首页 > 最新文献

2022 IEEE 16th International Scientific Conference on Informatics (Informatics)最新文献

英文 中文
Methods for Explaining CNN-Based BCI: A Survey of Recent Applications 基于cnn的脑机接口解释方法:近期应用综述
Pub Date : 2022-11-23 DOI: 10.1109/Informatics57926.2022.10083473
M. Ivanovs, Beate Banga, V. Abolins, K. Nesenbergs
Convolutional neural networks (CNN) have achieved state-of-the-art results in many Brain-Computer Interface (BCI) tasks, yet their applications in real-world scenarios and attempts at further optimizing them may be hindered by their non-transparent, black box-like nature. While there has been ex-tensive research on the intersection of the fields of explainable artificial intelligence (AI) and computer vision on explaining CNN for image classification, it is an open question how commonly the methods for explaining CNNs are used when CNNs are a part of a BCI setup. In the present study, we survey BCI studies from 2020 to 2022 that deploy CNNs to find out how many of them use explainable AI methods for better understanding of CNNs and which such methods are used in particular. Our findings are that explainable AI methods were used in 13.7 percent of the surveyed publications, and the majority of the studies in which these methods were used employed the t-distributed stochastic neighbour embedding (t-SNE) method.
卷积神经网络(CNN)已经在许多脑机接口(BCI)任务中取得了最先进的成果,但它们在现实场景中的应用以及进一步优化它们的尝试可能会受到其不透明的黑盒子性质的阻碍。虽然在解释CNN用于图像分类方面,可解释人工智能(AI)和计算机视觉领域的交叉领域已经进行了广泛的研究,但当CNN作为BCI设置的一部分时,解释CNN的方法有多普遍是一个悬而未决的问题。在本研究中,我们调查了2020年至2022年部署cnn的BCI研究,以找出其中有多少使用可解释的AI方法来更好地理解cnn,以及具体使用了哪些方法。我们的研究结果是,13.7%的被调查出版物使用了可解释的人工智能方法,其中使用这些方法的大多数研究采用了t分布随机邻居嵌入(t-SNE)方法。
{"title":"Methods for Explaining CNN-Based BCI: A Survey of Recent Applications","authors":"M. Ivanovs, Beate Banga, V. Abolins, K. Nesenbergs","doi":"10.1109/Informatics57926.2022.10083473","DOIUrl":"https://doi.org/10.1109/Informatics57926.2022.10083473","url":null,"abstract":"Convolutional neural networks (CNN) have achieved state-of-the-art results in many Brain-Computer Interface (BCI) tasks, yet their applications in real-world scenarios and attempts at further optimizing them may be hindered by their non-transparent, black box-like nature. While there has been ex-tensive research on the intersection of the fields of explainable artificial intelligence (AI) and computer vision on explaining CNN for image classification, it is an open question how commonly the methods for explaining CNNs are used when CNNs are a part of a BCI setup. In the present study, we survey BCI studies from 2020 to 2022 that deploy CNNs to find out how many of them use explainable AI methods for better understanding of CNNs and which such methods are used in particular. Our findings are that explainable AI methods were used in 13.7 percent of the surveyed publications, and the majority of the studies in which these methods were used employed the t-distributed stochastic neighbour embedding (t-SNE) method.","PeriodicalId":101488,"journal":{"name":"2022 IEEE 16th International Scientific Conference on Informatics (Informatics)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126558263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metamodel-based Parser Generator for Python 基于元模型的Python解析器生成器
Pub Date : 2022-11-23 DOI: 10.1109/Informatics57926.2022.10083501
Sergej Chodarev, Sharoon Ilyas
Most of the parser tools are concentrated on the concrete syntax and grammar definition. This paper describes a language definition tool that uses a metamodel specification instead of a grammar as a basis of the language definition. Inspired by a similar Java tool known as YAJCo, the metamodel is defined using usual object-oriented techniques-as classes in the Python programming language. The result of the parsing process is a graph of objects. The tool is demonstrated in a case study of a state machine definition language.
大多数解析器工具都集中于具体的语法和语法定义。本文描述了一个语言定义工具,它使用元模型规范代替语法作为语言定义的基础。受类似的Java工具YAJCo的启发,元模型是使用通常的面向对象技术(作为Python编程语言中的类)定义的。解析过程的结果是一个对象图。该工具在一个状态机定义语言的案例研究中进行了演示。
{"title":"Metamodel-based Parser Generator for Python","authors":"Sergej Chodarev, Sharoon Ilyas","doi":"10.1109/Informatics57926.2022.10083501","DOIUrl":"https://doi.org/10.1109/Informatics57926.2022.10083501","url":null,"abstract":"Most of the parser tools are concentrated on the concrete syntax and grammar definition. This paper describes a language definition tool that uses a metamodel specification instead of a grammar as a basis of the language definition. Inspired by a similar Java tool known as YAJCo, the metamodel is defined using usual object-oriented techniques-as classes in the Python programming language. The result of the parsing process is a graph of objects. The tool is demonstrated in a case study of a state machine definition language.","PeriodicalId":101488,"journal":{"name":"2022 IEEE 16th International Scientific Conference on Informatics (Informatics)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124675204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
2022 IEEE 16th International Scientific Conference on Informatics (Informatics)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1