Pub Date : 2024-09-01DOI: 10.3724/SP.J.1123.2024.02026
Zong-Bao Chen, Shi-Ye Xie, Yong-Jun Liu, Wen-Min Zhang, Min Fang, Lan Zhang
Red tides are a type of natural marine disaster caused by harmful algae characterized by a high toxicity, wide distribution, and long duration. Since the concentration of algal toxins in seawater increases with the occurrence of red tides, algal toxins detected in seawater could be used to predict the occurrence and evolution of red tides. Brevetoxin-A (BTX-A) is a secondary metabolite produced by the harmful algae Karenia brevis, whose detection in seawater could form the basis of an accurate warning system for incoming red tides. However, due to the inherent complexity of the seawater matrix and the extremely low levels of BTX-A in seawater, the use of instruments for its direct detection is difficult. Therefore, there is an urgent need to develop a sample pretreatment method for the efficient enrichment of BTX-A in seawater. In this study, a metal-organic backbone material (UiO-66) and its composite with silica microspheres (SiO2@UiO-66) were successfully synthesized using the solvothermal method. The prepared SiO2@UiO-66 exhibited good hydrophilicity, water stability, and large specific surface area. Furthermore, it also exhibited hydrogen bonding and electrostatic interactions with BTX-A, had a strong affinity for BTX-A, and was able to efficiently adsorb BTX-A in complex matrices. Therefore, SiO2@UiO-66 showed potential as a novel packing material for the extraction of BTX-A from solid phase extraction columns. Combined with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), a highly sensitive detection method for the determination of BTX-A in marine water was established. The established analytical method had a low detection limit (3.0 pg/mL), a wide linear range (10.0 -200.0 pg/mL), and a good linear relationship (R=0.9992). Combined with the Fujian Province Red Tide Monitoring and Early Warning Information 2021 issued by the Fujian Provincial Oceanic and Fisheries Bureau, the analytical method established herein was successfully applied to analyze and monitor the content of BTX-A in actual seawater samples. This highlights the proposed system's potential for use as an early warning factor in the monitoring of red tides, representing a simple and fast pretreatment methodology for the detection of BTX-A in seawater.
{"title":"[Zirconium-based metal-organic framework composites for solid phase extraction of brevetoxin-A from seawater].","authors":"Zong-Bao Chen, Shi-Ye Xie, Yong-Jun Liu, Wen-Min Zhang, Min Fang, Lan Zhang","doi":"10.3724/SP.J.1123.2024.02026","DOIUrl":"10.3724/SP.J.1123.2024.02026","url":null,"abstract":"<p><p>Red tides are a type of natural marine disaster caused by harmful algae characterized by a high toxicity, wide distribution, and long duration. Since the concentration of algal toxins in seawater increases with the occurrence of red tides, algal toxins detected in seawater could be used to predict the occurrence and evolution of red tides. Brevetoxin-A (BTX-A) is a secondary metabolite produced by the harmful algae <i>Karenia brevis</i>, whose detection in seawater could form the basis of an accurate warning system for incoming red tides. However, due to the inherent complexity of the seawater matrix and the extremely low levels of BTX-A in seawater, the use of instruments for its direct detection is difficult. Therefore, there is an urgent need to develop a sample pretreatment method for the efficient enrichment of BTX-A in seawater. In this study, a metal-organic backbone material (UiO-66) and its composite with silica microspheres (SiO<sub>2</sub>@UiO-66) were successfully synthesized using the solvothermal method. The prepared SiO<sub>2</sub>@UiO-66 exhibited good hydrophilicity, water stability, and large specific surface area. Furthermore, it also exhibited hydrogen bonding and electrostatic interactions with BTX-A, had a strong affinity for BTX-A, and was able to efficiently adsorb BTX-A in complex matrices. Therefore, SiO<sub>2</sub>@UiO-66 showed potential as a novel packing material for the extraction of BTX-A from solid phase extraction columns. Combined with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), a highly sensitive detection method for the determination of BTX-A in marine water was established. The established analytical method had a low detection limit (3.0 pg/mL), a wide linear range (10.0 -200.0 pg/mL), and a good linear relationship (<i>R</i>=0.9992). Combined with the Fujian Province Red Tide Monitoring and Early Warning Information 2021 issued by the Fujian Provincial Oceanic and Fisheries Bureau, the analytical method established herein was successfully applied to analyze and monitor the content of BTX-A in actual seawater samples. This highlights the proposed system's potential for use as an early warning factor in the monitoring of red tides, representing a simple and fast pretreatment methodology for the detection of BTX-A in seawater.</p>","PeriodicalId":101336,"journal":{"name":"Se pu = Chinese journal of chromatography","volume":"42 9","pages":"819-826"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358870/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142094376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.3724/SP.J.1123.2023.12015
Qiong-Ying Zheng, Yu-Jie Zhi, Wenjia Duan, Min Lü, Yue Xiao, Ping Xiang, Hang Chen, Keming Yun
Based on the technical methods of GB/T 42430-2023 and GA/T 204-2019, this study established an analytical method for headspace injection double-column dual-detector (hydrogen flame ion detector) gas chromatography for the simultaneous analysis of at least 12 volatile compounds, including ethanol, in human blood using two different equipment platforms and chromatographic columns. A 100 μL blood or urine sample and a 0.04 g/L tert-butanol working solution prepared as an internal standard are introduced into the headspace sample bottle and then sealed, mixed, and placed on the headspace sampler rack. Using different equipment platforms and columns, methodological parameters such as the limit of detection (LOD), limit of quantification (LOQ), precision, and accuracy of the method were systematically evaluated. The chromatographic separation of acetone, alcohols and benzenes using the established method was satisfactory. The linear ranges, linear correlation coefficients (r), and LODs of acetone and six alcohols, including ethanol, were 0.10-3.00 g/L, >0.997, and 0.05 g/L, respectively. The LOQs were 0.10 g/L for all other compounds, excluding n-propanol (0.005 g/L). Additionally, the linear ranges, r values, LODs, and LOQs of benzene and four benzene derivatives were 0.05-50 mg/L, >0.995, 0.02 mg/L, and 0.05 mg/L, respectively (Column J&W DB-BAC1 UI and Column Rtx-BAC-PLUS 2). The average recoveries of compounds on J&W DB-BAC1 UI and Rtx-BAC-PLUS 2 columns ranged from 92.2% to 111.6%, and the relative standard deviations (RSDs, n=6) ranged from 0.4% to 7.4%. The LOD, LOQ, precision, accuracy, and linearity of the established method met the requirements of relevant standards, and no significant differences arose between the methodological parameters of the two platforms. CNAS-GL006 (2019) and JJF 1059.1-2012 were used as guides to evaluate the uncertainty of ethanol on two different sets of equipment platforms and chromatographic columns. The ethanol uncertainty was mainly derived from the calibration curve; however, the confidence probability was 95% (k=2). According to the analysis of the verification samples and real samples, the established method is suitable for the high-precision quantitative analysis of acetone and six alcohols and five benzene derivatives in human blood and other body fluids. It can be used in practical scenarios such as judicial identification and the detection of poisons.
