Pub Date : 2023-05-24DOI: 10.1007/s44218-023-00025-7
U. Perera, A. Ratnayake, W. Weerasingha, Hevapathiranage Chandima Sudantha Subasinghe, T. Wijewardhana
{"title":"Grain size distribution of modern beach sediments in Sri Lanka","authors":"U. Perera, A. Ratnayake, W. Weerasingha, Hevapathiranage Chandima Sudantha Subasinghe, T. Wijewardhana","doi":"10.1007/s44218-023-00025-7","DOIUrl":"https://doi.org/10.1007/s44218-023-00025-7","url":null,"abstract":"","PeriodicalId":100098,"journal":{"name":"Anthropocene Coasts","volume":"39 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75638597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-24DOI: 10.1007/s44218-023-00025-7
U. L. H. P. Perera, Amila Sandaruwan Ratnayake, W. A. D. B. Weerasingha, H. C. S. Subasinghe, T. D. U. Wijewardhana
Grain size distributions are widely used to describe sedimentary geochemistry, depositional environment, and sediment transportation. The objective of this study is to analyze grain size distributions of modern sandy beach sediments in Sri Lanka. Sediment samples (n = 90) were collected from beach berm, representing the entire coastline of Sri Lanka. Grain sizes were determined by the dry-sieving method. Statistical parameters such as mean size, sorting, skewness, and kurtosis were calculated using GRADISTATV9.1 software for all the sieved sediment samples. Grain size variations (108.2 – 609.8 µm) show that Sri Lanka mainly consists of medium sand, whereas the northeast part of the country mixes with fine sand due to the influence of Bengal fan sediments. The variations of skewness (-0.229 – 0.446) and sorting (1.305 – 2.436) indicate symmetrical distributed moderately sorted samples. These variations specify a moderate energy depositional environment/wave action around the coastline of Sri Lanka. In addition, grain size analysis confirmed relatively high and low energy deposition environments on the west and east coasts, respectively. Accordingly, the west coast is more vulnerable to coastal erosion compared to the east coast of Sri Lanka. Therefore, this study provides the baseline grain size distribution data that can be used in decision-making for coastal zone management by mitigating beach erosion.
{"title":"Grain size distribution of modern beach sediments in Sri Lanka","authors":"U. L. H. P. Perera, Amila Sandaruwan Ratnayake, W. A. D. B. Weerasingha, H. C. S. Subasinghe, T. D. U. Wijewardhana","doi":"10.1007/s44218-023-00025-7","DOIUrl":"10.1007/s44218-023-00025-7","url":null,"abstract":"<div><p>Grain size distributions are widely used to describe sedimentary geochemistry, depositional environment, and sediment transportation. The objective of this study is to analyze grain size distributions of modern sandy beach sediments in Sri Lanka. Sediment samples (<i>n</i> = 90) were collected from beach berm, representing the entire coastline of Sri Lanka. Grain sizes were determined by the dry-sieving method. Statistical parameters such as mean size, sorting, skewness, and kurtosis were calculated using GRADISTAT<sub>V9.1</sub> software for all the sieved sediment samples. Grain size variations (108.2 – 609.8 µm) show that Sri Lanka mainly consists of medium sand, whereas the northeast part of the country mixes with fine sand due to the influence of Bengal fan sediments. The variations of skewness (-0.229 – 0.446) and sorting (1.305 – 2.436) indicate symmetrical distributed moderately sorted samples. These variations specify a moderate energy depositional environment/wave action around the coastline of Sri Lanka. In addition, grain size analysis confirmed relatively high and low energy deposition environments on the west and east coasts, respectively. Accordingly, the west coast is more vulnerable to coastal erosion compared to the east coast of Sri Lanka. Therefore, this study provides the baseline grain size distribution data that can be used in decision-making for coastal zone management by mitigating beach erosion.</p></div>","PeriodicalId":100098,"journal":{"name":"Anthropocene Coasts","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71910410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-23DOI: 10.1007/s44218-023-00024-8
Biaobiao Peng, Benwei Shi, Ya Ping Wang, Jingjing Li, Xinmiao Zhang, Xiaoyu Liu, Lei Mo, Anglu Shen, Yifan Ding
The assessment of river ecosystem health is crucial for improving river resilience, achieving ecological protection and rational utilization in the Yangtze Estuary region where there is high utilization of rivers and a high demand for quality rivers by Shanghai, the world's largest modern city. To assess the ecological health status of Yangtze Estuary rivers, this study established a river health assessment model consisting of five dimensions: water quality, river landscape, aquatic organisms, river hydrology, and human interference, and a total of ten indicators based on the ecological survey results in the summer and autumn of six river channels in Chongming Island in the Yangtze Estuary. The evaluation results reveal that the health status of rural rivers in the northwest and east of Chongming Island (S2, S3) is the best, reaching an excellent level, while the small river in the central part of Chongming Island (S6) is the worst, reaching a somewhat inferior level. Compared with rural rivers, the comprehensive evaluation results of urban rivers are good or ordinary level. The high proportion of building area on both sides of the river and the low vegetation cover are the main factors that restrict their scoring results. In contrast, rural rivers need to focus on the area of buffer zones such as forests and vegetation on both sides of the river, river connectivity, appropriate widening of narrow rivers, regular cleaning and dredging of rivers, as well as reducing human interference with the rivers. Regarding seasonal changes, the health assessment results of Chongming Island rivers in summer are better than those in autumn, and the differences between sites in summer are slightly greater than those in autumn. The seasonal differences between sites are mainly due to changes in indicators of the diversity of zooplankton, phytoplankton, and macrobenthos. To further improve the ecological health of rivers, measures of ecological restoration could be adjusted based on regular health assessment and health weakness analysis.
