Pub Date : 2024-06-01Epub Date: 2024-04-08DOI: 10.1161/CIRCGEN.124.004610
Joséphine Henry, Yilong Lin, Nabila Bouatia-Naji
{"title":"Enhancing the Prediction Power of Polygenic Risk Scores in Genetically Diverse Coronary Heart Disease.","authors":"Joséphine Henry, Yilong Lin, Nabila Bouatia-Naji","doi":"10.1161/CIRCGEN.124.004610","DOIUrl":"10.1161/CIRCGEN.124.004610","url":null,"abstract":"","PeriodicalId":10326,"journal":{"name":"Circulation: Genomic and Precision Medicine","volume":" ","pages":"e004610"},"PeriodicalIF":7.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140863111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-05-23DOI: 10.1161/HCG.0000000000000095
Antonis A Armoundas, Faraz S Ahmad, Derrick A Bennett, Mina K Chung, Leslie L Davis, Jessilyn Dunn, Sanjiv M Narayan, David J Slotwiner, Kevin Keith Wiley, Rohan Khera
Wearable devices are increasingly used by a growing portion of the population to track health and illnesses. The data emerging from these devices can potentially transform health care. This requires an interoperability framework that enables the deployment of platforms, sensors, devices, and software applications within diverse health systems, aiming to facilitate innovation in preventing and treating cardiovascular disease. However, the current data ecosystem includes several noninteroperable systems that inhibit such objectives. The design of clinically meaningful systems for accessing and incorporating these data into clinical workflows requires strategies to ensure the quality of data and clinical content and patient and caregiver accessibility. This scientific statement aims to address the best practices, gaps, and challenges pertaining to data interoperability in this area, with considerations for (1) data integration and the scope of measures, (2) application of these data into clinical approaches/strategies, and (3) regulatory/ethical/legal issues.
{"title":"Data Interoperability for Ambulatory Monitoring of Cardiovascular Disease: A Scientific Statement From the American Heart Association.","authors":"Antonis A Armoundas, Faraz S Ahmad, Derrick A Bennett, Mina K Chung, Leslie L Davis, Jessilyn Dunn, Sanjiv M Narayan, David J Slotwiner, Kevin Keith Wiley, Rohan Khera","doi":"10.1161/HCG.0000000000000095","DOIUrl":"10.1161/HCG.0000000000000095","url":null,"abstract":"<p><p>Wearable devices are increasingly used by a growing portion of the population to track health and illnesses. The data emerging from these devices can potentially transform health care. This requires an interoperability framework that enables the deployment of platforms, sensors, devices, and software applications within diverse health systems, aiming to facilitate innovation in preventing and treating cardiovascular disease. However, the current data ecosystem includes several noninteroperable systems that inhibit such objectives. The design of clinically meaningful systems for accessing and incorporating these data into clinical workflows requires strategies to ensure the quality of data and clinical content and patient and caregiver accessibility. This scientific statement aims to address the best practices, gaps, and challenges pertaining to data interoperability in this area, with considerations for (1) data integration and the scope of measures, (2) application of these data into clinical approaches/strategies, and (3) regulatory/ethical/legal issues.</p>","PeriodicalId":10326,"journal":{"name":"Circulation: Genomic and Precision Medicine","volume":" ","pages":"e000095"},"PeriodicalIF":6.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141080673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-05-02DOI: 10.1161/CIRCGEN.124.004563
Bengt Zöller, Per Rosengren, MirNabi Pirouzifard, Jan Sundquist, Kristina Sundquist