{"title":"[A headspace injection double-column dual-detector gas chromatography system for the analysis of 12 volatile compounds such as ethanol in human blood].","authors":"Qiong-Ying Zheng, Yu-Jie Zhi, Wenjia Duan, Min Lü, Yue Xiao, Ping Xiang, Hang Chen, Keming Yun","doi":"10.3724/SP.J.1123.2023.12015","DOIUrl":"10.3724/SP.J.1123.2023.12015","url":null,"abstract":"<p><p>Based on the technical methods of GB/T 42430-2023 and GA/T 204-2019, this study established an analytical method for headspace injection double-column dual-detector (hydrogen flame ion detector) gas chromatography for the simultaneous analysis of at least 12 volatile compounds, including ethanol, in human blood using two different equipment platforms and chromatographic columns. A 100 μL blood or urine sample and a 0.04 g/L <i>tert</i>-butanol working solution prepared as an internal standard are introduced into the headspace sample bottle and then sealed, mixed, and placed on the headspace sampler rack. Using different equipment platforms and columns, methodological parameters such as the limit of detection (LOD), limit of quantification (LOQ), precision, and accuracy of the method were systematically evaluated. The chromatographic separation of acetone, alcohols and benzenes using the established method was satisfactory. The linear ranges, linear correlation coefficients (<i>r</i>), and LODs of acetone and six alcohols, including ethanol, were 0.10-3.00 g/L, >0.997, and 0.05 g/L, respectively. The LOQs were 0.10 g/L for all other compounds, excluding <i>n</i>-propanol (0.005 g/L). Additionally, the linear ranges, <i>r</i> values, LODs, and LOQs of benzene and four benzene derivatives were 0.05-50 mg/L, >0.995, 0.02 mg/L, and 0.05 mg/L, respectively (Column J&W DB-BAC1 UI and Column Rtx-BAC-PLUS 2). The average recoveries of compounds on J&W DB-BAC1 UI and Rtx-BAC-PLUS 2 columns ranged from 92.2% to 111.6%, and the relative standard deviations (RSDs, <i>n</i>=6) ranged from 0.4% to 7.4%. The LOD, LOQ, precision, accuracy, and linearity of the established method met the requirements of relevant standards, and no significant differences arose between the methodological parameters of the two platforms. CNAS-GL006 (2019) and JJF 1059.1-2012 were used as guides to evaluate the uncertainty of ethanol on two different sets of equipment platforms and chromatographic columns. The ethanol uncertainty was mainly derived from the calibration curve; however, the confidence probability was 95% (<i>k</i>=2). According to the analysis of the verification samples and real samples, the established method is suitable for the high-precision quantitative analysis of acetone and six alcohols and five benzene derivatives in human blood and other body fluids. It can be used in practical scenarios such as judicial identification and the detection of poisons.</p>","PeriodicalId":101336,"journal":{"name":"Se pu = Chinese journal of chromatography","volume":"42 9","pages":"909-917"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358869/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142094366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-01DOI: 10.3724/SP.J.1123.2023.11014
Yue-Qin Chen, Ming Ma, Hong-Dan Xu, Chun-Yan Pan
<p><p>Concerns over the emergence of steroid hormones as pollutants in water have grown. Steroid hormone compounds present challenges in the simultaneous detection of total residual hormones owing to their analogous structures and diverse types. In this study, we established a rapid and high-throughput continuous online method based on solid phase extraction (SPE) coupled with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for the simultaneous determination of 61 hormone components, including 48 glucocorticoids, 1 mineralocorticoid, 4 androgens, and 8 progesterones, in water. Various SPE columns were investigated to assess their extraction efficiency for enriching and purifying target compounds in a large sample volume (1 L). An HC-C18 SPE column was selected because of its superior performance. Acetonitrile was used as a washing solution during SPE to ensure that the majority of the tested substances achieved recoveries exceeding 70% and effectively avoid interferences from water-soluble components. Various C8 and C18 columns were tested, and the optimal HPLC conditions for hormone retention were established. We systematically evaluated different UPLC columns and mobile phases, including methanol-water and acetonitrile-water systems with 0.1% formic acid added to the aqueous phase. The optimized UPLC conditions were as follows: BEH C<sub>18</sub> column (100 mm×2.1 mm, 1.7 μm); column temperature, 40 ℃; flow rate, 0.3 mL/min; injection volume, 5 μL; mobile phase A: 0.1% formic acid aqueous phase; mobile phase B: acetonitrile. Gradient elution was performed as follows: 0-0.5 min, 30%B; 0.5-15.0 min, 30%B-75%B; 15.0-18.0 min, 75%B-98%B; 18.0-19.0 min, 98%B; 19.0-19.1 min, 98%B-30%B; 19.1-20.0 min, 30%B. Both positive- and negative-ion modes were explored in the UPLC-MS/MS experiment to obtain the full scan of the parent ions, and positive mode was finally selected for electrospray ionization (ESI). Two product ions exhibiting strong signals and minimal interference were selected for quantitative and qualitative ion analyses, using an external standard method for quantification. MS/MS was performed in positive-ion (ESI<sup>+</sup>) mode with multiple reaction monitoring (MRM) scanning. The MS/MS parameters were as follows: atomizing gas pressure, 379 kPa; curtain air pressure, 241 kPa; spray voltage, 5500 V; desolvation temperature, 550 ℃; collision exit voltage (CXP), 13 V; intake voltage (EP), 10 V; and residence time of each ion pair, 0.5 ms. Other instrument settings, such as the collision energy and declustering voltage, were also optimized. The 61 hormones exhibited excellent linear relationships within their corresponding concentration ranges, with correlation coefficients greater than 0.99. The method detection limits (MDLs) were in the range of 0.05-1.50 ng/L. The average recoveries of the 61 hormones across three spiked levels ranged from 62.3% to 125.2%, with relative standard deviations (RSDs, <i>n</i>=6)