{"title":"Establishment and application of ecological health evaluation system for urban and rural rivers in Yangtze Estuary","authors":"Biaobiao Peng, Benwei Shi, Ya Ping Wang, Jingjing Li, Xinmiao Zhang, Xiaoyu Liu, Lei Mo, Anglu Shen, Yifan Ding","doi":"10.1007/s44218-023-00024-8","DOIUrl":"10.1007/s44218-023-00024-8","url":null,"abstract":"<div><p>The assessment of river ecosystem health is crucial for improving river resilience, achieving ecological protection and rational utilization in the Yangtze Estuary region where there is high utilization of rivers and a high demand for quality rivers by Shanghai, the world's largest modern city. To assess the ecological health status of Yangtze Estuary rivers, this study established a river health assessment model consisting of five dimensions: water quality, river landscape, aquatic organisms, river hydrology, and human interference, and a total of ten indicators based on the ecological survey results in the summer and autumn of six river channels in Chongming Island in the Yangtze Estuary. The evaluation results reveal that the health status of rural rivers in the northwest and east of Chongming Island (S2, S3) is the best, reaching an excellent level, while the small river in the central part of Chongming Island (S6) is the worst, reaching a somewhat inferior level. Compared with rural rivers, the comprehensive evaluation results of urban rivers are good or ordinary level. The high proportion of building area on both sides of the river and the low vegetation cover are the main factors that restrict their scoring results. In contrast, rural rivers need to focus on the area of buffer zones such as forests and vegetation on both sides of the river, river connectivity, appropriate widening of narrow rivers, regular cleaning and dredging of rivers, as well as reducing human interference with the rivers. Regarding seasonal changes, the health assessment results of Chongming Island rivers in summer are better than those in autumn, and the differences between sites in summer are slightly greater than those in autumn. The seasonal differences between sites are mainly due to changes in indicators of the diversity of zooplankton, phytoplankton, and macrobenthos. To further improve the ecological health of rivers, measures of ecological restoration could be adjusted based on regular health assessment and health weakness analysis.\u0000</p></div>","PeriodicalId":100098,"journal":{"name":"Anthropocene Coasts","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71910010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-23DOI: 10.1007/s44218-023-00024-8
Biaobiao Peng, B. Shi, Y. Wang, Jingjing Li, Xinmiao Zhang, Xiaoyu Liu, L. Mo, A. Shen, Y. Ding
{"title":"Establishment and application of ecological health evaluation system for urban and rural rivers in Yangtze Estuary","authors":"Biaobiao Peng, B. Shi, Y. Wang, Jingjing Li, Xinmiao Zhang, Xiaoyu Liu, L. Mo, A. Shen, Y. Ding","doi":"10.1007/s44218-023-00024-8","DOIUrl":"https://doi.org/10.1007/s44218-023-00024-8","url":null,"abstract":"","PeriodicalId":100098,"journal":{"name":"Anthropocene Coasts","volume":"41 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86481486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In AD1128, the Yellow River shifted its course from the Bohai Sea to the South Yellow Sea (SYS) due to anthropogenic dike excavation, starting the development of the Abandoned Yellow River Delta (AYRD) that lasted for more than 700 years (AD1128-1855). However, the sediment flux of the abandoned Yellow River into the sea is in a state of change due to human activities, and the growth process of the AYRD is not well understood. Here, we investigate the growth process of the AYRD and its sedimentary record characteristics over the last millennium based on three cores collected from the AYRD.
