Pub Date : 2011-05-01DOI: 10.1016/j.mstc.2011.05.027
Wei Xiaomei , Zhou Min , Zhang Chun , Lei Jiali , Song Liqiang
The quality of Yi’an gas coal before and after low temperature upgrading under either a N2 or H2 atmosphere was examined by thermogravimetric and infrared analyses. The effect of upgrading on the prepared coke quality was analyzed. The results show that the carboxyl and phenolic hydroxyls in the coal molecular structure are removed after upgrading by low temperature pyrolysis under either N2 or H2 atmospheres. This improves coal caking properties to a certain extent. The upgrading effect under a H2 atmosphere is remarkably better than the effect observed after upgrading under N2. Compared to coke obtained from raw coal, the compressive- and micro-strength of the cokes obtained from upgraded coal are greatly improved. The effect on coke reactivity with CO2 is not significant. The best upgrading temperature for Yi’an gas coal under either a N2 or H2 atmosphere is 250 or 275 °C respectively.
{"title":"Upgrading of Yi’an gas coal by low temperature pyrolysis under different atmospheres","authors":"Wei Xiaomei , Zhou Min , Zhang Chun , Lei Jiali , Song Liqiang","doi":"10.1016/j.mstc.2011.05.027","DOIUrl":"10.1016/j.mstc.2011.05.027","url":null,"abstract":"<div><p>The quality of Yi’an gas coal before and after low temperature upgrading under either a N<sub>2</sub> or H<sub>2</sub> atmosphere was examined by thermogravimetric and infrared analyses. The effect of upgrading on the prepared coke quality was analyzed. The results show that the carboxyl and phenolic hydroxyls in the coal molecular structure are removed after upgrading by low temperature pyrolysis under either N<sub>2</sub> or H<sub>2</sub> atmospheres. This improves coal caking properties to a certain extent. The upgrading effect under a H<sub>2</sub> atmosphere is remarkably better than the effect observed after upgrading under N<sub>2</sub>. Compared to coke obtained from raw coal, the compressive- and micro-strength of the cokes obtained from upgraded coal are greatly improved. The effect on coke reactivity with CO<sub>2</sub> is not significant. The best upgrading temperature for Yi’an gas coal under either a N<sub>2</sub> or H<sub>2</sub> atmosphere is 250 or 275<!--> <!-->°C respectively.</p></div>","PeriodicalId":100930,"journal":{"name":"Mining Science and Technology (China)","volume":"21 3","pages":"Pages 401-405"},"PeriodicalIF":0.0,"publicationDate":"2011-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mstc.2011.05.027","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83690904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-05-01DOI: 10.1016/j.mstc.2011.05.023
Yang Haijun , Xu Yongzhong , Huang Zhibin , Chen Shizhong , Yang Zhilin , Wu Gang , Xiao Zhongyao
With the objective of establishing the necessary conditions for 3-D seismic data from a Permian plutonic oilfield in western China, we compared the technology of several multi-parameter seismic inversion methods in identifying igneous rocks. The most often used inversion methods are Constrained Sparse Spike Inversion (CSSI), Artificial Neural Network Inversion (ANN) and GR Pseudo-impedance Inversion. Through the application of a variety of inversion methods with log curves correction, we obtained relatively high-resolution impedance and velocity sections, effectively identifying the lithology of Permian igneous rocks and inferred lateral variation in the lithology of igneous rocks. By means of a comprehensive comparative study, we arrived at the following conclusions: the CSSI inversion has good waveform continuity, and the ANN inversion has lower resolution than the CSSI inversion. The inversion results show that multi-parameter seismic inversion methods are an effective solution to the identification of igneous rocks.