{"title":"[Simultaneous determination of 61 hormones in water by solid phase extraction-ultra performance liquid chromatography-tandem mass spectrometry].","authors":"Yue-Qin Chen, Ming Ma, Hong-Dan Xu, Chun-Yan Pan","doi":"10.3724/SP.J.1123.2023.11014","DOIUrl":"10.3724/SP.J.1123.2023.11014","url":null,"abstract":"<p><p>Concerns over the emergence of steroid hormones as pollutants in water have grown. Steroid hormone compounds present challenges in the simultaneous detection of total residual hormones owing to their analogous structures and diverse types. In this study, we established a rapid and high-throughput continuous online method based on solid phase extraction (SPE) coupled with ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for the simultaneous determination of 61 hormone components, including 48 glucocorticoids, 1 mineralocorticoid, 4 androgens, and 8 progesterones, in water. Various SPE columns were investigated to assess their extraction efficiency for enriching and purifying target compounds in a large sample volume (1 L). An HC-C18 SPE column was selected because of its superior performance. Acetonitrile was used as a washing solution during SPE to ensure that the majority of the tested substances achieved recoveries exceeding 70% and effectively avoid interferences from water-soluble components. Various C8 and C18 columns were tested, and the optimal HPLC conditions for hormone retention were established. We systematically evaluated different UPLC columns and mobile phases, including methanol-water and acetonitrile-water systems with 0.1% formic acid added to the aqueous phase. The optimized UPLC conditions were as follows: BEH C<sub>18</sub> column (100 mm×2.1 mm, 1.7 μm); column temperature, 40 ℃; flow rate, 0.3 mL/min; injection volume, 5 μL; mobile phase A: 0.1% formic acid aqueous phase; mobile phase B: acetonitrile. Gradient elution was performed as follows: 0-0.5 min, 30%B; 0.5-15.0 min, 30%B-75%B; 15.0-18.0 min, 75%B-98%B; 18.0-19.0 min, 98%B; 19.0-19.1 min, 98%B-30%B; 19.1-20.0 min, 30%B. Both positive- and negative-ion modes were explored in the UPLC-MS/MS experiment to obtain the full scan of the parent ions, and positive mode was finally selected for electrospray ionization (ESI). Two product ions exhibiting strong signals and minimal interference were selected for quantitative and qualitative ion analyses, using an external standard method for quantification. MS/MS was performed in positive-ion (ESI<sup>+</sup>) mode with multiple reaction monitoring (MRM) scanning. The MS/MS parameters were as follows: atomizing gas pressure, 379 kPa; curtain air pressure, 241 kPa; spray voltage, 5500 V; desolvation temperature, 550 ℃; collision exit voltage (CXP), 13 V; intake voltage (EP), 10 V; and residence time of each ion pair, 0.5 ms. Other instrument settings, such as the collision energy and declustering voltage, were also optimized. The 61 hormones exhibited excellent linear relationships within their corresponding concentration ranges, with correlation coefficients greater than 0.99. The method detection limits (MDLs) were in the range of 0.05-1.50 ng/L. The average recoveries of the 61 hormones across three spiked levels ranged from 62.3% to 125.2%, with relative standard deviations (RSDs, <i>n</i>=6) ","PeriodicalId":101336,"journal":{"name":"Se pu = Chinese journal of chromatography","volume":"42 9","pages":"866-874"},"PeriodicalIF":0.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358878/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142094375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.3724/SP.J.1123.2023.08001
Wang Pan, Shen-Ping Zhang, An-Qi Wang, Jun Hu, Li-Hui Zhou
Milk is an important consumer product with high nutritional value. The presence of veterinary drug residues in milk owing to the indiscriminate use of veterinary drugs may affect consumer health. In the mass spectrometric analysis of trace compounds, chromatographic co-eluting components easily interfere with the mass spectral signals obtained, affecting the accuracy of qualitative and quantitative analyses. Matrix purification is a promising method to reduce the matrix effect. Chitosan is a natural biopolymer with numerous active functional groups such as amino, acetyl, and hydroxyl groups; these groups can adsorb lipids through hydrophobic and electrostatic interactions. Chitosan also has the advantages of low production cost, stable chemical properties, and convenient modification. Novel chitosan-based materials are promising candidates for lipid purification. In this study, a chitosan membrane was modified with trimethoxyoctadecylsilane (C18-CSM). C18-CSM was prepared through one-step hydrolysis and used as a dispersive solid phase extraction (DSPE) adsorbent to purify the matrix during milk pretreatment. We combined C18-CSM with ultra-high performance liquid chromatography-quadrupole/electrostatic field orbitrap mass spectrometry (UHPLC-Q/Exactive Orbitrap MS) to develop an effective method for the extraction and determination of ofloxacin, enrofloxacin, ciprofloxacin, diazepam, and metronidazole in milk. C18-CSM was characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and water contact angle testing. The results indicated that the material has a rough surface and uniformly dense cross-section. The water contact angle of C18-CSM was 104°, indicating its good hydrophobicity. The pretreatment conditions (extraction solvent, dosage of NaCl, extraction frequency, and dosage of C18-CSM) that influenced the recoveries of the five veterinary drugs were investigated in detail. The optimal conditions were established as follows: 5% formic acid in acetonitrile, 1 g NaCl, extraction 1 time, 20 mg C18-CSM. Separation was performed on a Hypersil GOLD VANQUISH column (100 mm×2.1 mm, 1.9 μm). The mobile phase consisted of 0.1% formic acid aqueous solution and 0.1% formic acid in acetonitrile, and was flowed at a rate of 0.3 mL/min. The sample injection volume was 1 μL, and the column temperature was maintained at 25 ℃. Mass spectrometric analysis was performed in positive electrospray ionization mode. To verify the necessity of the purification material, the matrix effect was investigated using the matrix-matched standard curve method. The use of C18-CSM reduced the matrix effects of the five necessity drugs from the range of -22%-8.8% to the range of -13%-3.6%, indicating that C18-CSM is a highly efficient DSPE material. Under optimal conditions, the developed method showed good linearities within the range of 0.5-
