首页 > 最新文献

test最新文献

英文 中文
Bayesian joint quantile autoregression 贝叶斯联合分位数自回归
Pub Date : 2023-11-12 DOI: 10.1007/s11749-023-00895-6
Jorge Castillo-Mateo, Alan E. Gelfand, Jesús Asín, Ana C. Cebrián, Jesús Abaurrea
Abstract Quantile regression continues to increase in usage, providing a useful alternative to customary mean regression. Primary implementation takes the form of so-called multiple quantile regression, creating a separate regression for each quantile of interest. However, recently, advances have been made in joint quantile regression, supplying a quantile function which avoids crossing of the regression across quantiles. Here, we turn to quantile autoregression (QAR), offering a fully Bayesian version. We extend the initial quantile regression work of Koenker and Xiao (J Am Stat Assoc 101(475):980–990, 2006. https://doi.org/10.1198/016214506000000672 ) in the spirit of Tokdar and Kadane (Bayesian Anal 7(1):51–72, 2012. https://doi.org/10.1214/12-BA702 ). We offer a directly interpretable parametric model specification for QAR. Further, we offer a pth-order QAR(p) version, a multivariate QAR(1) version, and a spatial QAR(1) version. We illustrate with simulation as well as a temperature dataset collected in Aragón, Spain.
分位数回归的使用不断增加,为习惯均值回归提供了一种有用的替代方法。主要实现采用所谓的多分位数回归的形式,为每个感兴趣的分位数创建单独的回归。然而,最近在联合分位数回归方面取得了进展,提供了一个分位数函数,避免了回归在分位数之间的交叉。在这里,我们转向分位数自回归(QAR),提供一个完整的贝叶斯版本。我们扩展了Koenker和Xiao的初始分位数回归工作[J] .中国生物医学工程学报,31(4):980-990,2006。https://doi.org/10.1198/016214506000000672)以Tokdar和Kadane的精神(贝叶斯分析7(1):51-72,2012。https://doi.org/10.1214/12-BA702)。我们为QAR提供了一个可直接解释的参数化模型规范。此外,我们还提供了一个p阶QAR(p)版本、一个多元QAR(1)版本和一个空间QAR(1)版本。我们用模拟以及在西班牙Aragón收集的温度数据集来说明。
{"title":"Bayesian joint quantile autoregression","authors":"Jorge Castillo-Mateo, Alan E. Gelfand, Jesús Asín, Ana C. Cebrián, Jesús Abaurrea","doi":"10.1007/s11749-023-00895-6","DOIUrl":"https://doi.org/10.1007/s11749-023-00895-6","url":null,"abstract":"Abstract Quantile regression continues to increase in usage, providing a useful alternative to customary mean regression. Primary implementation takes the form of so-called multiple quantile regression, creating a separate regression for each quantile of interest. However, recently, advances have been made in joint quantile regression, supplying a quantile function which avoids crossing of the regression across quantiles. Here, we turn to quantile autoregression (QAR), offering a fully Bayesian version. We extend the initial quantile regression work of Koenker and Xiao (J Am Stat Assoc 101(475):980–990, 2006. https://doi.org/10.1198/016214506000000672 ) in the spirit of Tokdar and Kadane (Bayesian Anal 7(1):51–72, 2012. https://doi.org/10.1214/12-BA702 ). We offer a directly interpretable parametric model specification for QAR. Further, we offer a pth-order QAR(p) version, a multivariate QAR(1) version, and a spatial QAR(1) version. We illustrate with simulation as well as a temperature dataset collected in Aragón, Spain.","PeriodicalId":101465,"journal":{"name":"test","volume":"83 16","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135037501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comments on: Statistical inference and large-scale multiple testing for high-dimensional regression models 点评:高维回归模型的统计推断和大规模多元检验
Pub Date : 2023-11-07 DOI: 10.1007/s11749-023-00898-3
Ya’acov Ritov
{"title":"Comments on: Statistical inference and large-scale multiple testing for high-dimensional regression models","authors":"Ya’acov Ritov","doi":"10.1007/s11749-023-00898-3","DOIUrl":"https://doi.org/10.1007/s11749-023-00898-3","url":null,"abstract":"","PeriodicalId":101465,"journal":{"name":"test","volume":"10 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135480445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Model checking for generalized partially linear models 广义部分线性模型的模型检验