{"title":"Comparison between several multi-parameter seismic inversion methods in identifying plutonic igneous rocks","authors":"Yang Haijun , Xu Yongzhong , Huang Zhibin , Chen Shizhong , Yang Zhilin , Wu Gang , Xiao Zhongyao","doi":"10.1016/j.mstc.2011.05.023","DOIUrl":"10.1016/j.mstc.2011.05.023","url":null,"abstract":"<div><p>With the objective of establishing the necessary conditions for 3-D seismic data from a Permian plutonic oilfield in western China, we compared the technology of several multi-parameter seismic inversion methods in identifying igneous rocks. The most often used inversion methods are Constrained Sparse Spike Inversion (CSSI), Artificial Neural Network Inversion (ANN) and GR Pseudo-impedance Inversion. Through the application of a variety of inversion methods with log curves correction, we obtained relatively high-resolution impedance and velocity sections, effectively identifying the lithology of Permian igneous rocks and inferred lateral variation in the lithology of igneous rocks. By means of a comprehensive comparative study, we arrived at the following conclusions: the CSSI inversion has good waveform continuity, and the ANN inversion has lower resolution than the CSSI inversion. The inversion results show that multi-parameter seismic inversion methods are an effective solution to the identification of igneous rocks.</p></div>","PeriodicalId":100930,"journal":{"name":"Mining Science and Technology (China)","volume":"21 3","pages":"Pages 325-331"},"PeriodicalIF":0.0,"publicationDate":"2011-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mstc.2011.05.023","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90272425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-05-01DOI: 10.1016/j.mstc.2011.05.020
Huang Bingxiang , Li Hongtao , Liu Changyou , Xing Shijun , Xue Weichao
Large cutting height fully mechanized top-coal caving is a new mining method that improves recovery ratio and single-pass production. It also allows safe and efficient mining. A rational cutting height is one key parameter of this technique. Numerical simulation and a granular-media model experiment were used to analyze the effect of cutting height on the rock pressure of a fully mechanized top-coal caving work face. The recovery ratio was also studied. As the cutting height increases the top-coal thickness is reduced. Changing the ratio of cutting to drawing height intensifies the face pressure and the top-coal shattering. A maximum cutting height exists under a given set of conditions due to issues with surrounding rock-mass control. An increase in cutting height makes the top-coal cave better and the recovery ratio when drawing top-coal is then improved. A method of adjusting the face rock pressure is presented. Changing the cutting to drawing height ratio is the technique used to control face rock pressure. The recovery ratio when cutting coal exceeds that when caving top-coal so the face recovery ratio may be improved by over sizing the cutting height and increasing the top-coal drawing ratio. An optimum ratio of cutting to drawing height exists that maximizes the face recovery ratio. A rational cutting height is determined by comprehensively considering the surrounding rock-mass control and the recovery ratio. At the same time increasing the cutting height can improve single pass mining during fully mechanized top-coal caving.
{"title":"Rational cutting height for large cutting height fully mechanized top-coal caving","authors":"Huang Bingxiang , Li Hongtao , Liu Changyou , Xing Shijun , Xue Weichao","doi":"10.1016/j.mstc.2011.05.020","DOIUrl":"10.1016/j.mstc.2011.05.020","url":null,"abstract":"<div><p>Large cutting height fully mechanized top-coal caving is a new mining method that improves recovery ratio and single-pass production. It also allows safe and efficient mining. A rational cutting height is one key parameter of this technique. Numerical simulation and a granular-media model experiment were used to analyze the effect of cutting height on the rock pressure of a fully mechanized top-coal caving work face. The recovery ratio was also studied. As the cutting height increases the top-coal thickness is reduced. Changing the ratio of cutting to drawing height intensifies the face pressure and the top-coal shattering. A maximum cutting height exists under a given set of conditions due to issues with surrounding rock-mass control. An increase in cutting height makes the top-coal cave better and the recovery ratio when drawing top-coal is then improved. A method of adjusting the face rock pressure is presented. Changing the cutting to drawing height ratio is the technique used to control face rock pressure. The recovery ratio when cutting coal exceeds that when caving top-coal so the face recovery ratio may be improved by over sizing the cutting height and increasing the top-coal drawing ratio. An optimum ratio of cutting to drawing height exists that maximizes the face recovery ratio. A rational cutting height is determined by comprehensively considering the surrounding rock-mass control and the recovery ratio. At the same time increasing the cutting height can improve single pass mining during fully mechanized top-coal caving.</p></div>","PeriodicalId":100930,"journal":{"name":"Mining Science and Technology (China)","volume":"21 3","pages":"Pages 457-462"},"PeriodicalIF":0.0,"publicationDate":"2011-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mstc.2011.05.020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87173087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-05-01DOI: 10.1016/j.mstc.2011.05.022