{"title":"[Determination of five veterinary drug residues in milk by ultra-high performance liquid chromatography-quadrupole/electrostatic field orbitrap mass spectrometry based on modified chitosan membrane purification].","authors":"Wang Pan, Shen-Ping Zhang, An-Qi Wang, Jun Hu, Li-Hui Zhou","doi":"10.3724/SP.J.1123.2023.08001","DOIUrl":"10.3724/SP.J.1123.2023.08001","url":null,"abstract":"<p><p>Milk is an important consumer product with high nutritional value. The presence of veterinary drug residues in milk owing to the indiscriminate use of veterinary drugs may affect consumer health. In the mass spectrometric analysis of trace compounds, chromatographic co-eluting components easily interfere with the mass spectral signals obtained, affecting the accuracy of qualitative and quantitative analyses. Matrix purification is a promising method to reduce the matrix effect. Chitosan is a natural biopolymer with numerous active functional groups such as amino, acetyl, and hydroxyl groups; these groups can adsorb lipids through hydrophobic and electrostatic interactions. Chitosan also has the advantages of low production cost, stable chemical properties, and convenient modification. Novel chitosan-based materials are promising candidates for lipid purification. In this study, a chitosan membrane was modified with trimethoxyoctadecylsilane (C<sub>18</sub>-CSM). C<sub>18</sub>-CSM was prepared through one-step hydrolysis and used as a dispersive solid phase extraction (DSPE) adsorbent to purify the matrix during milk pretreatment. We combined C<sub>18</sub>-CSM with ultra-high performance liquid chromatography-quadrupole/electrostatic field orbitrap mass spectrometry (UHPLC-Q/Exactive Orbitrap MS) to develop an effective method for the extraction and determination of ofloxacin, enrofloxacin, ciprofloxacin, diazepam, and metronidazole in milk. C<sub>18</sub>-CSM was characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and water contact angle testing. The results indicated that the material has a rough surface and uniformly dense cross-section. The water contact angle of C<sub>18</sub>-CSM was 104°, indicating its good hydrophobicity. The pretreatment conditions (extraction solvent, dosage of NaCl, extraction frequency, and dosage of C<sub>18</sub>-CSM) that influenced the recoveries of the five veterinary drugs were investigated in detail. The optimal conditions were established as follows: 5% formic acid in acetonitrile, 1 g NaCl, extraction 1 time, 20 mg C<sub>18</sub>-CSM. Separation was performed on a Hypersil GOLD VANQUISH column (100 mm×2.1 mm, 1.9 μm). The mobile phase consisted of 0.1% formic acid aqueous solution and 0.1% formic acid in acetonitrile, and was flowed at a rate of 0.3 mL/min. The sample injection volume was 1 μL, and the column temperature was maintained at 25 ℃. Mass spectrometric analysis was performed in positive electrospray ionization mode. To verify the necessity of the purification material, the matrix effect was investigated using the matrix-matched standard curve method. The use of C<sub>18</sub>-CSM reduced the matrix effects of the five necessity drugs from the range of -22%-8.8% to the range of -13%-3.6%, indicating that C<sub>18</sub>-CSM is a highly efficient DSPE material. Under optimal conditions, the developed method showed good linearities within the range of 0.5-","PeriodicalId":101336,"journal":{"name":"Se pu = Chinese journal of chromatography","volume":"42 8","pages":"758-765"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292475/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141862041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Edible plant oils are a key component of the daily human diet, and the quality and safety of plant oils are related to human health. Perfluorinated and polyfluoroalkyl substances (PFASs) are pollutants that can contaminate plant oil through the processing of raw materials or exposure to materials containing these substances. Thus, establishing a sensitive and accurate analytical method for the determination of PFASs is critical for ensuring the safety of plant oils. In this study, a method based on acetonitrile extraction and solid phase extraction purification combined with ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC-MS/MS) was developed for the simultaneous determination of 21 PFASs, including perfluorocarboxylic acids, perfluoroalkyl sulfonic acids, and fluorotelomer sulfonic acids, in edible plant oils. The chromatographic conditions and MS parameters were optimized, and the influences of the extraction solvents and purification method were systematically studied. Plant oil samples were directly extracted with acetonitrile and purified using a weak anion-exchange (WAX) column. The 21 target PFASs were separated on a reversed-phase C18 chromatographic column and detected using a triple quadrupole mass spectrometer with an electrospray ionization source. The mass spectrometer was operated in negative-ion mode. The target compounds were analyzed in multiple reaction monitoring (MRM) mode and quantified using an internal standard method. The results demonstrated that the severe interference observed during the detection of PFASs in the co-extracted substances was completely eliminated after the extraction mixture was purified using a WAX column. The 21 target PFASs showed good linearity in their corresponding ranges, with correlation coefficients greater than 0.995. The limits of detection (LODs) and limits of quantification (LOQs) of the method were in the range of 0.004-0.015 and 0.015-0.050 μg/kg, respectively. The recoveries ranged from 95.6% to 115.8%, with relative standard deviations (RSDs) in the range of 0.3%-10.9% (n=9). The established method is characterized by simple sample pretreatment, good sensitivity, high immunity to interferences, and good stability, rendering it suitable for the rapid analysis and accurate determination of typical PFASs in edible plant oils.
