首页 > 最新文献

Biophysics and physicobiology最新文献

英文 中文
Integration of single-cell manipulation, whole transcriptome analysis, and image-based deep learning for studying "Singularity Biology". 整合单细胞操作、全转录组分析和基于图像的深度学习,研究 "奇点生物学"。
IF 1.6 Q4 BIOPHYSICS Pub Date : 2024-02-09 eCollection Date: 2024-01-01 DOI: 10.2142/biophysico.bppb-v21.s005
Katsuyuki Shiroguchi
{"title":"Integration of single-cell manipulation, whole transcriptome analysis, and image-based deep learning for studying \"Singularity Biology\".","authors":"Katsuyuki Shiroguchi","doi":"10.2142/biophysico.bppb-v21.s005","DOIUrl":"10.2142/biophysico.bppb-v21.s005","url":null,"abstract":"","PeriodicalId":101323,"journal":{"name":"Biophysics and physicobiology","volume":"21 Supplemental","pages":"e211005"},"PeriodicalIF":1.6,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338686/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142034402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current advances in the development of bioluminescent probes toward spatiotemporal trans-scale imaging. 开发生物发光探针以实现跨尺度时空成像的最新进展。
IF 1.6 Q4 BIOPHYSICS Pub Date : 2024-02-02 eCollection Date: 2024-01-01 DOI: 10.2142/biophysico.bppb-v21.s004
Akihiro Sakama, Mariko Orioka, Yuki Hiruta

Bioluminescence imaging has recently attracted great attention as a highly sensitive and non-invasive analytical method. However, weak signal and low chemical stability of the luciferin are conventional drawbacks of bioluminescence imaging. In this review article, we describe the recent progress on the development and applications of bioluminescent probes for overcoming the aforementioned limitations, thereby enabling spatiotemporal trans-scale imaging. The detailed molecular design for manipulation of their luminescent properties and functions enabled a variety of applications, including in vivo deep tissue imaging, long-term imaging, and chemical sensor.

近年来,生物发光成像作为一种高灵敏度、非侵入性的分析方法备受关注。然而,信号弱和荧光素化学稳定性低是生物发光成像的传统缺点。在这篇综述文章中,我们介绍了生物发光探针在开发和应用方面的最新进展,这些探针克服了上述局限性,从而实现了跨尺度的时空成像。通过详细的分子设计操纵其发光特性和功能,实现了多种应用,包括体内深层组织成像、长期成像和化学传感器。
{"title":"Current advances in the development of bioluminescent probes toward spatiotemporal trans-scale imaging.","authors":"Akihiro Sakama, Mariko Orioka, Yuki Hiruta","doi":"10.2142/biophysico.bppb-v21.s004","DOIUrl":"10.2142/biophysico.bppb-v21.s004","url":null,"abstract":"<p><p>Bioluminescence imaging has recently attracted great attention as a highly sensitive and non-invasive analytical method. However, weak signal and low chemical stability of the luciferin are conventional drawbacks of bioluminescence imaging. In this review article, we describe the recent progress on the development and applications of bioluminescent probes for overcoming the aforementioned limitations, thereby enabling spatiotemporal trans-scale imaging. The detailed molecular design for manipulation of their luminescent properties and functions enabled a variety of applications, including <i>in vivo</i> deep tissue imaging, long-term imaging, and chemical sensor.</p>","PeriodicalId":101323,"journal":{"name":"Biophysics and physicobiology","volume":"21 Supplemental","pages":"e211004"},"PeriodicalIF":1.6,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338684/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142038669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Search for singularity cells at the onset of brain disorders using whole-brain imaging. 利用全脑成像技术寻找脑部疾病发病时的奇异细胞。
IF 1.6 Q4 BIOPHYSICS Pub Date : 2024-02-02 eCollection Date: 2024-01-01 DOI: 10.2142/biophysico.bppb-v21.s003
Hitoshi Hashimoto, Takanobu Nakazawa
{"title":"Search for singularity cells at the onset of brain disorders using whole-brain imaging.","authors":"Hitoshi Hashimoto, Takanobu Nakazawa","doi":"10.2142/biophysico.bppb-v21.s003","DOIUrl":"10.2142/biophysico.bppb-v21.s003","url":null,"abstract":"","PeriodicalId":101323,"journal":{"name":"Biophysics and physicobiology","volume":"21 Supplemental","pages":"e211003"},"PeriodicalIF":1.6,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338687/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142038675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pioneering artificial cell-like structures with DNA nanotechnology-based liquid-liquid phase separation. 利用基于 DNA 纳米技术的液-液相分离技术开创人工类细胞结构。
Q4 BIOPHYSICS Pub Date : 2024-01-30 eCollection Date: 2024-01-01 DOI: 10.2142/biophysico.bppb-v21.0010
Yusuke Sato, Masahiro Takinoue