Liu Yude , Zhang Dongsheng , Fan Gangwei , Yan Shoufeng
Based on the conclusions of domestic and foreign research, we have analyzed the collapse–fall characteristics of overlying strata and the mechanism of aquifer-protective mining in shallow coal seam working faces at the Shendong Mine. We have selected the height of the water-conducting fracture zone in overlying strata as a composite index and established the applicable conditions of aquifer-protective mining in shallow coal seams with a multi-factor synthetic-index classification method. From our calculations and analyses of variance, we used factors such as the overlying strata strength, mining disturbing factors and rock integrity as related factors of the composite index. We have classified the applicable conditions of aquifer-protective mining in shallow coal seams into seven types by comparing the result of the height of water-conducting fractured zones of long-wall and short-wall working faces with the thickness of the bedrock, the thickness of the weathered zone and the size of safety coal–rock pillars. As a result, we propose the preliminary classification system of aquifer-protective mining in shallow coal seams. It can provide a theoretical guidance for safe applications of aquifer-protective mining technology in shallow coal seams under similar conditions.
{"title":"Applicable conditions for a classification system of aquifer-protective mining in shallow coal seams","authors":"Liu Yude , Zhang Dongsheng , Fan Gangwei , Yan Shoufeng","doi":"10.1016/j.mstc.2011.05.022","DOIUrl":"10.1016/j.mstc.2011.05.022","url":null,"abstract":"<div><p>Based on the conclusions of domestic and foreign research, we have analyzed the collapse–fall characteristics of overlying strata and the mechanism of aquifer-protective mining in shallow coal seam working faces at the Shendong Mine. We have selected the height of the water-conducting fracture zone in overlying strata as a composite index and established the applicable conditions of aquifer-protective mining in shallow coal seams with a multi-factor synthetic-index classification method. From our calculations and analyses of variance, we used factors such as the overlying strata strength, mining disturbing factors and rock integrity as related factors of the composite index. We have classified the applicable conditions of aquifer-protective mining in shallow coal seams into seven types by comparing the result of the height of water-conducting fractured zones of long-wall and short-wall working faces with the thickness of the bedrock, the thickness of the weathered zone and the size of safety coal–rock pillars. As a result, we propose the preliminary classification system of aquifer-protective mining in shallow coal seams. It can provide a theoretical guidance for safe applications of aquifer-protective mining technology in shallow coal seams under similar conditions.</p></div>","PeriodicalId":100930,"journal":{"name":"Mining Science and Technology (China)","volume":"21 3","pages":"Pages 381-387"},"PeriodicalIF":0.0,"publicationDate":"2011-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mstc.2011.05.022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77914200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-05-01DOI: 10.1016/j.mstc.2011.05.003
Yang Yu, Gong Zhiqiang, Liang Bing
In order to investigate the surface deformation caused by coal mining and to reduce environmental damage, more accurate information of dynamic subsidence basins, caused by coal mining, is needed. Based on rheological theory, we discuss surface deformation mechanism of dynamic subsidence on the assumption that both the roof and the coal seam are visco-elastic media, put forward the idea that the principle of surface deformation is similar to that of roofs, except for their parameters. Therefore, a surface deformation equation can be obtained, given the equation of the roof deformation derived from using a H|M rheological model. In the end, we apply the equation of surface deformation as a practical subsidence prediction in a coal mine. Given the rheologic properties of a rock mass, the results of our research of a dynamic subsidence basin can predict the development of surface deformation as a function of time, which is more important than the ultimate subsidence itself. The results indicate that using rheological theory to calculate the deformation of a dynamic subsidence basin is suitable and provides some reference for surface deformation of dynamic subsidence basins.