{"title":"[Simultaneous determination of 21 perfluorinated and polyfluoroalkyl substances in plant oils by ultra-high performance liquid chromatography-triple quadrupole mass spectrometry].","authors":"Hao Feng, Wei Zhang, Bao-Shan He, Pan-Pan Li, Shu-Qing Gao, Bao-Yuan Guo, Yong-Tan Yang","doi":"10.3724/SP.J.1123.2024.01014","DOIUrl":"10.3724/SP.J.1123.2024.01014","url":null,"abstract":"<p><p>Edible plant oils are a key component of the daily human diet, and the quality and safety of plant oils are related to human health. Perfluorinated and polyfluoroalkyl substances (PFASs) are pollutants that can contaminate plant oil through the processing of raw materials or exposure to materials containing these substances. Thus, establishing a sensitive and accurate analytical method for the determination of PFASs is critical for ensuring the safety of plant oils. In this study, a method based on acetonitrile extraction and solid phase extraction purification combined with ultra-high performance liquid chromatography-triple quadrupole mass spectrometry (UHPLC-MS/MS) was developed for the simultaneous determination of 21 PFASs, including perfluorocarboxylic acids, perfluoroalkyl sulfonic acids, and fluorotelomer sulfonic acids, in edible plant oils. The chromatographic conditions and MS parameters were optimized, and the influences of the extraction solvents and purification method were systematically studied. Plant oil samples were directly extracted with acetonitrile and purified using a weak anion-exchange (WAX) column. The 21 target PFASs were separated on a reversed-phase C18 chromatographic column and detected using a triple quadrupole mass spectrometer with an electrospray ionization source. The mass spectrometer was operated in negative-ion mode. The target compounds were analyzed in multiple reaction monitoring (MRM) mode and quantified using an internal standard method. The results demonstrated that the severe interference observed during the detection of PFASs in the co-extracted substances was completely eliminated after the extraction mixture was purified using a WAX column. The 21 target PFASs showed good linearity in their corresponding ranges, with correlation coefficients greater than 0.995. The limits of detection (LODs) and limits of quantification (LOQs) of the method were in the range of 0.004-0.015 and 0.015-0.050 μg/kg, respectively. The recoveries ranged from 95.6% to 115.8%, with relative standard deviations (RSDs) in the range of 0.3%-10.9% (<i>n</i>=9). The established method is characterized by simple sample pretreatment, good sensitivity, high immunity to interferences, and good stability, rendering it suitable for the rapid analysis and accurate determination of typical PFASs in edible plant oils.</p>","PeriodicalId":101336,"journal":{"name":"Se pu = Chinese journal of chromatography","volume":"42 8","pages":"731-739"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292476/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141862048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Perfluorinated and polyfluoroalkyl substances (PFASs) are compounds characterized by at least one perfluorinated carbon atom in an alkyl chain linked to side-chain groups. Owing to their unique chemical properties, these compounds are widely used in industrial production and daily life. However, owing to anthropogenic activities, sewage discharge, surface runoff, and atmospheric deposition, PFASs have gradually infiltrated the environment and aquatic resources. With their gradual accumulation in environmental waters, PFASs have been detected in fishes and several fish-feeding species, suggesting that they are bioconcentrated and even amplified in aquatic organisms. PFASs exhibit high intestinal absorption efficiencies, and they bioaccumulate at higher trophic levels in the food chain. They can be bioconcentrated in the human body via food (e. g., fish) and thus threaten human health. Therefore, establishing an efficient analytical technique for use in analyzing PFASs in typical fish samples and providing technical support for the safety regulation and risk assessment of fish products is necessary. In this study, by combining solvent extraction and magnetic dispersion-solid phase extraction (d-SPE), an improved QuEChERS method with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed for the determination of 13 PFASs in fish samples. Fe3O4-TiO2 can be used as an ideal adsorbent in the removal of sample matrix interference and a separation medium for the rapid encapsulation of other solids to be isolated from the solution. Based on the matrix characteristics of the fish products and structural properties of the target PFASs, Fe3O4-TiO2 and N-propyl ethylenediamine (PSA) were employed as adsorbents in dispersive purification. The internal standard method was used in the quantitative analyses of the PFASs. To optimize the sample pretreatment conditions of analyzing PFASs, the selection of the extraction solvent and amounts of Fe3O4-TiO2 and PSA were optimized. Several PFASs contain acidic groups that are non-dissociated in acidic environments, thus favoring their entry into the organic phase. In addition, acidified acetonitrile can denature and precipitate the proteins within the sample matrix, facilitating their removal. Finally, 2% formic acid acetonitrile was used as the extraction solvent, and 20 mg Fe3O4-TiO2, 20 mg PSA and 120 mg anhydrous MgSO4 were used as purification adsorbents. Under the optimized conditions, the developed method exhibited an excellent linearity (R≥0.9973) in the range of 0.01-50 μg/L, and the limits of detection (LODs) and quantification (LOQs) ranged from 0.001-0.023 and 0.003-0.078 μg/L, respectively. The recoveries of the 13 PFASs at low, medium, and high spiked levels (0.5, 10, and 100 μg/kg) were 78.1%-118%, with
{"title":"[Determination of 13 perfluorinated and polyfluoroalkyl substances in fishes by QuEChERS-ultra-high performance liquid chromatography-tandem mass spectrometry].","authors":"Xiao-Qi Liu, Zhen-Zhen Liu, Mei-Yu Wang, Chen-Shu Gu, Xin-Quan Wang, Lian-Liang Liu, Pei-Pei Qi","doi":"10.3724/SP.J.1123.2023.08002","DOIUrl":"10.3724/SP.J.1123.2023.08002","url":null,"abstract":"<p><p>Perfluorinated and polyfluoroalkyl substances (PFASs) are compounds characterized by at least one perfluorinated carbon atom in an alkyl chain linked to side-chain groups. Owing to their unique chemical properties, these compounds are widely used in industrial production and daily life. However, owing to anthropogenic activities, sewage discharge, surface runoff, and atmospheric deposition, PFASs have gradually infiltrated the environment and aquatic resources. With their gradual accumulation in environmental waters, PFASs have been detected in fishes and several fish-feeding species, suggesting that they are bioconcentrated and even amplified in aquatic organisms. PFASs exhibit high intestinal absorption efficiencies, and they bioaccumulate at higher trophic levels in the food chain. They can be bioconcentrated in the human body via food (e. g., fish) and thus threaten human health. Therefore, establishing an efficient analytical technique for use in analyzing PFASs