Recent studies have revealed that liquid-liquid phase separation (LLPS) plays crucial roles in various cellular functions. Droplets formed via LLPS within cells, often referred to as membraneless organelles, serve to concentrate specific molecules, thus enhancing biochemical reactions. Artificial LLPS systems have been utilized to construct synthetic cell models, employing a range of synthetic molecules. LLPS systems based on DNA nanotechnology are particularly notable for their designable characteristics in droplet formation, dynamics, properties, and functionalities. This review surveys recent advancements in DNA-based LLPS systems, underscoring the programmability afforded by DNA's base-pair specific interactions. We discuss the fundamentals of DNA droplet formation, including temperature-dependence and physical properties, along with the precise control achievable through sequence design. Attention is given to the phase separation of DNA nanostructures on two-dimensional closed interfaces, which results in spatial pattern formation at the interface. Furthermore, we spotlight the potential of DNA droplet computing for cancer diagnostics through specific microRNA pattern recognition. We envision that DNA-based LLPS presents a versatile platform for the exploration of cellular mimicry and opens innovative ways for the development of functional synthetic cells.

最近的研究发现,液-液相分离(LLPS)在各种细胞功能中发挥着至关重要的作用。细胞内通过液-液相分离形成的液滴通常被称为无膜细胞器,可起到浓缩特定分子的作用,从而增强生化反应。人工 LLPS 系统已被用于构建合成细胞模型,并采用了一系列合成分子。基于 DNA 纳米技术的 LLPS 系统在液滴形成、动力学、特性和功能方面的可设计性尤为突出。本综述介绍了基于 DNA 的 LLPS 系统的最新进展,强调了 DNA 碱基对特异性相互作用带来的可编程性。我们讨论了 DNA 液滴形成的基本原理,包括温度依赖性和物理特性,以及通过序列设计实现的精确控制。我们还关注了 DNA 纳米结构在二维封闭界面上的相分离,这导致了界面上空间图案的形成。此外,我们还强调了 DNA 微滴计算通过特定 microRNA 模式识别进行癌症诊断的潜力。我们认为,基于 DNA 的 LLPS 为探索细胞模拟提供了一个多功能平台,并为功能性合成细胞的开发开辟了创新途径。
{"title":"Pioneering artificial cell-like structures with DNA nanotechnology-based liquid-liquid phase separation.","authors":"Yusuke Sato, Masahiro Takinoue","doi":"10.2142/biophysico.bppb-v21.0010","DOIUrl":"10.2142/biophysico.bppb-v21.0010","url":null,"abstract":"<p><p>Recent studies have revealed that liquid-liquid phase separation (LLPS) plays crucial roles in various cellular functions. Droplets formed via LLPS within cells, often referred to as membraneless organelles, serve to concentrate specific molecules, thus enhancing biochemical reactions. Artificial LLPS systems have been utilized to construct synthetic cell models, employing a range of synthetic molecules. LLPS systems based on DNA nanotechnology are particularly notable for their designable characteristics in droplet formation, dynamics, properties, and functionalities. This review surveys recent advancements in DNA-based LLPS systems, underscoring the programmability afforded by DNA's base-pair specific interactions. We discuss the fundamentals of DNA droplet formation, including temperature-dependence and physical properties, along with the precise control achievable through sequence design. Attention is given to the phase separation of DNA nanostructures on two-dimensional closed interfaces, which results in spatial pattern formation at the interface. Furthermore, we spotlight the potential of DNA droplet computing for cancer diagnostics through specific microRNA pattern recognition. We envision that DNA-based LLPS presents a versatile platform for the exploration of cellular mimicry and opens innovative ways for the development of functional synthetic cells.</p>","PeriodicalId":101323,"journal":{"name":"Biophysics and physicobiology","volume":"21 1","pages":"e210010"},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11128300/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141159213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of long-term memory by a few clock neurons in Drosophila. 果蝇中少数时钟神经元对长期记忆的调控
IF 1.6 Q4 BIOPHYSICS Pub Date : 2024-01-24 eCollection Date: 2024-01-01 DOI: 10.2142/biophysico.bppb-v21.s002
Rei Shirakawa, Yuto Kurata, Takaomi Sakai