{"title":"Dynamic subsidence basins in coal mines based on rock mass rheological theory","authors":"Yang Yu, Gong Zhiqiang, Liang Bing","doi":"10.1016/j.mstc.2011.05.003","DOIUrl":"10.1016/j.mstc.2011.05.003","url":null,"abstract":"<div><p>In order to investigate the surface deformation caused by coal mining and to reduce environmental damage, more accurate information of dynamic subsidence basins, caused by coal mining, is needed. Based on rheological theory, we discuss surface deformation mechanism of dynamic subsidence on the assumption that both the roof and the coal seam are visco-elastic media, put forward the idea that the principle of surface deformation is similar to that of roofs, except for their parameters. Therefore, a surface deformation equation can be obtained, given the equation of the roof deformation derived from using a H|M rheological model. In the end, we apply the equation of surface deformation as a practical subsidence prediction in a coal mine. Given the rheologic properties of a rock mass, the results of our research of a dynamic subsidence basin can predict the development of surface deformation as a function of time, which is more important than the ultimate subsidence itself. The results indicate that using rheological theory to calculate the deformation of a dynamic subsidence basin is suitable and provides some reference for surface deformation of dynamic subsidence basins.</p></div>","PeriodicalId":100930,"journal":{"name":"Mining Science and Technology (China)","volume":"21 3","pages":"Pages 333-335"},"PeriodicalIF":0.0,"publicationDate":"2011-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mstc.2011.05.003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84623929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-05-01DOI: 10.1016/j.mstc.2011.05.001
Wang Hongsheng , Zhang Dongsheng , Fan Gangwei
The stability of a backfill wall is critical to implement gob-side entry driving technology in which a small coal pillar is substituted by a waste backfill wall. Based on features of surrounding rock structures in the backfill wall, we propose a mechanical model on the structural effect of a soft–hard backfill wall using theory analysis, physical experiments and a numerical simulation. The results show that the deformation of the structure of the soft–hard backfill wall is coordinated with the roof and floor. The soft structure on the top of the backfill wall can absorb the energy in the roof by its large deformation and adapt to the given deformation caused by the rotation and subsidence of a key rock block. The hard structure at the bottom of the backfill wall can absorb the strong supporting resistance from the top surrounding rock. The soft structure on the top protecting the hard bottom structure by its large deformation contributes to the stability of the entire backfill wall. An application indicated that the stress in the backfill wall effectively decreased and its deformation was significantly reduced after the top coal remained. This ensured the stability of the backfill wall.
{"title":"Structural effect of a soft–hard backfill wall in a gob-side roadway","authors":"Wang Hongsheng , Zhang Dongsheng , Fan Gangwei","doi":"10.1016/j.mstc.2011.05.001","DOIUrl":"10.1016/j.mstc.2011.05.001","url":null,"abstract":"<div><p>The stability of a backfill wall is critical to implement gob-side entry driving technology in which a small coal pillar is substituted by a waste backfill wall. Based on features of surrounding rock structures in the backfill wall, we propose a mechanical model on the structural effect of a soft–hard backfill wall using theory analysis, physical experiments and a numerical simulation. The results show that the deformation of the structure of the soft–hard backfill wall is coordinated with the roof and floor. The soft structure on the top of the backfill wall can absorb the energy in the roof by its large deformation and adapt to the given deformation caused by the rotation and subsidence of a key rock block. The hard structure at the bottom of the backfill wall can absorb the strong supporting resistance from the top surrounding rock. The soft structure on the top protecting the hard bottom structure by its large deformation contributes to the stability of the entire backfill wall. An application indicated that the stress in the backfill wall effectively decreased and its deformation was significantly reduced after the top coal remained. This ensured the stability of the backfill wall.</p></div>","PeriodicalId":100930,"journal":{"name":"Mining Science and Technology (China)","volume":"21 3","pages":"Pages 313-318"},"PeriodicalIF":0.0,"publicationDate":"2011-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mstc.2011.05.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89151446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-05-01DOI: 10.1016/j.mstc.2011.05.010
Li Dingqi , Cheng Yuanping , Wang Lei , Wang Haifeng , Wang Liang , Zhou Hongxing
Based on the evolution of geological dynamics and spatial chaos theory, we proposed the advanced prediction an advanced prediction method of a gas desorption index of drill cuttings to predict coal and gas outbursts. We investigated and verified the prediction method by a spatial series data of a gas desorption index of drill cuttings obtained from the II3112 coal roadway at the Shitai Mine. Our experimental results show that the spatial distribution of the gas desorption index of drill cuttings has some chaotic characteristics, which implies that the risk of coal and gas outbursts can be predicted by spatial chaos theory. We also found that a proper amount of sample data needs to be chosen in order to ensure the accuracy and practical maneuverability of prediction. The relative prediction error is small when the prediction pace is chosen carefully. In our experiments, it turned out that the optimum number of sample points is 80 and the optimum prediction pace 30. The corresponding advanced prediction pace basically meets the requirements of engineering applications.
