首页 > 最新文献

Chem & Bio Engineering最新文献

英文 中文
Synthetic Whole-Cell Bioelectronic Chemical Sensing with In Situ Genetic Computing. 原位遗传计算合成全细胞生物电子化学传感。
Pub Date : 2025-08-07 eCollection Date: 2025-09-25 DOI: 10.1021/cbe.5c00015
Robert W Bradley, Estefania Nunez-Bajo, Firat Guder, Martin Buck, Baojun Wang

Biosensors exploit the capabilities of biological systems to acquire a huge variety of chemical or physical information and convert molecular signals into actionable data. Here we took a bottom-up synthetic biology approach to combine the versatility and programmability of whole-cell bacterial biosensors with the sensitivity of electrochemical sensing devices. We built genetic modules to produce different phenazines and wired these to various sensing and information processing modules. A whole-cell bioelectronic sensor with a T7 RNAP-based signal amplifier was first constructed that detected mercury contaminants below the level of WHO safe limit for drinking water. We demonstrated the modularity and programmability of the sensor design by incorporating Boolean logic computation into a dual-input sensor. We subsequently engineered a sensor strain that can produce two phenazine types, giving a two-channel electrochemical output signal based on the detection of differentiated midpoint potentials. Our modular bioelectronic sensor therefore can be readily adapted for different applications and forms the basis for development of low-cost, field-deployable sensing devices.

生物传感器利用生物系统的能力来获取各种各样的化学或物理信息,并将分子信号转化为可操作的数据。在这里,我们采用了一种自下而上的合成生物学方法,将全细胞细菌生物传感器的多功能性和可编程性与电化学传感装置的灵敏度结合起来。我们建立了基因模块来生产不同的非那嗪,并将它们连接到各种传感和信息处理模块上。首先构建了一个基于T7 rnaps信号放大器的全细胞生物电子传感器,用于检测低于世卫组织饮用水安全限值的汞污染物。通过将布尔逻辑计算集成到双输入传感器中,我们展示了传感器设计的模块化和可编程性。我们随后设计了一种传感器应变,可以产生两种非那嗪类型,基于检测分化的中点电位给出双通道电化学输出信号。因此,我们的模块化生物电子传感器可以很容易地适应不同的应用,并为开发低成本,现场可部署的传感设备奠定了基础。
{"title":"Synthetic Whole-Cell Bioelectronic Chemical Sensing with <i>In Situ</i> Genetic Computing.","authors":"Robert W Bradley, Estefania Nunez-Bajo, Firat Guder, Martin Buck, Baojun Wang","doi":"10.1021/cbe.5c00015","DOIUrl":"10.1021/cbe.5c00015","url":null,"abstract":"<p><p>Biosensors exploit the capabilities of biological systems to acquire a huge variety of chemical or physical information and convert molecular signals into actionable data. Here we took a bottom-up synthetic biology approach to combine the versatility and programmability of whole-cell bacterial biosensors with the sensitivity of electrochemical sensing devices. We built genetic modules to produce different phenazines and wired these to various sensing and information processing modules. A whole-cell bioelectronic sensor with a T7 RNAP-based signal amplifier was first constructed that detected mercury contaminants below the level of WHO safe limit for drinking water. We demonstrated the modularity and programmability of the sensor design by incorporating Boolean logic computation into a dual-input sensor. We subsequently engineered a sensor strain that can produce two phenazine types, giving a two-channel electrochemical output signal based on the detection of differentiated midpoint potentials. Our modular bioelectronic sensor therefore can be readily adapted for different applications and forms the basis for development of low-cost, field-deployable sensing devices.</p>","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"2 9","pages":"501-510"},"PeriodicalIF":0.0,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12478552/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145202694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular Handle-Driven Gate-Opening in Isoreticular Metal-Organic Frameworks Enables Efficient Separation of Light Hydrocarbons. 分子手柄驱动的等孔金属-有机骨架的闸门开启使轻烃的有效分离成为可能。
Pub Date : 2025-08-05 eCollection Date: 2025-10-23 DOI: 10.1021/cbe.5c00052
Rundao Chen, Jiaqi Li, Fang Zheng, Meng Feng, Qiwei Yang, Zhiguo Zhang, Qilong Ren, Zongbi Bao