Identification of the neural circuits in the brain regulating animal behavior and physiology is critical for understanding brain functions and is one of the most challenging goals in neuroscience research. The fruitfly Drosophila melanogaster has often been used to identify the neural circuits involved in the regulation of specific behaviors because of the many neurogenetic tools available to express target genes in particular neurons. Neurons controlling sexual behavior, feeding behavior, and circadian rhythms have been identified, and the number of neurons responsible for controlling these phenomena is small. The search for a few neurons controlling a specific behavior is an important first step to clarify the overall picture of the neural circuits regulating that behavior. We previously found that the clock gene period (per), which is essential for circadian rhythms in Drosophila, is also essential for long-term memory (LTM). We have also found that a very limited number of per-expressing clock neurons in the adult brain are required for the consolidation and maintenance of LTM. In this review, we focus on LTM in Drosophila, introduce the concept of LTM regulation by a few clock neurons that we have recently discovered, and discuss how a few clock neurons regulate Drosophila LTM.

识别大脑中调控动物行为和生理的神经回路对于理解大脑功能至关重要,也是神经科学研究中最具挑战性的目标之一。果蝇黑色果蝇经常被用来鉴定参与调控特定行为的神经回路,因为它有许多神经遗传工具可以在特定神经元中表达目标基因。控制性行为、摄食行为和昼夜节律的神经元已经被确定,而负责控制这些现象的神经元数量却很少。寻找控制特定行为的少数神经元是阐明调控该行为的神经回路全貌的重要第一步。我们之前发现,果蝇昼夜节律所必需的时钟基因周期(per)也是长期记忆(LTM)所必需的。我们还发现,成年大脑中数量非常有限的表达 per 的时钟神经元是巩固和维持 LTM 所必需的。在这篇综述中,我们将重点关注果蝇的LTM,介绍我们最近发现的由少数时钟神经元调控LTM的概念,并讨论少数时钟神经元如何调控果蝇的LTM。
{"title":"Regulation of long-term memory by a few clock neurons in <i>Drosophila</i>.","authors":"Rei Shirakawa, Yuto Kurata, Takaomi Sakai","doi":"10.2142/biophysico.bppb-v21.s002","DOIUrl":"10.2142/biophysico.bppb-v21.s002","url":null,"abstract":"<p><p>Identification of the neural circuits in the brain regulating animal behavior and physiology is critical for understanding brain functions and is one of the most challenging goals in neuroscience research. The fruitfly <i>Drosophila melanogaster</i> has often been used to identify the neural circuits involved in the regulation of specific behaviors because of the many neurogenetic tools available to express target genes in particular neurons. Neurons controlling sexual behavior, feeding behavior, and circadian rhythms have been identified, and the number of neurons responsible for controlling these phenomena is small. The search for a few neurons controlling a specific behavior is an important first step to clarify the overall picture of the neural circuits regulating that behavior. We previously found that the clock gene <i>period</i> (<i>per</i>), which is essential for circadian rhythms in <i>Drosophila</i>, is also essential for long-term memory (LTM). We have also found that a very limited number of <i>per</i>-expressing clock neurons in the adult brain are required for the consolidation and maintenance of LTM. In this review, we focus on LTM in <i>Drosophila</i>, introduce the concept of LTM regulation by a few clock neurons that we have recently discovered, and discuss how a few clock neurons regulate <i>Drosophila</i> LTM.</p>","PeriodicalId":101323,"journal":{"name":"Biophysics and physicobiology","volume":"21 Supplemental","pages":"e211002"},"PeriodicalIF":1.6,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338676/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142038673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Asian Biophysics Association: Reborn from the COVID-19 pandemic. 亚洲生物物理协会:从 COVID-19 大流行中重生。
Q4 BIOPHYSICS Pub Date : 2024-01-24 eCollection Date: 2024-01-01 DOI: 10.2142/biophysico.bppb-v21.0009
Shang-Te Danny Hsu
{"title":"The Asian Biophysics Association: Reborn from the COVID-19 pandemic.","authors":"Shang-Te Danny Hsu","doi":"10.2142/biophysico.bppb-v21.0009","DOIUrl":"10.2142/biophysico.bppb-v21.0009","url":null,"abstract":"","PeriodicalId":101323,"journal":{"name":"Biophysics and physicobiology","volume":"21 1","pages":"e210009"},"PeriodicalIF":0.0,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11128302/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141159269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resonance frequency measurement to identify stiffness variations based on photoacoustic imaging. 基于光声成像的共振频率测量,用于识别硬度变化。
Q4 BIOPHYSICS Pub Date : 2024-01-20 eCollection Date: 2024-01-01 DOI: 10.2142/biophysico.bppb-v21.0008
Ananta Kusuma Yoga Pratama, Andreas Setiawan, Rini Widyaningrum, Mitrayana