The results show that the main sediment types in the AYRD are silt, mud and sandy silt. After AD1128, the grain size components in the sediments of the AYRD showed significant stage changes with the sand content first starting to decrease. The clay content increased and remained at a high percentage in the middle to late 14th century, followed by a sharp increase from the mid-16th to the mid-17th century, due to a further increase in sediment flux from the abandoned Yellow River into the sea. A slight increase in the proportion of sand content during the final stage of the transition from subaqueous delta to terrestrial delta is a distinctive feature of the sedimentary record, and this change persists for 10 ~ 90 years in different core records.
This study further proposes a schematic model of the development of the AYRD: (a) before the 16th century, the sediments were deposited mainly in the estuary and nearshore, with rapid vertical accretion; (b) After the 16th century, the horizontal land formation was the main focus, and the rate of seaward extension increased rapidly. This model also reflects the following pattern: when the sediment flux from the river into the sea is certain, the rate of land formation is inversely proportional to the rate of vertical accretion. The dominant factors affecting the evolution of the AYRD are the sediment flux into the sea and initial submerged topography, with less influence from sea level changes. Hydrodynamic erosion by wave and tidal forces from the outer delta began to dominate after the interruption of sediment supply due to the Yellow River mouth northward to the Bohai Sea in AD1855. This study has important implications for understanding the growth and evolution of deltas under the influence of human activities.
{"title":"Sedimentary records reveal two stages of evolution of the Abandoned Yellow River Delta from AD1128 to AD1855: vertical accretion and land-forming","authors":"Chengfeng Xue, Yang Yang, Chaoran Xu, Mengyao Wang, Jianhua Gao, Xibin Han, Jianjun Jia","doi":"10.1007/s44218-023-00023-9","DOIUrl":"10.1007/s44218-023-00023-9","url":null,"abstract":"<div><p>In AD1128, the Yellow River shifted its course from the Bohai Sea to the South Yellow Sea (SYS) due to anthropogenic dike excavation, starting the development of the Abandoned Yellow River Delta (AYRD) that lasted for more than 700 years (AD1128-1855). However, the sediment flux of the abandoned Yellow River into the sea is in a state of change due to human activities, and the growth process of the AYRD is not well understood. Here, we investigate the growth process of the AYRD and its sedimentary record characteristics over the last millennium based on three cores collected from the AYRD.</p><p>The results show that the main sediment types in the AYRD are silt, mud and sandy silt. After AD1128, the grain size components in the sediments of the AYRD showed significant stage changes with the sand content first starting to decrease. The clay content increased and remained at a high percentage in the middle to late 14th century, followed by a sharp increase from the mid-16th to the mid-17th century, due to a further increase in sediment flux from the abandoned Yellow River into the sea. A slight increase in the proportion of sand content during the final stage of the transition from subaqueous delta to terrestrial delta is a distinctive feature of the sedimentary record, and this change persists for 10 ~ 90 years in different core records.</p><p>This study further proposes a schematic model of the development of the AYRD: (a) before the 16th century, the sediments were deposited mainly in the estuary and nearshore, with rapid vertical accretion; (b) After the 16th century, the horizontal land formation was the main focus, and the rate of seaward extension increased rapidly. This model also reflects the following pattern: when the sediment flux from the river into the sea is certain, the rate of land formation is inversely proportional to the rate of vertical accretion. The dominant factors affecting the evolution of the AYRD are the sediment flux into the sea and initial submerged topography, with less influence from sea level changes. Hydrodynamic erosion by wave and tidal forces from the outer delta began to dominate after the interruption of sediment supply due to the Yellow River mouth northward to the Bohai Sea in AD1855. This study has important implications for understanding the growth and evolution of deltas under the influence of human activities.</p></div>","PeriodicalId":100098,"journal":{"name":"Anthropocene Coasts","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71910492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-22DOI: 10.1007/s44218-023-00023-9
Chengfeng Xue, Yang Yang, Chaoran Xu, Mengyao Wang, J. Gao, Xibin Han, J. Jia