The separation of light hydrocarbons with similar molecular structures, such as ethane and propane, remains a critical challenge in natural gas purification since propane interacts over strongly with the polar sites of adsorbents, which in turn suppresses ethane adsorption and reduces the yield of high-purity methane consequently. Here, we report the rational design of two isoreticular Zn-based metal-organic frameworks (Zn-fum-DAT and Zn-mes-DAT) with tunable pore environments achieved through molecular handle engineering. Utilizing fumaric and mesaconic acids as pillars, respectively, these MOFs feature distinct aliphatic pore architectures stabilized by hydrogen-bonding networks between carboxylate pillars and the diamino-triazole (DAT) ligand. The methyl handles in Zn-mes-DAT can be selectively pushed by the bulkiest propane molecules, triggering a structural transformation that enhances the propane adsorption on Zn-mes-DAT. In contrast, Zn-fum-DAT without the methyl handle exhibits a higher affinity to ethane, while the competitive propane adsorption is significantly reduced. This molecular handle engineering results in a high-purity methane yield of 9.0 mmol/cm3 on Zn-fum-DAT, representing an 80% improvement over the isoreticular material with higher propane affinity. This work provides a design blueprint for tailoring the pore chemistry in MOFs to address industrially relevant separation challenges.

分离具有类似分子结构的轻烃,如乙烷和丙烷,仍然是天然气净化的一个关键挑战,因为丙烷与吸附剂的极性位点相互作用强烈,从而抑制乙烷的吸附,从而降低高纯度甲烷的产量。在这里,我们报告了通过分子柄工程实现的两种具有可调孔环境的等晶格锌基金属有机框架(zn - fm - dat和Zn-mes-DAT)的合理设计。这些mof分别利用富马酸和顺子酸作为支柱,具有不同的脂肪族孔结构,由羧酸支柱和二氨基三唑(DAT)配体之间的氢键网络稳定。Zn-mes-DAT中的甲基柄可以被体积最大的丙烷分子选择性地推动,从而引发结构转变,增强了Zn-mes-DAT对丙烷的吸附。相比之下,没有甲基把手的zn - tum - dat对乙烷的亲和力更高,而对丙烷的竞争性吸附明显减少。通过这种分子处理工程,zn -fu - dat的高纯度甲烷产率达到9.0 mmol/cm3,比具有更高丙烷亲和力的等孔材料提高了80%。这项工作为定制mof的孔隙化学提供了设计蓝图,以解决工业上相关的分离挑战。
{"title":"Molecular Handle-Driven Gate-Opening in Isoreticular Metal-Organic Frameworks Enables Efficient Separation of Light Hydrocarbons.","authors":"Rundao Chen, Jiaqi Li, Fang Zheng, Meng Feng, Qiwei Yang, Zhiguo Zhang, Qilong Ren, Zongbi Bao","doi":"10.1021/cbe.5c00052","DOIUrl":"10.1021/cbe.5c00052","url":null,"abstract":"<p><p>The separation of light hydrocarbons with similar molecular structures, such as ethane and propane, remains a critical challenge in natural gas purification since propane interacts over strongly with the polar sites of adsorbents, which in turn suppresses ethane adsorption and reduces the yield of high-purity methane consequently. Here, we report the rational design of two isoreticular Zn-based metal-organic frameworks (Zn-fum-DAT and Zn-mes-DAT) with tunable pore environments achieved through molecular handle engineering. Utilizing fumaric and mesaconic acids as pillars, respectively, these MOFs feature distinct aliphatic pore architectures stabilized by hydrogen-bonding networks between carboxylate pillars and the diamino-triazole (DAT) ligand. The methyl handles in Zn-mes-DAT can be selectively pushed by the bulkiest propane molecules, triggering a structural transformation that enhances the propane adsorption on Zn-mes-DAT. In contrast, Zn-fum-DAT without the methyl handle exhibits a higher affinity to ethane, while the competitive propane adsorption is significantly reduced. This molecular handle engineering results in a high-purity methane yield of 9.0 mmol/cm<sup>3</sup> on Zn-fum-DAT, representing an 80% improvement over the isoreticular material with higher propane affinity. This work provides a design blueprint for tailoring the pore chemistry in MOFs to address industrially relevant separation challenges.</p>","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"2 10","pages":"569-575"},"PeriodicalIF":0.0,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12557447/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145396143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anisotropic Tactile Sensors: Constructive Designs, Challenges, and Emerging Applications. 各向异性触觉传感器:建设性设计,挑战和新兴应用。
Pub Date : 2025-07-28 eCollection Date: 2025-09-25 DOI: 10.1021/cbe.5c00053
Jiaxing Zhang, Kaikai Zheng, Jingchen Ma, Mingfeng Chen, Xiuyu Wang, Fangle Chang, Shanshan Chen, Bin Ai, Zhengdong Cheng