{"title":"Prediction method for risks of coal and gas outbursts based on spatial chaos theory using gas desorption index of drill cuttings","authors":"Li Dingqi , Cheng Yuanping , Wang Lei , Wang Haifeng , Wang Liang , Zhou Hongxing","doi":"10.1016/j.mstc.2011.05.010","DOIUrl":"10.1016/j.mstc.2011.05.010","url":null,"abstract":"<div><p>Based on the evolution of geological dynamics and spatial chaos theory, we proposed the advanced prediction an advanced prediction method of a gas desorption index of drill cuttings to predict coal and gas outbursts. We investigated and verified the prediction method by a spatial series data of a gas desorption index of drill cuttings obtained from the II3112 coal roadway at the Shitai Mine. Our experimental results show that the spatial distribution of the gas desorption index of drill cuttings has some chaotic characteristics, which implies that the risk of coal and gas outbursts can be predicted by spatial chaos theory. We also found that a proper amount of sample data needs to be chosen in order to ensure the accuracy and practical maneuverability of prediction. The relative prediction error is small when the prediction pace is chosen carefully. In our experiments, it turned out that the optimum number of sample points is 80 and the optimum prediction pace 30. The corresponding advanced prediction pace basically meets the requirements of engineering applications.</p></div>","PeriodicalId":100930,"journal":{"name":"Mining Science and Technology (China)","volume":"21 3","pages":"Pages 439-443"},"PeriodicalIF":0.0,"publicationDate":"2011-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mstc.2011.05.010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88400150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-05-01DOI: 10.1016/j.mstc.2011.05.019
Violetta Sokoła Szewioła
A method of forecasting total seismic energy induced by longwall exploitation, based on changes in ground subsidence, is presented in the form of a linear regression model with one with one independent variable. In the method, ground subsidence is described with a cross-section area of a subsidence trough Pw along a line of observations in the direction of an advancing longwall front, approximately along the axis of the longwall area. Total seismic energy is determined on the basis of seismic energy data of tremors induced by exploitation. The presentation consists of a detailed method and evaluation of its predictive ability for the area of longwall exploitation within the region of one of the coal mines in the Upper Silesian Coal Basin. This method can be used for forecasting the total seismic energy released by tremors within the area directly connected with the exploitation, in which the seismic activity induced by this exploitation occurs. The estimation of the parameters of the determined model should each time be carried out with investigations of the correctness of the model. The method cannot be applied when the number of recorded phenomena is small and when there is insufficient data to make it possible to calculate the index Pw.