{"title":"Heritability of Atrial Fibrillation Among Swedish Adoptees.","authors":"Bengt Zöller, Per Rosengren, MirNabi Pirouzifard, Jan Sundquist, Kristina Sundquist","doi":"10.1161/CIRCGEN.124.004563","DOIUrl":"10.1161/CIRCGEN.124.004563","url":null,"abstract":"","PeriodicalId":10326,"journal":{"name":"Circulation: Genomic and Precision Medicine","volume":" ","pages":"e004563"},"PeriodicalIF":7.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140847188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-04-23DOI: 10.1161/CIRCGEN.123.004533
Olubadewa A Fatunde, Pattara Rattanawong, Joseph J Maleszewski, David R Murray, Win-Kuang Shen, Naveen L Pereira
{"title":"Brugada Syndrome in a Transplanted Heart: Implications for Organ Transplant Screening Process.","authors":"Olubadewa A Fatunde, Pattara Rattanawong, Joseph J Maleszewski, David R Murray, Win-Kuang Shen, Naveen L Pereira","doi":"10.1161/CIRCGEN.123.004533","DOIUrl":"10.1161/CIRCGEN.123.004533","url":null,"abstract":"","PeriodicalId":10326,"journal":{"name":"Circulation: Genomic and Precision Medicine","volume":" ","pages":"e004533"},"PeriodicalIF":6.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140850228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-06-10DOI: 10.1161/CIRCGEN.124.004736
Pourya Yarahmadi, Patricia K Nguyen
{"title":"Immune Cellular Dynamics in the Peripheral Blood: A Barometer for Cardiovascular Risk?","authors":"Pourya Yarahmadi, Patricia K Nguyen","doi":"10.1161/CIRCGEN.124.004736","DOIUrl":"10.1161/CIRCGEN.124.004736","url":null,"abstract":"","PeriodicalId":10326,"journal":{"name":"Circulation: Genomic and Precision Medicine","volume":" ","pages":"e004736"},"PeriodicalIF":7.4,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141295661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-06-10DOI: 10.1161/CIRCGEN.123.004369
Edgar E Nollet, Maike Schuldt, Vasco Sequeira, Aleksandra Binek, Thang V Pham, Stephan A C Schoonvelde, Mark Jansen, Bauke V Schomakers, Michel van Weeghel, Fred M Vaz, Riekelt H Houtkooper, Jennifer E Van Eyk, Connie R Jimenez, Michelle Michels, Kenneth C Bedi, Kenneth B Margulies, Cristobal G Dos Remedios, Diederik W D Kuster, Jolanda van der Velden
Background: Hypertrophic cardiomyopathy (HCM) is caused by sarcomere gene mutations (genotype-positive HCM) in ≈50% of patients and occurs in the absence of mutations (genotype-negative HCM) in the other half of patients. We explored how alterations in the metabolomic and lipidomic landscape are involved in cardiac remodeling in both patient groups.
Methods: We performed proteomics, metabolomics, and lipidomics on myectomy samples (genotype-positive N=19; genotype-negative N=22; and genotype unknown N=6) from clinically well-phenotyped patients with HCM and on cardiac tissue samples from sex- and age-matched and body mass index-matched nonfailing donors (N=20). These data sets were integrated to comprehensively map changes in lipid-handling and energy metabolism pathways. By linking metabolomic and lipidomic data to variability in clinical data, we explored patient group-specific associations between cardiac and metabolic remodeling.
Results: HCM myectomy samples exhibited (1) increased glucose and glycogen metabolism, (2) downregulation of fatty acid oxidation, and (3) reduced ceramide formation and lipid storage. In genotype-negative patients, septal hypertrophy and diastolic dysfunction correlated with lowering of acylcarnitines, redox metabolites, amino acids, pentose phosphate pathway intermediates, purines, and pyrimidines. In contrast, redox metabolites, amino acids, pentose phosphate pathway intermediates, purines, and pyrimidines were positively associated with septal hypertrophy and diastolic impairment in genotype-positive patients.
Conclusions: We provide novel insights into both general and genotype-specific metabolic changes in HCM. Distinct metabolic alterations underlie cardiac disease progression in genotype-negative and genotype-positive patients with HCM.
