首页 > 最新文献

Journal of biomedical materials research. Part A最新文献

英文 中文
Bioactive ZnO Decorated PVDF-Based Piezoelectric, Osteoconductive Nanofibrous Coatings for Orthopedic Implants. 生物活性ZnO修饰pvdf基压电、骨导电性纳米纤维涂层用于骨科植入物。
IF 3.9 Pub Date : 2025-08-01 DOI: 10.1002/jbm.a.37971
Sumedh Vaidya, Mansi Joshi, Sumanta Ghosh, Namdev More, Ravichandiran Velyutham, Srivalliputtur Sarath Babu, Govinda Kapusetti

Surface modification of titanium-based orthopedic implants has been investigated over the last decades to promote better bone-to-implant association, osseointegration, and fracture healing. Yet, post-surgical failure of coated orthopedic implants occurs due to poor adhesive strength, fatigue failure, high wear rate of coated materials, low biocompatibility, limited osseointegration, and stress-shielding effect. Therefore, there is an unmet clinical need to develop a smart coating strategy. Herein, we have created an electrospun nanofibrous coating for Ti-implants using piezoelectric Polyvinylidene fluoride (PVDF) polymer reinforced with osteoconductive nanofiller Zinc oxide (ZnO). We have found that by varying the ZnO content from 0.5 to 2.0 wt.% in the PVDF matrix, we can modulate the electrospun coating's mechanical, thermal, physicochemical stability, and piezoelectric characteristics. Our results proved that PVDF-ZnO nanofibrous coatings exhibit almost ~3-4 fold increase in the piezoelectric d33 coefficient as well as output voltage, compared to pure PVDF using Piezo-responsive Force Microscopy (PFM). Furthermore, electrically poled piezoelectric PVDF-ZnO nanofibers also demonstrated a significant increment (~5-fold) in collagen deposition, hydroxyapatite formation, and improved bio- and hemo-compatibility compared to unpoled nanofibers. Furthermore, through the in vitro experiments, we have confirmed that the piezoelectric PVDF-ZnO nanofibrous activates calcium-calmodulin mediated cellular pathway to induce cell adhesion, proliferation, and cell spreading in the osteoblast cells. Nonetheless, using the biomimetic mechanical bioreactor, we have investigated the piezoelectricity-mediated increased focal adhesion and enhanced F-actin production under the physiologically relevant (i.e., 1%) mechanical strain in bone cells. Moreover, the current study elucidates the piezoelectric-based smart, multifunctional coating strategies for developing an osteoconductive implant.

在过去的几十年里,人们一直在研究钛基骨科植入物的表面改性,以促进更好的骨与植入物的结合、骨整合和骨折愈合。然而,由于包被材料黏附强度差、疲劳失效、磨损率高、生物相容性低、骨整合受限、应力屏蔽作用等原因,导致包被骨科种植体术后失效。因此,开发一种智能涂层策略是尚未满足的临床需求。在此,我们利用压电聚偏氟乙烯(PVDF)聚合物和骨导电性纳米填料氧化锌(ZnO)增强,创造了一种用于钛植入物的电纺纳米纤维涂层。我们发现,通过改变ZnO含量从0.5到2.0 wt。在PVDF基体中,我们可以调节静电纺涂层的机械、热、物理化学稳定性和压电特性。我们的研究结果证明,与纯PVDF相比,PVDF- zno纳米纤维涂层的压电d33系数和输出电压几乎增加了~3-4倍。此外,与未极化纳米纤维相比,电极化压电PVDF-ZnO纳米纤维在胶原沉积、羟基磷灰石形成以及生物和血液相容性方面也有显著增加(约5倍)。此外,通过体外实验,我们证实压电型PVDF-ZnO纳米纤维激活钙-钙调素介导的细胞通路,诱导成骨细胞的细胞粘附、增殖和细胞扩散。尽管如此,使用仿生机械生物反应器,我们研究了骨细胞在生理相关(即1%)机械应变下,压电介导的局灶粘连增加和f -肌动蛋白生成增强。此外,目前的研究阐明了基于压电的智能多功能涂层策略,用于开发骨传导植入物。
{"title":"Bioactive ZnO Decorated PVDF-Based Piezoelectric, Osteoconductive Nanofibrous Coatings for Orthopedic Implants.","authors":"Sumedh Vaidya, Mansi Joshi, Sumanta Ghosh, Namdev More, Ravichandiran Velyutham, Srivalliputtur Sarath Babu, Govinda Kapusetti","doi":"10.1002/jbm.a.37971","DOIUrl":"https://doi.org/10.1002/jbm.a.37971","url":null,"abstract":"<p><p>Surface modification of titanium-based orthopedic implants has been investigated over the last decades to promote better bone-to-implant association, osseointegration, and fracture healing. Yet, post-surgical failure of coated orthopedic implants occurs due to poor adhesive strength, fatigue failure, high wear rate of coated materials, low biocompatibility, limited osseointegration, and stress-shielding effect. Therefore, there is an unmet clinical need to develop a smart coating strategy. Herein, we have created an electrospun nanofibrous coating for Ti-implants using piezoelectric Polyvinylidene fluoride (PVDF) polymer reinforced with osteoconductive nanofiller Zinc oxide (ZnO). We have found that by varying the ZnO content from 0.5 to 2.0 wt.% in the PVDF matrix, we can modulate the electrospun coating's mechanical, thermal, physicochemical stability, and piezoelectric characteristics. Our results proved that PVDF-ZnO nanofibrous coatings exhibit almost ~3-4 fold increase in the piezoelectric d<sub>33</sub> coefficient as well as output voltage, compared to pure PVDF using Piezo-responsive Force Microscopy (PFM). Furthermore, electrically poled piezoelectric PVDF-ZnO nanofibers also demonstrated a significant increment (~5-fold) in collagen deposition, hydroxyapatite formation, and improved bio- and hemo-compatibility compared to unpoled nanofibers. Furthermore, through the in vitro experiments, we have confirmed that the piezoelectric PVDF-ZnO nanofibrous activates calcium-calmodulin mediated cellular pathway to induce cell adhesion, proliferation, and cell spreading in the osteoblast cells. Nonetheless, using the biomimetic mechanical bioreactor, we have investigated the piezoelectricity-mediated increased focal adhesion and enhanced F-actin production under the physiologically relevant (i.e., 1%) mechanical strain in bone cells. Moreover, the current study elucidates the piezoelectric-based smart, multifunctional coating strategies for developing an osteoconductive implant.</p>","PeriodicalId":94066,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 8","pages":"e37971"},"PeriodicalIF":3.9,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144801351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to "Photocrosslinkable and elastomeric hydrogels for bone regeneration". 更正“用于骨再生的光交联和弹性水凝胶”。
IF 3.9 Pub Date : 2025-08-01 DOI: 10.1002/jbm.a.37974
{"title":"Correction to \"Photocrosslinkable and elastomeric hydrogels for bone regeneration\".","authors":"","doi":"10.1002/jbm.a.37974","DOIUrl":"https://doi.org/10.1002/jbm.a.37974","url":null,"abstract":"","PeriodicalId":94066,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 8","pages":"e37974"},"PeriodicalIF":3.9,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144801352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of biomedical materials research. Part A
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1