in typical fish samples and providing technical support for the safety regulation and risk assessment of fish products is necessary. In this study, by combining solvent extraction and magnetic dispersion-solid phase extraction (d-SPE), an improved QuEChERS method with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed for the determination of 13 PFASs in fish samples. Fe<sub>3</sub>O<sub>4</sub>-TiO<sub>2</sub> can be used as an ideal adsorbent in the removal of sample matrix interference and a separation medium for the rapid encapsulation of other solids to be isolated from the solution. Based on the matrix characteristics of the fish products and structural properties of the target PFASs, Fe<sub>3</sub>O<sub>4</sub>-TiO<sub>2</sub> and <i>N</i>-propyl ethylenediamine (PSA) were employed as adsorbents in dispersive purification. The internal standard method was used in the quantitative analyses of the PFASs. To optimize the sample pretreatment conditions of analyzing PFASs, the selection of the extraction solvent and amounts of Fe<sub>3</sub>O<sub>4</sub>-TiO<sub>2</sub> and PSA were optimized. Several PFASs contain acidic groups that are non-dissociated in acidic environments, thus favoring their entry into the organic phase. In addition, acidified acetonitrile can denature and precipitate the proteins within the sample matrix, facilitating their removal. Finally, 2% formic acid acetonitrile was used as the extraction solvent, and 20 mg Fe<sub>3</sub>O<sub>4</sub>-TiO<sub>2</sub>, 20 mg PSA and 120 mg anhydrous MgSO<sub>4</sub> were used as purification adsorbents. Under the optimized conditions, the developed method exhibited an excellent linearity (<i>R</i>≥0.9973) in the range of 0.01-50 μg/L, and the limits of detection (LODs) and quantification (LOQs) ranged from 0.001-0.023 and 0.003-0.078 μg/L, respectively. The recoveries of the 13 PFASs at low, medium, and high spiked levels (0.5, 10, and 100 μg/kg) were 78.1%-118%, with","PeriodicalId":101336,"journal":{"name":"Se pu = Chinese journal of chromatography","volume":"42 8","pages":"740-748"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292479/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141862039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.3724/SP.J.1123.2023.08012
Ye Wang, Jian-Chen Xie, Ling-Jie Huang, Zhi-Cheng Xia
<p><p>Tobacco flavors are extensively utilized in traditional tobacco products, electronic nicotine, heated tobacco products, and snuff. To inhibit fungal growth arising from high moisture content, preservatives such as benzoic acid (BA), sorbic acid (SA), and parabens are often incorporated into tobacco flavors. Nonetheless, consuming preservatives beyond safety thresholds may pose health risks. Therefore, analytical determination of these preservatives is crucial for both quality assurance and consumer protection. For example, BA and SA can induce adverse reactions in susceptible individuals, including asthma, urticaria, metabolic acidosis, and convulsions. Parabens, because of their endocrine activity, are classified as endocrine-disrupting chemicals. Despite extensive research, the concurrent quantification of trace-level hydrophilic (BA and SA) and hydrophobic (methylparaben, ethylparaben, isopropylparaben, propylparaben, butylparaben, isobutylparaben, and benzylparaben) preservatives in tobacco flavors remains challenging. Traditional liquid phase extraction coupled with high performance liquid chromatography (HPLC) often results in high false positive rates and inadequate sensitivity. In contrast, tandem mass spectrometry offers high sensitivity and specificity; however, its widespread application is limited by laborious sample preparation and significant operational costs. Therefore, it is crucial to establish a fast and sensitive sample pretreatment and analysis method for the nine preservatives in tobacco flavors. In this study, a method for the simultaneous determination of the nine preservatives (SA, BA and seven parabens) in tobacco flavor was established based on three phase-hollow fiber-liquid phase microextraction (3P-HF-LPME) technology combined with HPLC. To obtain the optimal pretreatment conditions, extraction solvent type, sample phase pH, acceptor phase pH, sample phase volume, extraction time, and mass fraction of sodium chloride, were examined. Additionally, the HPLC parameters, including UV detection wavelength and mobile phase composition, were refined. The optimal extraction conditions were as follows: dihexyl ether was used as extraction solvent, 15 mL sample solution (pH 4) was used as sample phase, sodium hydroxide aqueous solution (pH 12) was used as acceptor phase, and the extraction was carried out at 800 r/min for 30 min. Chromatographic separation was accomplished using an Agilent Poroshell 120 EC-C18 column (100 mm×3 mm, 2.7 μm) and a mobile phase comprising methanol, 0.02 mol/L ammonium acetate aqueous solution (containing 0.5% acetic acid), and acetonitrile for gradient elution. Under the optimized conditions, the nine target analytes showed good linear relationships in their respective linear ranges, the correlation coefficients (<i>r</i>) were ≥0.9967, limits of detection (LODs) and quantification (LOQs) were 0.02-0.07 mg/kg and 0.08-0.24 mg/kg, respectively. Under two spiked levels, the enrichment factors
{"title":"[Rapid determination of nine preservatives in tobacco flavor by three phase-hollow fiber-liquid phase microextraction-high performance liquid chromatography].","authors":"Ye Wang, Jian-Chen Xie, Ling-Jie Huang, Zhi-Cheng Xia","doi":"10.3724/SP.J.1123.2023.08012","DOIUrl":"10.3724/SP.J.1123.2023.08012","url":null,"abstract":"<p><p>Tobacco flavors are extensively utilized in traditional tobacco products, electronic nicotine, heated tobacco products, and snuff. To inhibit fungal growth arising from high moisture content, preservatives such as benzoic acid (BA), sorbic acid (SA), and parabens are often incorporated into tobacco flavors. Nonetheless, consuming preservatives beyond safety thresholds may pose health risks. Therefore, analytical determination of these preservatives is crucial for both quality assurance and consumer protection. For example, BA and SA can induce adverse reactions in susceptible individuals, including asthma, urticaria, metabolic acidosis, and convulsions. Parabens, because of their endocrine activity, are classified as endocrine-disrupting chemicals. Despite extensive research, the concurrent quantification of trace-level hydrophilic (BA and SA) and hydrophobic (methylparaben, ethylparaben, isopropylparaben, propylparaben, butylparaben, isobutylparaben, and benzylparaben) preservatives in tobacco flavors remains challenging. Traditional liquid phase extraction coupled with high performance liquid chromatography (HPLC) often results in high false positive rates and inadequate sensitivity. In contrast, tandem mass spectrometry offers high sensitivity and specificity; however, its widespread application is limited by laborious sample preparation and significant operational costs. Therefore, it is crucial to establish a fast and sensitive sample pretreatment and analysis method for the nine preservatives in tobacco flavors. In