Recent advancements in human-machine interaction technologies have driven significant interest in tactile sensors for health monitoring, movement detection, and the progression of intelligent robotics. However, most existing sensors rely on isotropic materials or structures, limiting their ability to detect stimuli from multiple directions simultaneously, which can be efficiently mitigated by incorporating anisotropic architectures. Despite their promising potential, the development of anisotropic tactile sensors remains nascent and necessitates more comprehensive synthesis and generalization of the current state. This review offers a thorough analysis of anisotropic tactile sensors, delving into their sensing mechanisms, performance metrics, materials, and structural designs. It also explores their applications in intelligent systems and critically evaluates the current developmental status and outlines the challenges to be addressed, providing essential insights and innovative solutions to propel advancements in this emerging research area.

最近人机交互技术的进步推动了人们对用于健康监测、运动检测和智能机器人发展的触觉传感器的极大兴趣。然而,大多数现有传感器依赖于各向同性材料或结构,限制了它们同时检测来自多个方向的刺激的能力,可以通过结合各向异性结构有效地缓解这一问题。尽管各向异性触觉传感器具有广阔的发展前景,但其发展仍处于初级阶段,需要对其现状进行更全面的综合和推广。本文对各向异性触觉传感器进行了全面的分析,深入探讨了它们的传感机制、性能指标、材料和结构设计。它还探讨了它们在智能系统中的应用,批判性地评估了当前的发展状况,概述了需要解决的挑战,提供了基本的见解和创新的解决方案,以推动这一新兴研究领域的进步。
{"title":"Anisotropic Tactile Sensors: Constructive Designs, Challenges, and Emerging Applications.","authors":"Jiaxing Zhang, Kaikai Zheng, Jingchen Ma, Mingfeng Chen, Xiuyu Wang, Fangle Chang, Shanshan Chen, Bin Ai, Zhengdong Cheng","doi":"10.1021/cbe.5c00053","DOIUrl":"10.1021/cbe.5c00053","url":null,"abstract":"<p><p>Recent advancements in human-machine interaction technologies have driven significant interest in tactile sensors for health monitoring, movement detection, and the progression of intelligent robotics. However, most existing sensors rely on isotropic materials or structures, limiting their ability to detect stimuli from multiple directions simultaneously, which can be efficiently mitigated by incorporating anisotropic architectures. Despite their promising potential, the development of anisotropic tactile sensors remains nascent and necessitates more comprehensive synthesis and generalization of the current state. This review offers a thorough analysis of anisotropic tactile sensors, delving into their sensing mechanisms, performance metrics, materials, and structural designs. It also explores their applications in intelligent systems and critically evaluates the current developmental status and outlines the challenges to be addressed, providing essential insights and innovative solutions to propel advancements in this emerging research area.</p>","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"2 9","pages":"530-566"},"PeriodicalIF":0.0,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12478554/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145202735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neutrophil-Inspired Film for Nonadhesive Capture of Tumor Cells through Synergistic Functionalization of Zwitterions and Aptamers 中性粒细胞激发膜通过中性离子和适体的协同功能捕获肿瘤细胞
Pub Date : 2025-07-25 DOI: 10.1021/cbe.4c00189
Yangyang Li, Riyue Shu, Dan Lu, Cheng Zeng, Feng Qi, Shengfu Chen, Lin Zhang* and Zhe Tang*, 