{"title":"Method of forecasting seismic energy induced by longwall exploitation based on changes in ground subsidence","authors":"Violetta Sokoła Szewioła","doi":"10.1016/j.mstc.2011.05.019","DOIUrl":"10.1016/j.mstc.2011.05.019","url":null,"abstract":"<div><p>A method of forecasting total seismic energy induced by longwall exploitation, based on changes in ground subsidence, is presented in the form of a linear regression model with one with one independent variable. In the method, ground subsidence is described with a cross-section area of a subsidence trough <em>Pw</em> along a line of observations in the direction of an advancing longwall front, approximately along the axis of the longwall area. Total seismic energy is determined on the basis of seismic energy data of tremors induced by exploitation. The presentation consists of a detailed method and evaluation of its predictive ability for the area of longwall exploitation within the region of one of the coal mines in the Upper Silesian Coal Basin. This method can be used for forecasting the total seismic energy released by tremors within the area directly connected with the exploitation, in which the seismic activity induced by this exploitation occurs. The estimation of the parameters of the determined model should each time be carried out with investigations of the correctness of the model. The method cannot be applied when the number of recorded phenomena is small and when there is insufficient data to make it possible to calculate the index <em>Pw</em>.</p></div>","PeriodicalId":100930,"journal":{"name":"Mining Science and Technology (China)","volume":"21 3","pages":"Pages 375-379"},"PeriodicalIF":0.0,"publicationDate":"2011-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mstc.2011.05.019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77295438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-05-01DOI: 10.1016/j.mstc.2011.05.008
Wang Jianqiang , Yang Guang , Xue Linfu , Zhang Jianwei , Bai Ye , Li Wenbo
The Changling fault depression passed through three stages of evolution: a period of faulting, a period of subsidence, and an inversion period. The fault lifted the whole area and the formation was eroded during the late Yingcheng formation, the late Nenjiang formation, and the late Mingshui formation. The denudation quantity of eight wells located in the study area is estimated by the interval transit time method and by the formation trend extension method using seismic and drilling data. Inversion back stripping technology with de-compaction correction was used to restore the original sedimentary thickness step by step and to recover the burial history at a single well. Two profiles were selected for the recovery and study of the tectonic evolution. The study confirmed that the primary major gas bearing structure formed due to thermal shrinkage lifting during the late Yingcheng formation. Successive development in a pattern during the late Mingshui formation led to the formation of the primary gas pool. Vertical differential uplift during the late Nenjiang formation formed the Fulongquan structure during the late Paleogene. At this same time a secondary gas pool formed. A large scale reverse developed late in the Mingshui formation that provided the impetus for formation of a secondary gas pool. It is thought that the migration and accumulation of oil and gas was controlled by lithologic character, fracture, and structure. The local uplift in the vicinity of the hydrocarbon recession is most conducive to the collection of hydrocarbon gas.
{"title":"Tectonic evolution of the Changling fault basin and its relationship to oil and gas accumulation","authors":"Wang Jianqiang , Yang Guang , Xue Linfu , Zhang Jianwei , Bai Ye , Li Wenbo","doi":"10.1016/j.mstc.2011.05.008","DOIUrl":"10.1016/j.mstc.2011.05.008","url":null,"abstract":"<div><p>The Changling fault depression passed through three stages of evolution: a period of faulting, a period of subsidence, and an inversion period. The fault lifted the whole area and the formation was eroded during the late Yingcheng formation, the late Nenjiang formation, and the late Mingshui formation. The denudation quantity of eight wells located in the study area is estimated by the interval transit time method and by the formation trend extension method using seismic and drilling data. Inversion back stripping technology with de-compaction correction was used to restore the original sedimentary thickness step by step and to recover the burial history at a single well. Two profiles were selected for the recovery and study of the tectonic evolution. The study confirmed that the primary major gas bearing structure formed due to thermal shrinkage lifting during the late Yingcheng formation. Successive development in a pattern during the late Mingshui formation led to the formation of the primary gas pool. Vertical differential uplift during the late Nenjiang formation formed the Fulongquan structure during the late Paleogene. At this same time a secondary gas pool formed. A large scale reverse developed late in the Mingshui formation that provided the impetus for formation of a secondary gas pool. It is thought that the migration and accumulation of oil and gas was controlled by lithologic character, fracture, and structure. The local uplift in the vicinity of the hydrocarbon recession is most conducive to the collection of hydrocarbon gas.</p></div>","PeriodicalId":100930,"journal":{"name":"Mining Science and Technology (China)","volume":"21 3","pages":"Pages 427-432"},"PeriodicalIF":0.0,"publicationDate":"2011-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mstc.2011.05.008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85703544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2011-05-01DOI: 10.1016/j.mstc.2011.05.012