Linear assumption on the level of stiffness in a tissue shows a significant correlation with disease. Photoacoustic imaging techniques that are non-contact by design have been developed in this study to detect differences in phantom (soft tissue mimicking materials) stiffness. This study aims to detect differences in phantom stiffness based on the results of image reconstruction at the resonance frequency. Four phantom agars with differing concentrations were made to achieve different stiffnesses. The position of each phantom agar's highest photoacoustic signal amplitude is identified by a frequency modulation sweep. The characterization results show an increase in resonance frequency along with an increase in phantom stiffness. The image difference can be detected because the intensity of the photoacoustic image in samples that have a resonance frequency with laser modulation is comparatively higher than in other samples.

对组织硬度水平的线性假设显示出与疾病的显著相关性。本研究开发了非接触式光声成像技术,用于检测模型(软组织模拟材料)硬度的差异。本研究旨在根据共振频率下的图像重建结果检测模型硬度的差异。我们制作了四种不同浓度的模型琼脂,以获得不同的硬度。通过频率调制扫描确定每个幻影琼脂的最高光声信号振幅位置。表征结果显示,随着幻影硬度的增加,共振频率也随之增加。在激光调制下具有共振频率的样品的光声图像强度相对高于其他样品,因此可以检测到图像差异。
{"title":"Resonance frequency measurement to identify stiffness variations based on photoacoustic imaging.","authors":"Ananta Kusuma Yoga Pratama, Andreas Setiawan, Rini Widyaningrum, Mitrayana","doi":"10.2142/biophysico.bppb-v21.0008","DOIUrl":"10.2142/biophysico.bppb-v21.0008","url":null,"abstract":"<p><p>Linear assumption on the level of stiffness in a tissue shows a significant correlation with disease. Photoacoustic imaging techniques that are non-contact by design have been developed in this study to detect differences in phantom (soft tissue mimicking materials) stiffness. This study aims to detect differences in phantom stiffness based on the results of image reconstruction at the resonance frequency. Four phantom agars with differing concentrations were made to achieve different stiffnesses. The position of each phantom agar's highest photoacoustic signal amplitude is identified by a frequency modulation sweep. The characterization results show an increase in resonance frequency along with an increase in phantom stiffness. The image difference can be detected because the intensity of the photoacoustic image in samples that have a resonance frequency with laser modulation is comparatively higher than in other samples.</p>","PeriodicalId":101323,"journal":{"name":"Biophysics and physicobiology","volume":"21 1","pages":"e210008"},"PeriodicalIF":0.0,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11128304/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141159218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of the singularity cells controlling the pattern formation in multi-cellular systems. 控制多细胞系统模式形成的奇异细胞分析。
IF 1.6 Q4 BIOPHYSICS Pub Date : 2024-01-19 eCollection Date: 2024-01-01 DOI: 10.2142/biophysico.bppb-v21.s001
Kazuki Horikawa, Tatsuya Takemoto
{"title":"Analysis of the singularity cells controlling the pattern formation in multi-cellular systems.","authors":"Kazuki Horikawa, Tatsuya Takemoto","doi":"10.2142/biophysico.bppb-v21.s001","DOIUrl":"10.2142/biophysico.bppb-v21.s001","url":null,"abstract":"","PeriodicalId":101323,"journal":{"name":"Biophysics and physicobiology","volume":"21 Supplemental","pages":"e211001"},"PeriodicalIF":1.6,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338680/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142038666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular dynamics simulation analysis of structural dynamic cross correlation induced by odorant hydrogen-bonding in mouse eugenol ol- factory receptor. 小鼠丁香酚 O- 工厂受体中气味氢键诱导的结构动态交叉相关性的分子动力学模拟分析。
Q4 BIOPHYSICS Pub Date : 2024-01-18 eCollection Date: 2024-01-01 DOI: 10.2142/biophysico.bppb-v21.0007
Chisato Okamoto, Koji Ando