{"title":"Sedimentary records reveal two stages of evolution of the Abandoned Yellow River Delta from AD1128 to AD1855: vertical accretion and land-forming","authors":"Chengfeng Xue, Yang Yang, Chaoran Xu, Mengyao Wang, J. Gao, Xibin Han, J. Jia","doi":"10.1007/s44218-023-00023-9","DOIUrl":"https://doi.org/10.1007/s44218-023-00023-9","url":null,"abstract":"","PeriodicalId":100098,"journal":{"name":"Anthropocene Coasts","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75042377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-09DOI: 10.1007/s44218-023-00022-w
GiHoon Hong, C. Vivian, C. Vogt, F. Haag, F. Zuo, Kai Qin
{"title":"Enhancing the Anthropocene coastal infrastructure sustainability using the approaches developed by the London Convention and Protocol","authors":"GiHoon Hong, C. Vivian, C. Vogt, F. Haag, F. Zuo, Kai Qin","doi":"10.1007/s44218-023-00022-w","DOIUrl":"https://doi.org/10.1007/s44218-023-00022-w","url":null,"abstract":"","PeriodicalId":100098,"journal":{"name":"Anthropocene Coasts","volume":"90 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80395591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-09DOI: 10.1007/s44218-023-00022-w
GiHoon Hong, Christopher Vivian, Craig Vogt, Fredrik Haag, Fang Zuo, Kai Qin
The water’s edge is a critically important and efficient location to trade with other partners by connecting inland water channels and sea lanes and to obtain food provisions from the biologically diverse and productive sea. Human civilization has built around the ports and harbors by constructing fixed structures to support waterborne transport and enhance or sustain city functions for millennia. These artificially fixed structures are not in natural equilibrium with the environment (water and sediment). Access channels and the sea bottom adjacent to piers are often dredged to accommodate larger ships. Bottom sediment dredging is a part of port management. Where to place the dredged material is of primary concern for port authorities because of its sheer volume and the potential to be chemically contaminated. The London Convention and the London Protocol (LC/LP) are international treaties that provide a process in preventing pollution from dumping of contaminated material at sea, and finding sound alternatives such as confined disposal facilities, and using clean dredged material in wetland creation or beach nourishment, based on the precautionary approach. The Anthropocene (Anthropocene refers to the most recent period in Earth’s history when human activity started to impact significantly on the climate and ecosystems.) coast of ports, harbors, wetlands, shorelines, and beaches of the coastal megacities faces tremendous challenges in managing navigational and shoreline infrastructure in view of sea level rise and climate change. Dredged sediments are a resource and are a key to protection of shorelines. The benefits of being members of the LC/LP treaties are that there is a wealth of various national experiences on sediment management available via the network of LC/LP national experts and in the records of the LC/LP’s Meetings of Contracting Parties.
{"title":"Enhancing the Anthropocene coastal infrastructure sustainability using the approaches developed by the London Convention and Protocol","authors":"GiHoon Hong, Christopher Vivian, Craig Vogt, Fredrik Haag, Fang Zuo, Kai Qin","doi":"10.1007/s44218-023-00022-w","DOIUrl":"10.1007/s44218-023-00022-w","url":null,"abstract":"<div><p>The water’s edge is a critically important and efficient location to trade with other partners by connecting inland water channels and sea lanes and to obtain food provisions from the biologically diverse and productive sea. Human civilization has built around the ports and harbors by constructing fixed structures to support waterborne transport and enhance or sustain city functions for millennia. These artificially fixed structures are not in natural equilibrium with the environment (water and sediment). Access channels and the sea bottom adjacent to piers are often dredged to accommodate larger ships. Bottom sediment dredging is a part of port management. Where to place the dredged material is of primary concern for port authorities because of its sheer volume and the potential to be chemically contaminated. The London Convention and the London Protocol (LC/LP) are international treaties that provide a process in preventing pollution from dumping of contaminated material at sea, and finding sound alternatives such as confined disposal facilities, and using clean dredged material in wetland creation or beach nourishment, based on the precautionary approach. The Anthropocene (Anthropocene refers to the most recent period in Earth’s history when human activity started to impact significantly on the climate and ecosystems.) coast of ports, harbors, wetlands, shorelines, and beaches of the coastal megacities faces tremendous challenges in managing navigational and shoreline infrastructure in view of sea level rise and climate change. Dredged sediments are a resource and are a key to protection of shorelines. The benefits of being members of the LC/LP treaties are that there is a wealth of various national experiences on sediment management available via the network of LC/LP national experts and in the records of the LC/LP’s Meetings of Contracting Parties.</p></div>","PeriodicalId":100098,"journal":{"name":"Anthropocene Coasts","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71909794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-23DOI: 10.1007/s44218-023-00020-y