this study, a method for the simultaneous determination of the nine preservatives (SA, BA and seven parabens) in tobacco flavor was established based on three phase-hollow fiber-liquid phase microextraction (3P-HF-LPME) technology combined with HPLC. To obtain the optimal pretreatment conditions, extraction solvent type, sample phase pH, acceptor phase pH, sample phase volume, extraction time, and mass fraction of sodium chloride, were examined. Additionally, the HPLC parameters, including UV detection wavelength and mobile phase composition, were refined. The optimal extraction conditions were as follows: dihexyl ether was used as extraction solvent, 15 mL sample solution (pH 4) was used as sample phase, sodium hydroxide aqueous solution (pH 12) was used as acceptor phase, and the extraction was carried out at 800 r/min for 30 min. Chromatographic separation was accomplished using an Agilent Poroshell 120 EC-C18 column (100 mm×3 mm, 2.7 μm) and a mobile phase comprising methanol, 0.02 mol/L ammonium acetate aqueous solution (containing 0.5% acetic acid), and acetonitrile for gradient elution. Under the optimized conditions, the nine target analytes showed good linear relationships in their respective linear ranges, the correlation coefficients (<i>r</i>) were ≥0.9967, limits of detection (LODs) and quantification (LOQs) were 0.02-0.07 mg/kg and 0.08-0.24 mg/kg, respectively. Under two spiked levels, the enrichment factors ","PeriodicalId":101336,"journal":{"name":"Se pu = Chinese journal of chromatography","volume":"42 8","pages":"749-757"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292480/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141862046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.3724/SP.J.1123.2023.12005
Cong-de Qiao, Wen-Ke Yang, Zhong-Wei Li, Qin-Ze Liu, Jin-Shui Yao
Gel permeation chromatography coupled with light scattering (GPC-LS) is among the most common methods for determining the molar masses of polymers. GPC-LS is widely used in polymer science research and has been adopted for many industrial applications owing to its high sensitivity, accuracy, and precision. The determination of polymer molar masses using GPC-LS is an important experimental component of the "Polymer Physics Experiments" course. However, the present GPC-LS experimental teaching content tends to be overly simplistic and lacking in depth. Herein, the original experimental content is expanded and multiple sets of experiments are redesigned: (1) Using commercial polystyrene as an experimental sample, the molar mass, molar mass distribution, radius of gyration, and other molecular structure parameters are determined using GPC-LS; (2) Using two polyacrylonitriles with similar molecular structure parameters, subtle differences in the molar mass distributions of the samples are explored using differential mass distribution curves; (3) By comparing the chromatograms of a series of polyethylene glycols with different molar masses, the effect of molar mass on chromatographic peaks is investigated; and (4) For three different polymers (polyacrylonitrile, poly(methyl methacrylate), and poly(β-cyclodextrin)), the polymer chain conformations are analyzed using conformation plots (i.e., radius of gyration vs. molar mass). In addition, the experimental teaching method is modified to convert passive learning into active learning, thereby improving the students' self-directed learning ability. This experimental teaching reform will help students obtain a more comprehensive understanding of GPC-LS principles and applications, stimulate their enthusiasm for learning, and improve the teaching quality of the experimental course.
{"title":"[Experimental teaching reform of polymer molar mass determination using gel permeation chromatography coupled with light scattering].","authors":"Cong-de Qiao, Wen-Ke Yang, Zhong-Wei Li, Qin-Ze Liu, Jin-Shui Yao","doi":"10.3724/SP.J.1123.2023.12005","DOIUrl":"10.3724/SP.J.1123.2023.12005","url":null,"abstract":"<p><p>Gel permeation chromatography coupled with light scattering (GPC-LS) is among the most common methods for determining the molar masses of polymers. GPC-LS is widely used in polymer science research and has been adopted for many industrial applications owing to its high sensitivity, accuracy, and precision. The determination of polymer molar masses using GPC-LS is an important experimental component of the \"Polymer Physics Experiments\" course. However, the present GPC-LS experimental teaching content tends to be overly simplistic and lacking in depth. Herein, the original experimental content is expanded and multiple sets of experiments are redesigned: (1) Using commercial polystyrene as an experimental sample, the molar mass, molar mass distribution, radius of gyration, and other molecular structure parameters are determined using GPC-LS; (2) Using two polyacrylonitriles with similar molecular structure parameters, subtle differences in the molar mass distributions of the samples are explored using differential mass distribution curves; (3) By comparing the chromatograms of a series of polyethylene glycols with different molar masses, the effect of molar mass on chromatographic peaks is investigated; and (4) For three different polymers (polyacrylonitrile, poly(methyl methacrylate), and poly(<i>β</i>-cyclodextrin)), the polymer chain conformations are analyzed using conformation plots (i.e., radius of gyration vs. molar mass). In addition, the experimental teaching method is modified to convert passive learning into active learning, thereby improving the students' self-directed learning ability. This experimental teaching reform will help students obtain a more comprehensive understanding of GPC-LS principles and applications, stimulate their enthusiasm for learning, and improve the teaching quality of the experimental course.</p>","PeriodicalId":101336,"journal":{"name":"Se pu = Chinese journal of chromatography","volume":"42 8","pages":"812-818"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292481/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141862044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.3724/SP.J.1123.2023.10028
Xiao-Jing Gao, Tong Ni, Rui Shen, Chao-Ou Shi