Zhang Houquan, He Yongnian, Liu Honggang, Han Lijun, Shao Peng
In order to study the failure of surrounding rock under high in situ stress in deep underground engineering projects, disturbed by excavation unloading, we carried out triaxial unloading experiments using thick-walled cylinder specimens on a TATW-2000 rock servo-controlled triaxial testing machine in a laboratory. The specimens were made of limestone material, taken from Tongshan county, Xuzhou city, Jiangsu province, China. In our experiments, rock deformation and failure behavior was studied through loading and unloading of inner hole pressure of thick-walled cylinder specimens. At first, the axial stress, confining pressure and inner pressure were increased simultaneously to a specified designed state of stress. Then, keeping the axial stress and confining pressure stable, the pressure on the inner hole was decreased until the specimen was fractured. When the inner pressure was released completely but the specimen did not fracture, the confining pressure was decreased subsequently until complete failure occurred. Our experimental results suggest that traces of major circular ringlike fractures with a number of radial cracks often appear in thick cylinder walls. This type of ringlike failure phenomenon, similar to intermittent zonal fracturing characteristics of deep exploitation, has, so far, not been published. Our experimental results show that rock deformation and failure behavior of thick-walled limestone cylinders vary under different stress paths between loading and unloading. Tensile failure and orderly failure surfaces occur under unloading conditions while irregular damaged rock blocks are produced during loading failure. This type of triaxial unloading experiment provides for new research methodology and approach for thorough investigations on intermittent zonal fracturing in deep underground excavations.
{"title":"Ringlike failure experiment of thick-walled limestone cylinder specimens in triaxial unloading tests","authors":"Zhang Houquan, He Yongnian, Liu Honggang, Han Lijun, Shao Peng","doi":"10.1016/j.mstc.2011.05.012","DOIUrl":"10.1016/j.mstc.2011.05.012","url":null,"abstract":"<div><p>In order to study the failure of surrounding rock under high in situ stress in deep underground engineering projects, disturbed by excavation unloading, we carried out triaxial unloading experiments using thick-walled cylinder specimens on a TATW-2000 rock servo-controlled triaxial testing machine in a laboratory. The specimens were made of limestone material, taken from Tongshan county, Xuzhou city, Jiangsu province, China. In our experiments, rock deformation and failure behavior was studied through loading and unloading of inner hole pressure of thick-walled cylinder specimens. At first, the axial stress, confining pressure and inner pressure were increased simultaneously to a specified designed state of stress. Then, keeping the axial stress and confining pressure stable, the pressure on the inner hole was decreased until the specimen was fractured. When the inner pressure was released completely but the specimen did not fracture, the confining pressure was decreased subsequently until complete failure occurred. Our experimental results suggest that traces of major circular ringlike fractures with a number of radial cracks often appear in thick cylinder walls. This type of ringlike failure phenomenon, similar to intermittent zonal fracturing characteristics of deep exploitation, has, so far, not been published. Our experimental results show that rock deformation and failure behavior of thick-walled limestone cylinders vary under different stress paths between loading and unloading. Tensile failure and orderly failure surfaces occur under unloading conditions while irregular damaged rock blocks are produced during loading failure. This type of triaxial unloading experiment provides for new research methodology and approach for thorough investigations on intermittent zonal fracturing in deep underground excavations.</p></div>","PeriodicalId":100930,"journal":{"name":"Mining Science and Technology (China)","volume":"21 3","pages":"Pages 445-450"},"PeriodicalIF":0.0,"publicationDate":"2011-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mstc.2011.05.012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78502875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}