Pub Date : 2023-11-06 DOI: 10.1007/s11749-023-00897-4
Xinmin Li, Haozhe Liang, Wolfgang Härdle, Hua Liang
{"title":"Model checking for generalized partially linear models","authors":"Xinmin Li, Haozhe Liang, Wolfgang Härdle, Hua Liang","doi":"10.1007/s11749-023-00897-4","DOIUrl":"https://doi.org/10.1007/s11749-023-00897-4","url":null,"abstract":"","PeriodicalId":101465,"journal":{"name":"test","volume":"47 S1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135634124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comments on: Statistical inference and large-scale multiple testing for high-dimensional regression models 点评:高维回归模型的统计推断和大规模多元检验
Pub Date : 2023-11-03 DOI: 10.1007/s11749-023-00896-5
Gerda Claeskens, Maarten Jansen
{"title":"Comments on: Statistical inference and large-scale multiple testing for high-dimensional regression models","authors":"Gerda Claeskens, Maarten Jansen","doi":"10.1007/s11749-023-00896-5","DOIUrl":"https://doi.org/10.1007/s11749-023-00896-5","url":null,"abstract":"","PeriodicalId":101465,"journal":{"name":"test","volume":"16 1‐12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135868358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian analysis of testing general hypotheses in linear models with spherically symmetric errors 球对称误差线性模型一般假设检验的贝叶斯分析
Pub Date : 2023-10-30 DOI: 10.1007/s11749-023-00892-9
Min Wang, Keying Ye, Zifei Han
{"title":"Bayesian analysis of testing general hypotheses in linear models with spherically symmetric errors","authors":"Min Wang, Keying Ye, Zifei Han","doi":"10.1007/s11749-023-00892-9","DOIUrl":"https://doi.org/10.1007/s11749-023-00892-9","url":null,"abstract":"","PeriodicalId":101465,"journal":{"name":"test","volume":"174 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136068432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimation of stability index for symmetric $$alpha $$-stable distribution using quantile conditional variance ratios 使用分位数条件方差比估计对称$$alpha $$ -稳定分布的稳定性指数
Pub Date : 2023-10-30 DOI: 10.1007/s11749-023-00894-7
Kewin Pączek, Damian Jelito, Marcin Pitera, Agnieszka Wyłomańska
Abstract The class of $$alpha $$ α -stable distributions is widely used in various applications, especially for modeling heavy-tailed data. Although the $$alpha $$ α -stable distributions have been used in practice for many years, new methods for identification, testing, and estimation are still being refined and new approaches are being proposed. The constant development of new statistical methods is related to the low efficiency of existing algorithms, especially when the underlying sample is small or the distribution is close to Gaussian. In this paper, we propose a new estimation algorithm for the stability index, for samples from the symmetric $$alpha $$ α -stable distribution. The proposed approach is based on a quantile conditional variance ratio. We study the statistical properties of the proposed estimation procedure and show empirically that our methodology often outperforms other commonly used estimation algorithms. Moreover, we show that our statistic extracts unique sample characteristics that can be combined with other methods to refine existing methodologies via ensemble methods. Although our focus is set on the symmetric $$alpha $$ α -stable case, we demonstrate that the considered statistic is insensitive to the skewness parameter change, so our method could be also used in a more generic framework. For completeness, we also show how to apply our method to real data linked to financial market and plasma physics.
