首页 > 最新文献

2023 IEEE Conference on Artificial Intelligence最新文献

英文 中文
Structure-Based Inverse Reinforcement Learning for Quantification of Biological Knowledge. 用于生物知识量化的基于结构的反向强化学习。
Pub Date : 2023-06-01 Epub Date: 2023-08-02 DOI: 10.1109/cai54212.2023.00126
Amirhossein Ravari, Seyede Fatemeh Ghoreishi, Mahdi Imani

Gene regulatory networks (GRNs) play crucial roles in various cellular processes, including stress response, DNA repair, and the mechanisms involved in complex diseases such as cancer. Biologists are involved in most biological analyses. Thus, quantifying their policies reflected in available biological data can significantly help us to better understand these complex systems. The primary challenges preventing the utilization of existing machine learning, particularly inverse reinforcement learning techniques, to quantify biologists' knowledge are the limitations and huge amount of uncertainty in biological data. This paper leverages the network-like structure of GRNs to define expert reward functions that contain exponentially fewer parameters than regular reward models. Numerical experiments using mammalian cell cycle and synthetic gene-expression data demonstrate the superior performance of the proposed method in quantifying biologists' policies.

基因调控网络(GRNs)在各种细胞过程中发挥着至关重要的作用,包括应激反应、DNA修复和癌症等复杂疾病的机制。生物学家参与了大多数生物学分析。因此,量化现有生物数据中反映的他们的政策可以大大帮助我们更好地理解这些复杂的系统。阻碍利用现有的机器学习,特别是反向强化学习技术来量化生物学家知识的主要挑战是生物数据的局限性和巨大的不确定性。本文利用GRN的类网络结构来定义专家奖励函数,该函数包含的参数比常规奖励模型少得多。使用哺乳动物细胞周期和合成基因表达数据的数值实验证明了所提出的方法在量化生物学家的政策方面的优越性能。
{"title":"Structure-Based Inverse Reinforcement Learning for Quantification of Biological Knowledge.","authors":"Amirhossein Ravari,&nbsp;Seyede Fatemeh Ghoreishi,&nbsp;Mahdi Imani","doi":"10.1109/cai54212.2023.00126","DOIUrl":"10.1109/cai54212.2023.00126","url":null,"abstract":"<p><p>Gene regulatory networks (GRNs) play crucial roles in various cellular processes, including stress response, DNA repair, and the mechanisms involved in complex diseases such as cancer. Biologists are involved in most biological analyses. Thus, quantifying their policies reflected in available biological data can significantly help us to better understand these complex systems. The primary challenges preventing the utilization of existing machine learning, particularly inverse reinforcement learning techniques, to quantify biologists' knowledge are the limitations and huge amount of uncertainty in biological data. This paper leverages the network-like structure of GRNs to define expert reward functions that contain exponentially fewer parameters than regular reward models. Numerical experiments using mammalian cell cycle and synthetic gene-expression data demonstrate the superior performance of the proposed method in quantifying biologists' policies.</p>","PeriodicalId":94276,"journal":{"name":"2023 IEEE Conference on Artificial Intelligence","volume":"2023 ","pages":"282-284"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10552793/pdf/nihms-1914209.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41174905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning to Fight Against Cell Stimuli: A Game Theoretic Perspective. 学习对抗细胞刺激:博弈论视角。
Pub Date : 2023-06-01 Epub Date: 2023-08-02 DOI: 10.1109/cai54212.2023.00127
Seyed Hamid Hosseini, Mahdi Imani

Current genomics interventions have limitations in accounting for cell stimuli and the dynamic response to intervention. Although genomic sequencing and analysis have led to significant advances in personalized medicine, the complexity of cellular interactions and the dynamic nature of the cellular response to stimuli pose significant challenges. These limitations can lead to chronic disease recurrence and inefficient genomic interventions. Therefore, it is necessary to capture the full range of cellular responses to develop effective interventions. This paper presents a game-theoretic model of the fight between the cell and intervention, demonstrating analytically and numerically why current interventions become ineffective over time. The performance is analyzed using melanoma regulatory networks, and the role of artificial intelligence in deriving effective solutions is described.

目前的基因组学干预在解释细胞刺激和对干预的动态反应方面存在局限性。尽管基因组测序和分析在个性化医学方面取得了重大进展,但细胞相互作用的复杂性和细胞对刺激反应的动态性质带来了重大挑战。这些限制可能导致慢性病复发和低效的基因组干预。因此,有必要捕捉全方位的细胞反应,以制定有效的干预措施。本文提出了细胞和干预之间斗争的博弈论模型,从分析和数值上证明了当前干预措施随着时间的推移而无效的原因。使用黑色素瘤调控网络分析了其性能,并描述了人工智能在获得有效解决方案中的作用。
{"title":"Learning to Fight Against Cell Stimuli: A Game Theoretic Perspective.","authors":"Seyed Hamid Hosseini,&nbsp;Mahdi Imani","doi":"10.1109/cai54212.2023.00127","DOIUrl":"https://doi.org/10.1109/cai54212.2023.00127","url":null,"abstract":"<p><p>Current genomics interventions have limitations in accounting for cell stimuli and the dynamic response to intervention. Although genomic sequencing and analysis have led to significant advances in personalized medicine, the complexity of cellular interactions and the dynamic nature of the cellular response to stimuli pose significant challenges. These limitations can lead to chronic disease recurrence and inefficient genomic interventions. Therefore, it is necessary to capture the full range of cellular responses to develop effective interventions. This paper presents a game-theoretic model of the fight between the cell and intervention, demonstrating analytically and numerically why current interventions become ineffective over time. The performance is analyzed using melanoma regulatory networks, and the role of artificial intelligence in deriving effective solutions is described.</p>","PeriodicalId":94276,"journal":{"name":"2023 IEEE Conference on Artificial Intelligence","volume":"2023 ","pages":"285-287"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10544835/pdf/nihms-1914207.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41158054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
2023 IEEE Conference on Artificial Intelligence
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1