The development of biomaterials capable of capturing nondestructively capturing tumor cells is critical for advancing cancer diagnostics and personalized therapies. However, designing specific capture materials for maintaining the structure of captured cells is still a challenge due to the undesirable nonspecific adhesion. Recent evidence showed that neutrophils possess the tumor cell targeting property via the binding of β-integrin on neutrophil membranes to VCAM-1 expressed on tumor cells and natural antiadhesion properties due to the phosphorylcholine on the cell membrane. Herein, we present a neutrophil-inspired nanofibrous film for the nondestructive capture of tumor cells. The polyurethane and polyacrylonitrile (PU–PAN) blend film was fabricated by electrospinning as a matrix. A tailored zwitterionic polymer of poly(sulfobetaine methacrylate-co-glycidyl methacrylate) (PScG), mimicking the phosphorylcholine on the cell membrane, was synthesized to graft onto the PU chain for preparing the PScG/PU–PAN film. Then, amino-modified aptamer (NH2-AS1411) targeting tumor cells, mimicking the β-integrin on neutrophil membranes, was further grafted onto hydrolyzed PAN surface to obtain the AS/PScG/PU–PAN film. The resulting AS/PScG/PU–PAN film demonstrates excellent specific capture ability of tumor cells, while maintaining the morphology of tumor cells, providing a promising solution for cancer therapy.

