Chlorpyrifos upregulated HO-1 expression and activated the Keap1-Nrf2 pathway, as indicated by enhanced Nrf2 phosphorylation and Keap1 degradation. Chlorpyrifos exerted effects on the following in a dose-dependent manner: cytotoxicity, genotoxicity, lipid peroxidation, intracellular ROS production, antioxidative enzyme activity reduction, HO-1 expression, Nrf2 phosphorylation, and Keap1 degradation. Notably, N-acetyl-L-cysteine successfully inhibited chlorpyrifos-induced intracellular ROS generation, cytotoxicity, and genotoxicity. Thus, chlorpyrifos may induce cytotoxicity and genotoxicity by promoting intracellular ROS production and suppressing the antioxidative defense system activation in macrophages.</p>","PeriodicalId":93992,"journal":{"name":"Environmental toxicology and pharmacology","volume":" ","pages":"104468"},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140961294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.1016/j.etap.2024.104393
Jin Chen, Mingxuan Zhang, Stanley Aniagu, Yan Jiang, Tao Chen
{"title":"PM2.5 induces cardiac defects via AHR-SIRT1-PGC-1α mediated mitochondrial damage","authors":"Jin Chen, Mingxuan Zhang, Stanley Aniagu, Yan Jiang, Tao Chen","doi":"10.1016/j.etap.2024.104393","DOIUrl":"https://doi.org/10.1016/j.etap.2024.104393","url":null,"abstract":"","PeriodicalId":93992,"journal":{"name":"Environmental toxicology and pharmacology","volume":"2013 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139879273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}