Xiaoyu Liu, Fei Xing, B. Shi, Guoxiang Wu, J. Ge, Biaobiao Peng, Mingliang Li, Y. Wang
{"title":"Erosion and accretion patterns on intertidal mudflats of the Yangtze River Estuary in response to storm conditions","authors":"Xiaoyu Liu, Fei Xing, B. Shi, Guoxiang Wu, J. Ge, Biaobiao Peng, Mingliang Li, Y. Wang","doi":"10.1007/s44218-023-00020-y","DOIUrl":"https://doi.org/10.1007/s44218-023-00020-y","url":null,"abstract":"","PeriodicalId":100098,"journal":{"name":"Anthropocene Coasts","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84554494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-23DOI: 10.1007/s44218-023-00020-y
Xiaoyu Liu, Fei Xing, Benwei Shi, Guoxiang Wu, Jianzhong Ge, Biaobiao Peng, Mingliang Li, Ya Ping Wang
Understanding of erosion and accretion patterns over intertidal mudflats during storm periods is vital for the management and sustainable development of coastal areas. This study aimed to investigate the effect of the 2014 storm Fung-wong on the erosion and accretion patterns of the Nanhui intertidal mudflats in the Yangtze estuary, China, based on field measurements and Delft3D numerical modeling. Results show that prolonged easterly winds during the storm enhance the flood velocity, weaken the ebb velocity, and even change the current direction. The current velocity, wave heights, and bed-level changes increased by 1–1.43 times, 2.40–3.88 times, and 2.28–2.70 times than those of normal weather, respectively. The mudflats show a spatial pattern of overall erosion but increasing erosion magnitude from the high (landward) mudflat to the low (seaward) mudflat during the storm. The magnitude of bed-level change increases with increasing wind speed, but the spatial pattern of erosion and accretion remains the same. The main reason for this pattern is the longer submersion duration of the low mudflat compared with the high mudflat, so the hydrodynamic process is longer and stronger, leading to an enhancement in bed shear stress and sediment transport rate. Wind speed increases the hydrodynamic intensity but does not affect on the submersion duration over each part of the intertidal mudflat. This study is helpful to improve the understanding of physical processes during storms on intertidal mudflats and provides a reference for their protection, utilization, and management, as well as for research in related disciplines.
{"title":"Erosion and accretion patterns on intertidal mudflats of the Yangtze River Estuary in response to storm conditions","authors":"Xiaoyu Liu, Fei Xing, Benwei Shi, Guoxiang Wu, Jianzhong Ge, Biaobiao Peng, Mingliang Li, Ya Ping Wang","doi":"10.1007/s44218-023-00020-y","DOIUrl":"10.1007/s44218-023-00020-y","url":null,"abstract":"<div><p>Understanding of erosion and accretion patterns over intertidal mudflats during storm periods is vital for the management and sustainable development of coastal areas. This study aimed to investigate the effect of the 2014 storm Fung-wong on the erosion and accretion patterns of the Nanhui intertidal mudflats in the Yangtze estuary, China, based on field measurements and Delft3D numerical modeling. Results show that prolonged easterly winds during the storm enhance the flood velocity, weaken the ebb velocity, and even change the current direction. The current velocity, wave heights, and bed-level changes increased by 1–1.43 times, 2.40–3.88 times, and 2.28–2.70 times than those of normal weather, respectively. The mudflats show a spatial pattern of overall erosion but increasing erosion magnitude from the high (landward) mudflat to the low (seaward) mudflat during the storm. The magnitude of bed-level change increases with increasing wind speed, but the spatial pattern of erosion and accretion remains the same. The main reason for this pattern is the longer submersion duration of the low mudflat compared with the high mudflat, so the hydrodynamic process is longer and stronger, leading to an enhancement in bed shear stress and sediment transport rate. Wind speed increases the hydrodynamic intensity but does not affect on the submersion duration over each part of the intertidal mudflat. This study is helpful to improve the understanding of physical processes during storms on intertidal mudflats and provides a reference for their protection, utilization, and management, as well as for research in related disciplines.</p></div>","PeriodicalId":100098,"journal":{"name":"Anthropocene Coasts","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71910002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}