能够捕获非破坏性捕获肿瘤细胞的生物材料的发展对于推进癌症诊断和个性化治疗至关重要。然而,由于不良的非特异性粘附,设计特定的捕获材料来维持捕获细胞的结构仍然是一个挑战。最近的研究表明,中性粒细胞通过在中性粒细胞膜上的β-整合素与肿瘤细胞上表达的VCAM-1结合而具有靶向肿瘤细胞的特性,并且由于细胞膜上的磷胆碱而具有天然的抗粘附特性。在此,我们提出了一种中性粒细胞激发的纳米纤维膜,用于非破坏性捕获肿瘤细胞。采用静电纺丝法制备了聚丙烯腈-聚氨酯共混膜。合成了一种模拟细胞膜上的磷酸胆碱的两性离子聚合物PScG,并接枝到PU链上,制备了PScG/PU - pan膜。然后,将靶向肿瘤细胞的氨基修饰适配体(NH2-AS1411)模拟中性粒细胞膜上的β-整合素,接枝到水解的PAN表面,得到AS/PScG/ PU-PAN膜。所制备的AS/PScG/ PU-PAN膜在保持肿瘤细胞形态的同时,对肿瘤细胞具有优异的特异性捕获能力,为肿瘤治疗提供了一种有前景的解决方案。
{"title":"Neutrophil-Inspired Film for Nonadhesive Capture of Tumor Cells through Synergistic Functionalization of Zwitterions and Aptamers","authors":"Yangyang Li,&nbsp;Riyue Shu,&nbsp;Dan Lu,&nbsp;Cheng Zeng,&nbsp;Feng Qi,&nbsp;Shengfu Chen,&nbsp;Lin Zhang* and Zhe Tang*,&nbsp;","doi":"10.1021/cbe.4c00189","DOIUrl":"https://doi.org/10.1021/cbe.4c00189","url":null,"abstract":"<p >The development of biomaterials capable of capturing nondestructively capturing tumor cells is critical for advancing cancer diagnostics and personalized therapies. However, designing specific capture materials for maintaining the structure of captured cells is still a challenge due to the undesirable nonspecific adhesion. Recent evidence showed that neutrophils possess the tumor cell targeting property via the binding of β-integrin on neutrophil membranes to VCAM-1 expressed on tumor cells and natural antiadhesion properties due to the phosphorylcholine on the cell membrane. Herein, we present a neutrophil-inspired nanofibrous film for the nondestructive capture of tumor cells. The polyurethane and polyacrylonitrile (PU–PAN) blend film was fabricated by electrospinning as a matrix. A tailored zwitterionic polymer of poly(sulfobetaine methacrylate-<i>co</i>-glycidyl methacrylate) (PScG), mimicking the phosphorylcholine on the cell membrane, was synthesized to graft onto the PU chain for preparing the PScG/PU–PAN film. Then, amino-modified aptamer (NH<sub>2</sub>-AS1411) targeting tumor cells, mimicking the β-integrin on neutrophil membranes, was further grafted onto hydrolyzed PAN surface to obtain the AS/PScG/PU–PAN film. The resulting AS/PScG/PU–PAN film demonstrates excellent specific capture ability of tumor cells, while maintaining the morphology of tumor cells, providing a promising solution for cancer therapy.</p>","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"2 8","pages":"493–500"},"PeriodicalIF":0.0,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/cbe.4c00189","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144906698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pub Date : 2025-07-24
Meng Li, Joanna Lech and Pascal Van Der Voort*, 
{"title":"","authors":"Meng Li,&nbsp;Joanna Lech and Pascal Van Der Voort*,&nbsp;","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"2 7","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":0.0,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/cbe.5c00013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144685302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pub Date : 2025-07-24
{"title":"","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"2 7","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":0.0,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/bev002i007_1963225","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144685315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pub Date : 2025-07-24
{"title":"","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"2 7","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":0.0,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/bev002i007_1963224","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144685303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pub Date : 2025-07-24
Berke Çalbaş, Fahed Albreiki, Zel Carey, Katharina Wang, Rachel Ford, Advaita Kamal Nair, Nhu Nguyen and Thaiesha A. Wright*, 
{"title":"","authors":"Berke Çalbaş,&nbsp;Fahed Albreiki,&nbsp;Zel Carey,&nbsp;Katharina Wang,&nbsp;Rachel Ford,&nbsp;Advaita Kamal Nair,&nbsp;Nhu Nguyen and Thaiesha A. Wright*,&nbsp;","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"2 7","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":0.0,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/cbe.5c00029","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144685308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pub Date : 2025-07-24
Qilong Tang, Shuang Liu, Huaixin Hao, Xue Dong, Yuxiao Guo, Yuexiang Lu, Zhipeng Wang* and Chao Xu*, 
{"title":"","authors":"Qilong Tang,&nbsp;Shuang Liu,&nbsp;Huaixin Hao,&nbsp;Xue Dong,&nbsp;Yuxiao Guo,&nbsp;Yuexiang Lu,&nbsp;Zhipeng Wang* and Chao Xu*,&nbsp;","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"2 7","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":0.0,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/cbe.5c00008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144685304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pub Date : 2025-07-24
Jiaqi Fan, Qi Wei, Pengcheng Yuan, Bing Xiao, Shasha Yao, Haoran Xu, Jiwei Liu, Ruoshui Li, Youqing Shen, Nigel K. H. Slater and Jianbin Tang*, 
{"title":"","authors":"Jiaqi Fan,&nbsp;Qi Wei,&nbsp;Pengcheng Yuan,&nbsp;Bing Xiao,&nbsp;Shasha Yao,&nbsp;Haoran Xu,&nbsp;Jiwei Liu,&nbsp;Ruoshui Li,&nbsp;Youqing Shen,&nbsp;Nigel K. H. Slater and Jianbin Tang*,&nbsp;","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"2 7","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":0.0,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/cbe.5c00031","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144685307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chem & Bio Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1