$$alpha $$ α稳定分布类广泛应用于各种应用,特别是对重尾数据的建模。虽然$$alpha $$ α稳定分布已经在实践中使用了许多年,但用于识别、测试和估计的新方法仍在不断改进,并提出了新的方法。新的统计方法的不断发展与现有算法的低效率有关,特别是当底层样本很小或分布接近高斯分布时。本文针对对称$$alpha $$ α -稳定分布的样本,提出了一种新的稳定性指标估计算法。该方法基于分位数条件方差比。我们研究了所提出的估计过程的统计性质,并通过经验表明,我们的方法通常优于其他常用的估计算法。此外,我们表明,我们的统计提取独特的样本特征,可以与其他方法相结合,通过集成方法来改进现有的方法。虽然我们的重点放在对称$$alpha $$ α稳定的情况下,但我们证明了所考虑的统计量对偏度参数的变化不敏感,因此我们的方法也可以用于更通用的框架。为了完整起见,我们还展示了如何将我们的方法应用于与金融市场和等离子体物理相关的实际数据。
{"title":"Estimation of stability index for symmetric $$alpha $$-stable distribution using quantile conditional variance ratios","authors":"Kewin Pączek, Damian Jelito, Marcin Pitera, Agnieszka Wyłomańska","doi":"10.1007/s11749-023-00894-7","DOIUrl":"https://doi.org/10.1007/s11749-023-00894-7","url":null,"abstract":"Abstract The class of $$alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> -stable distributions is widely used in various applications, especially for modeling heavy-tailed data. Although the $$alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> -stable distributions have been used in practice for many years, new methods for identification, testing, and estimation are still being refined and new approaches are being proposed. The constant development of new statistical methods is related to the low efficiency of existing algorithms, especially when the underlying sample is small or the distribution is close to Gaussian. In this paper, we propose a new estimation algorithm for the stability index, for samples from the symmetric $$alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> -stable distribution. The proposed approach is based on a quantile conditional variance ratio. We study the statistical properties of the proposed estimation procedure and show empirically that our methodology often outperforms other commonly used estimation algorithms. Moreover, we show that our statistic extracts unique sample characteristics that can be combined with other methods to refine existing methodologies via ensemble methods. Although our focus is set on the symmetric $$alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> -stable case, we demonstrate that the considered statistic is insensitive to the skewness parameter change, so our method could be also used in a more generic framework. For completeness, we also show how to apply our method to real data linked to financial market and plasma physics.","PeriodicalId":101465,"journal":{"name":"test","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136103877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Unit-Weibull autoregressive moving average models 单位-威布尔自回归移动平均模型
Pub Date : 2023-10-24 DOI: 10.1007/s11749-023-00893-8
Guilherme Pumi, Taiane Schaedler Prass, Cleiton Guollo Taufemback
{"title":"Unit-Weibull autoregressive moving average models","authors":"Guilherme Pumi, Taiane Schaedler Prass, Cleiton Guollo Taufemback","doi":"10.1007/s11749-023-00893-8","DOIUrl":"https://doi.org/10.1007/s11749-023-00893-8","url":null,"abstract":"","PeriodicalId":101465,"journal":{"name":"test","volume":"4 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135268320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Statistical analysis of measures of non-convexity 非凸性测度的统计分析
Pub Date : 2023-10-12 DOI: 10.1007/s11749-023-00889-4
Alejandro Cholaquidis, Ricardo Fraiman, Leonardo Moreno, Beatriz Pateiro-López
{"title":"Statistical analysis of measures of non-convexity","authors":"Alejandro Cholaquidis, Ricardo Fraiman, Leonardo Moreno, Beatriz Pateiro-López","doi":"10.1007/s11749-023-00889-4","DOIUrl":"https://doi.org/10.1007/s11749-023-00889-4","url":null,"abstract":"","PeriodicalId":101465,"journal":{"name":"test","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136013071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conditional tail moment and reinsurance premium estimation under random right censoring 随机右删减下的条件尾矩与再保险保费估计
Pub Date : 2023-10-09 DOI: 10.1007/s11749-023-00890-x
Yuri Goegebeur, Armelle Guillou, Jing Qin
Abstract We propose an estimator of the conditional tail moment (CTM) when the data are subject to random censorship. The variable of main interest and the censoring variable both follow a Pareto-type distribution. We establish the asymptotic properties of our estimator and discuss bias-reduction. Then, the CTM is used to estimate, in case of censorship, the premium principle for excess-of-loss reinsurance. The finite sample properties of the proposed estimators are investigated with a simulation study and we illustrate their practical applicability on a dataset of motor third party liability insurance.