Structural fluctuations and dynamic cross-correlations in the mouse eugenol olfactory receptor (Olfr73) were studied by molecular dynamics (MD) simulation to characterize the dynamic response of the protein upon ligand binding. The initial structure was generated by the artificial intelligence tool AlphaFold2 due to the current lack of experimental data. We focused on the hydrogen (H) bond of the odorant eugenol to Ser113, Asn207, and Tyr260 of the receptor protein, the importance of which has been suggested by previous experimental studies. The H-bond was not observed in docking simulations, but in subsequent MD simulations the H-bond to Ser113 was formed in 2-4 ns. The lifetime of the H-bond was in the range of 1-20 ns. On the trajectory with the most stable (20 ns) H-bond, the structural fluctuation of the α-carbon atoms of the receptor main chain was studied by calculating the root mean square fluctuations, the dynamic cross-correlation map, and the time-dependent dynamic cross-correlation. The analysis suggested a correlation transfer pathway Ser113 → Phe182 → (Leu259 or Tyr260) → Tyr291 induced by the ligand binding with a time scale of 4-6 ns.

通过分子动力学(MD)模拟研究了小鼠丁香酚嗅觉受体(Olfr73)的结构波动和动态交叉相关性,以描述配体结合时蛋白质的动态响应。由于目前缺乏实验数据,我们使用人工智能工具 AlphaFold2 生成了初始结构。我们重点研究了臭味剂丁香酚与受体蛋白的 Ser113、Asn207 和 Tyr260 之间的氢键(H),之前的实验研究表明了该氢键的重要性。在对接模拟中没有观察到该 H 键,但在随后的 MD 模拟中,与 Ser113 的 H 键在 2-4 ns 内形成。H 键的寿命为 1-20 ns。在具有最稳定(20 ns)H 键的轨迹上,通过计算均方根波动、动态交叉相关图和随时间变化的动态交叉相关,研究了受体主链 α 碳原子的结构波动。分析表明,配体结合诱导的相关转移途径为 Ser113 → Phe182 → (Leu259 或 Tyr260) → Tyr291,时间尺度为 4-6 ns。
{"title":"Molecular dynamics simulation analysis of structural dynamic cross correlation induced by odorant hydrogen-bonding in mouse eugenol ol- factory receptor.","authors":"Chisato Okamoto, Koji Ando","doi":"10.2142/biophysico.bppb-v21.0007","DOIUrl":"10.2142/biophysico.bppb-v21.0007","url":null,"abstract":"<p><p>Structural fluctuations and dynamic cross-correlations in the mouse eugenol olfactory receptor (Olfr73) were studied by molecular dynamics (MD) simulation to characterize the dynamic response of the protein upon ligand binding. The initial structure was generated by the artificial intelligence tool AlphaFold2 due to the current lack of experimental data. We focused on the hydrogen (H) bond of the odorant eugenol to Ser113, Asn207, and Tyr260 of the receptor protein, the importance of which has been suggested by previous experimental studies. The H-bond was not observed in docking simulations, but in subsequent MD simulations the H-bond to Ser113 was formed in 2-4 ns. The lifetime of the H-bond was in the range of 1-20 ns. On the trajectory with the most stable (20 ns) H-bond, the structural fluctuation of the α-carbon atoms of the receptor main chain was studied by calculating the root mean square fluctuations, the dynamic cross-correlation map, and the time-dependent dynamic cross-correlation. The analysis suggested a correlation transfer pathway Ser113 → Phe182 → (Leu259 or Tyr260) → Tyr291 induced by the ligand binding with a time scale of 4-6 ns.</p>","PeriodicalId":101323,"journal":{"name":"Biophysics and physicobiology","volume":"21 1","pages":"e210007"},"PeriodicalIF":0.0,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11128758/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141159367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observation of sarcomere chaos induced by changes in calcium concentration in cardiomyocytes. 观察心肌细胞中钙浓度变化引起的肌节混乱。
Q4 BIOPHYSICS Pub Date : 2024-01-12 eCollection Date: 2024-01-01 DOI: 10.2142/biophysico.bppb-v21.0006
Seine A Shintani