Hydrogen sulfide (H2S) is a pervasive gaseous pollutant that emits the characteristic odor of rotten gas, even at low concentrations. It is generated during various industrial processes, including petroleum and natural gas refining, mining operations, wastewater treatment activities, and refuse disposal practices. According to statistics from the World Health Organization (WHO), over 70 occupations are exposed to H2S, rendering it a key monitoring factor in occupational disease detection. Although H2S has legitimate uses in the chemical, medical, and other fields, prolonged exposure to this gas can cause severe damage to the respiratory and central nervous systems, as well as other organs in the human body. Moreover, the substantial release of H2S into the environment can lead to significant pollution. This noxious substance has the potential to impair soil, water, and air quality, while disrupting the equilibrium of the surrounding ecosystems. Therefore, sulfide has become one of the most commonly measured substances for environmental monitoring worldwide. Achieving the stable enrichment and accurate detection of low-level H2S is of great significance. Common methods for detecting this gas include spectrophotometry, chemical analysis, gas chromatography, rapid field detection, and ion chromatography. Although these methods provide relatively reliable results, they suffer from limitations such as high detection cost, low recovery, lack of environmental friendliness, and imprecise quantification of low-concentration H2S. Furthermore, the sampling processes involved in these methods are complex and require specialized equipment and electrical devices. Additionally, approximately 20% of the sulfides in a sample are lost after 2 h in a conventional alkaline sodium hydroxide solution, causing difficulties in preservation and detection. In this study, an accurate, efficient, and cost-saving method based on ion chromatography-pulse amperometry was developed for H2S determination. A conventional IonPac AS7 (250 mm×4 mm) anion-exchange column was employed, and a new eluent based on sodium hydroxide and sodium oxalate was used to replace the original sodium hydroxide-sodium acetate eluent. The main factors influencing the separation and detection performance of the proposed method, including the pulse amperage detection potential parameters and integration time, as well as the type and content of additives in the stabilizing solution, were optimized. The results showed that the proposed method had a good linear relationship between 10 and 3000 μg/L, with correlation coefficients (r2) of up to 0.999. The limits of detection (S/N=3) and quantification (S/N=10) were 1.53 and 5.10 μg/L, respectively. The relative standard deviations (RSDs) of the peak area and retention time of sulfides were less than 0.2% (n=6). The new method exhibited ex
{"title":"[Ion chromatography-pulsed amperometry method for determination of trace hydrogen sulfide in air].","authors":"Xiao-Jing Gao, Tong Ni, Rui Shen, Chao-Ou Shi","doi":"10.3724/SP.J.1123.2023.10028","DOIUrl":"10.3724/SP.J.1123.2023.10028","url":null,"abstract":"<p><p>Hydrogen sulfide (H<sub>2</sub>S) is a pervasive gaseous pollutant that emits the characteristic odor of rotten gas, even at low concentrations. It is generated during various industrial processes, including petroleum and natural gas refining, mining operations, wastewater treatment activities, and refuse disposal practices. According to statistics from the World Health Organization (WHO), over 70 occupations are exposed to H<sub>2</sub>S, rendering it a key monitoring factor in occupational disease detection. Although H<sub>2</sub>S has legitimate uses in the chemical, medical, and other fields, prolonged exposure to this gas can cause severe damage to the respiratory and central nervous systems, as well as other organs in the human body. Moreover, the substantial release of H<sub>2</sub>S into the environment can lead to significant pollution. This noxious substance has the potential to impair soil, water, and air quality, while disrupting the equilibrium of the surrounding ecosystems. Therefore, sulfide has become one of the most commonly measured substances for environmental monitoring worldwide. Achieving the stable enrichment and accurate detection of low-level H<sub>2</sub>S is of great significance. Common methods for detecting this gas include spectrophotometry, chemical analysis, gas chromatography, rapid field detection, and ion chromatography. Although these methods provide relatively reliable results, they suffer from limitations such as high detection cost, low recovery, lack of environmental friendliness, and imprecise quantification of low-concentration H<sub>2</sub>S. Furthermore, the sampling processes involved in these methods are complex and require specialized equipment and electrical devices. Additionally, approximately 20% of the sulfides in a sample are lost after 2 h in a conventional alkaline sodium hydroxide solution, causing difficulties in preservation and detection. In this study, an accurate, efficient, and cost-saving method based on ion chromatography-pulse amperometry was developed for H<sub>2</sub>S determination. A conventional IonPac AS7 (250 mm×4 mm) anion-exchange column was employed, and a new eluent based on sodium hydroxide and sodium oxalate was used to replace the original sodium hydroxide-sodium acetate eluent. The main factors influencing the separation and detection performance of the proposed method, including the pulse amperage detection potential parameters and integration time, as well as the type and content of additives in the stabilizing solution, were optimized. The results showed that the proposed method had a good linear relationship between 10 and 3000 μg/L, with correlation coefficients (<i>r</i><sup>2</sup>) of up to 0.999. The limits of detection (<i>S/N</i>=3) and quantification (<i>S/N</i>=10) were 1.53 and 5.10 μg/L, respectively. The relative standard deviations (RSDs) of the peak area and retention time of sulfides were less than 0.2% (<i>n</i>=6). The new method exhibited ex","PeriodicalId":101336,"journal":{"name":"Se pu = Chinese journal of chromatography","volume":"42 8","pages":"766-772"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292478/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141862045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.3724/SP.J.1123.2023.09013
Rui Shen, Yong-Yi Li, Xiao-Jing Gao, Chao-Ou Shi
Urea is a simple organic compound that is widely used in both the industry and daily life. Compared with conventional methods, the preparation of urea by electrochemical synthesis is more environmentally friendly and sustainable. However, after the reaction, low amounts of urea and high concentrations of inorganic ions, including [Formula: see text] concentration was achieved without interference. Thus, the developed method can be applied for the detection of trace urea and other related ions in urea-containing electrolyte products.
{"title":"[Determination of electrosynthesized urea products by igh performance liquid chromatography based n porous graphitic carbon column].","authors":"Rui Shen, Yong-Yi Li, Xiao-Jing Gao, Chao-Ou Shi","doi":"10.3724/SP.J.1123.2023.09013","DOIUrl":"10.3724/SP.J.1123.2023.09013","url":null,"abstract":"<p><p>Urea is a simple organic compound that is widely used in both the industry and daily life. Compared with conventional methods, the preparation of urea by electrochemical synthesis is more environmentally friendly and sustainable. However, after the reaction, low amounts of urea and high concentrations of inorganic ions, including [Formula: see text] concentration was achieved without interference. Thus, the developed method can be applied for the detection of trace urea and other related ions in urea-containing electrolyte products.</p>","PeriodicalId":101336,"journal":{"name":"Se pu = Chinese journal of chromatography","volume":"42 8","pages":"799-804"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292598/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141862040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}