摘要提出了一种数据随机审查时的条件尾矩估计方法。主要感兴趣的变量和审查变量都遵循帕累托型分布。我们建立了估计量的渐近性质,并讨论了偏约问题。然后,在审查情况下,利用CTM估计超额赔付再保险的保费原则。通过仿真研究研究了所提出的估计器的有限样本性质,并说明了它们在机动车第三者责任保险数据集上的实际适用性。
{"title":"Conditional tail moment and reinsurance premium estimation under random right censoring","authors":"Yuri Goegebeur, Armelle Guillou, Jing Qin","doi":"10.1007/s11749-023-00890-x","DOIUrl":"https://doi.org/10.1007/s11749-023-00890-x","url":null,"abstract":"Abstract We propose an estimator of the conditional tail moment (CTM) when the data are subject to random censorship. The variable of main interest and the censoring variable both follow a Pareto-type distribution. We establish the asymptotic properties of our estimator and discuss bias-reduction. Then, the CTM is used to estimate, in case of censorship, the premium principle for excess-of-loss reinsurance. The finite sample properties of the proposed estimators are investigated with a simulation study and we illustrate their practical applicability on a dataset of motor third party liability insurance.","PeriodicalId":101465,"journal":{"name":"test","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135043905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Testing Poissonity of a large number of populations 测试大量种群的毒力
Pub Date : 2023-09-29 DOI: 10.1007/s11749-023-00883-w
M. D. Jiménez-Gamero, J. de Uña-Álvarez
Abstract This paper studies the problem of simultaneously testing that each of k samples, coming from k count variables, were all generated by Poisson laws. The means of those populations may differ. The proposed procedure is designed for large k , which can be bigger than the sample sizes. First, a test is proposed for the case of independent samples, and then the obtained results are extended to dependent data. In each case, the asymptotic distribution of the test statistic is stated under the null hypothesis as well as under alternatives, which allows to study the consistency of the test. Specifically, it is shown that the test statistic is asymptotically free distributed under the null hypothesis. The finite sample performance of the test is studied via simulation. A real data set application is included.
摘要:本文研究了同时检验k个样本(来自k个计数变量)是否均由泊松定律生成的问题。这些群体的均值可能不同。所提出的程序是为大k设计的,它可以大于样本量。首先对独立样本的情况进行检验,然后将所得结果推广到相关数据。在每种情况下,检验统计量的渐近分布都是在零假设和备选假设下陈述的,这允许研究检验的一致性。具体地说,在零假设下,检验统计量是渐近自由分布的。通过仿真研究了该试验的有限样本性能。包括一个真实的数据集应用。
{"title":"Testing Poissonity of a large number of populations","authors":"M. D. Jiménez-Gamero, J. de Uña-Álvarez","doi":"10.1007/s11749-023-00883-w","DOIUrl":"https://doi.org/10.1007/s11749-023-00883-w","url":null,"abstract":"Abstract This paper studies the problem of simultaneously testing that each of k samples, coming from k count variables, were all generated by Poisson laws. The means of those populations may differ. The proposed procedure is designed for large k , which can be bigger than the sample sizes. First, a test is proposed for the case of independent samples, and then the obtained results are extended to dependent data. In each case, the asymptotic distribution of the test statistic is stated under the null hypothesis as well as under alternatives, which allows to study the consistency of the test. Specifically, it is shown that the test statistic is asymptotically free distributed under the null hypothesis. The finite sample performance of the test is studied via simulation. A real data set application is included.","PeriodicalId":101465,"journal":{"name":"test","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135199299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
test
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1