Heating cardiomyocytes to 38-42°C induces hyperthermal sarcomeric oscillations (HSOs), which combine chaotic instability and homeostatic stability. These properties are likely important for achieving periodic and rapid ventricular expansion during the diastole phase of the heartbeat. Compared with spontaneous oscillatory contractions in cardiomyocytes, which are sarcomeric oscillations induced in the presence of a constant calcium concentration, we found that calcium concentration fluctuations cause chaotic instability during HSOs. We believe that the experimental fact that sarcomeres, autonomously oscillating, exhibit such instability due to the action of calcium concentration changes is important for understanding the physiological function of sarcomeres. Therefore, we have named this chaotic sarcomere instability that appears under conditions involving changes in calcium concentration as Sarcomere Chaos with Changes in Calcium Concentration (S4C). Interestingly, sarcomere instability that could be considered S4C has also been observed in the relaxation dynamics of EC coupling. Unlike ADP-SPOCs and Cell-SPOCs under constant calcium concentration conditions, fluctuations in oscillation amplitude indistinguishable from HSOs were observed. Additionally, like HSO, a positive Lyapunov exponent was measured. S4C is likely a crucial sarcomeric property supporting the rapid and flexible ventricular diastole with each heartbeat of the heart.

将心肌细胞加热到38-42°C会诱发高热肉团振荡(HSO),这种振荡兼具混乱不稳定性和稳态稳定性。这些特性对于在心跳舒张期实现周期性快速心室扩张可能非常重要。心肌细胞的自发振荡收缩是在钙浓度恒定的情况下诱发的肌纤维振荡,与之相比,我们发现钙浓度波动会导致 HSOs 出现混沌不稳定性。我们认为,在钙浓度变化的作用下,自主振荡的肌节表现出这种不稳定性,这一实验事实对于理解肌节的生理功能非常重要。因此,我们将这种在钙浓度变化条件下出现的混乱的肌节不稳定性命名为 "钙浓度变化引起的肌节混乱"(Sarcomere Chaos with Changes in Calcium Concentration,S4C)。有趣的是,在心肌耦合的弛豫动力学中也观察到了可视为 S4C 的肌节不稳定性。与恒定钙浓度条件下的 ADP-SPOCs 和细胞-SPOCs 不同,在振荡幅度上观察到了与 HSOs 无异的波动。此外,与 HSO 一样,也测得了正的 Lyapunov 指数。S4C 很可能是支持心脏每次搏动时快速灵活的心室舒张的一个重要的肌纤维特性。
{"title":"Observation of sarcomere chaos induced by changes in calcium concentration in cardiomyocytes.","authors":"Seine A Shintani","doi":"10.2142/biophysico.bppb-v21.0006","DOIUrl":"10.2142/biophysico.bppb-v21.0006","url":null,"abstract":"<p><p>Heating cardiomyocytes to 38-42°C induces hyperthermal sarcomeric oscillations (HSOs), which combine chaotic instability and homeostatic stability. These properties are likely important for achieving periodic and rapid ventricular expansion during the diastole phase of the heartbeat. Compared with spontaneous oscillatory contractions in cardiomyocytes, which are sarcomeric oscillations induced in the presence of a constant calcium concentration, we found that calcium concentration fluctuations cause chaotic instability during HSOs. We believe that the experimental fact that sarcomeres, autonomously oscillating, exhibit such instability due to the action of calcium concentration changes is important for understanding the physiological function of sarcomeres. Therefore, we have named this chaotic sarcomere instability that appears under conditions involving changes in calcium concentration as Sarcomere Chaos with Changes in Calcium Concentration (S4C). Interestingly, sarcomere instability that could be considered S4C has also been observed in the relaxation dynamics of EC coupling. Unlike ADP-SPOCs and Cell-SPOCs under constant calcium concentration conditions, fluctuations in oscillation amplitude indistinguishable from HSOs were observed. Additionally, like HSO, a positive Lyapunov exponent was measured. S4C is likely a crucial sarcomeric property supporting the rapid and flexible ventricular diastole with each heartbeat of the heart.</p>","PeriodicalId":101323,"journal":{"name":"Biophysics and physicobiology","volume":"21 1","pages":"e210006"},"PeriodicalIF":0.0,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11128306/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141159256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biophysics and physicobiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1