{"title":"Integrating Clinical Phenotype With Multiomics Analyses of Human Cardiac Tissue Unveils Divergent Metabolic Remodeling in Genotype-Positive and Genotype-Negative Patients With Hypertrophic Cardiomyopathy.","authors":"Edgar E Nollet, Maike Schuldt, Vasco Sequeira, Aleksandra Binek, Thang V Pham, Stephan A C Schoonvelde, Mark Jansen, Bauke V Schomakers, Michel van Weeghel, Fred M Vaz, Riekelt H Houtkooper, Jennifer E Van Eyk, Connie R Jimenez, Michelle Michels, Kenneth C Bedi, Kenneth B Margulies, Cristobal G Dos Remedios, Diederik W D Kuster, Jolanda van der Velden","doi":"10.1161/CIRCGEN.123.004369","DOIUrl":"10.1161/CIRCGEN.123.004369","url":null,"abstract":"<p><strong>Background: </strong>Hypertrophic cardiomyopathy (HCM) is caused by sarcomere gene mutations (genotype-positive HCM) in ≈50% of patients and occurs in the absence of mutations (genotype-negative HCM) in the other half of patients. We explored how alterations in the metabolomic and lipidomic landscape are involved in cardiac remodeling in both patient groups.</p><p><strong>Methods: </strong>We performed proteomics, metabolomics, and lipidomics on myectomy samples (genotype-positive N=19; genotype-negative N=22; and genotype unknown N=6) from clinically well-phenotyped patients with HCM and on cardiac tissue samples from sex- and age-matched and body mass index-matched nonfailing donors (N=20). These data sets were integrated to comprehensively map changes in lipid-handling and energy metabolism pathways. By linking metabolomic and lipidomic data to variability in clinical data, we explored patient group-specific associations between cardiac and metabolic remodeling.</p><p><strong>Results: </strong>HCM myectomy samples exhibited (1) increased glucose and glycogen metabolism, (2) downregulation of fatty acid oxidation, and (3) reduced ceramide formation and lipid storage. In genotype-negative patients, septal hypertrophy and diastolic dysfunction correlated with lowering of acylcarnitines, redox metabolites, amino acids, pentose phosphate pathway intermediates, purines, and pyrimidines. In contrast, redox metabolites, amino acids, pentose phosphate pathway intermediates, purines, and pyrimidines were positively associated with septal hypertrophy and diastolic impairment in genotype-positive patients.</p><p><strong>Conclusions: </strong>We provide novel insights into both general and genotype-specific metabolic changes in HCM. Distinct metabolic alterations underlie cardiac disease progression in genotype-negative and genotype-positive patients with HCM.</p>","PeriodicalId":10326,"journal":{"name":"Circulation: Genomic and Precision Medicine","volume":" ","pages":"e004369"},"PeriodicalIF":6.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188634/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141295662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-05-16DOI: 10.1161/CIRCGEN.123.004526
Jennifer Arthur Ataam, Nadjet Belbachir, Isaac Perea-Gil, Vittavat Termglinchan, Nirmal Vadgama, Priyanka Garg, Rohin Ramchandani, Alexandra A Gavidia, Santiago Roura, Carolina Gálvez-Montón, Joseph C Wu, Antoni Bayés-Genis, Ioannis Karakikes
{"title":"Empagliflozin Attenuates Arrhythmias in an iPSC-Based Model of Hypertrophic Cardiomyopathy.","authors":"Jennifer Arthur Ataam, Nadjet Belbachir, Isaac Perea-Gil, Vittavat Termglinchan, Nirmal Vadgama, Priyanka Garg, Rohin Ramchandani, Alexandra A Gavidia, Santiago Roura, Carolina Gálvez-Montón, Joseph C Wu, Antoni Bayés-Genis, Ioannis Karakikes","doi":"10.1161/CIRCGEN.123.004526","DOIUrl":"10.1161/CIRCGEN.123.004526","url":null,"abstract":"","PeriodicalId":10326,"journal":{"name":"Circulation: Genomic and Precision Medicine","volume":" ","pages":"e004526"},"PeriodicalIF":6.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140944448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-05-16DOI: 10.1161/CIRCGEN.123.004374
Irene V van Blokland, Roy Oelen, Hilde E Groot, Jan Walter Benjamins, Kami Pekayvaz, Corinna Losert, Viktoria Knottenberg, Matthias Heinig, Leo Nicolai, Konstantin Stark, Pim van der Harst, Lude Franke, Monique G P van der Wijst
Background: The immune system's role in ST-segment-elevated myocardial infarction (STEMI) remains poorly characterized but is an important driver of recurrent cardiovascular events. While anti-inflammatory drugs show promise in reducing recurrence risk, their broad immune system impairment may induce severe side effects. To overcome these challenges, a nuanced understanding of the immune response to STEMI is needed.
Methods: For this, we compared peripheral blood mononuclear single-cell RNA-sequencing (scRNA-seq) and plasma protein expression over time (hospital admission, 24 hours, and 6-8 weeks post-STEMI) in 38 patients and 38 controls (95 995 diseased and 33 878 control peripheral blood mononuclear cells).
Results: Compared with controls, classical monocytes were increased and CD56dim natural killer cells were decreased in patients with STEMI at admission and persisted until 24 hours post-STEMI. The largest gene expression changes were observed in monocytes, associating with changes in toll-like receptor, interferon, and interleukin signaling activity. Finally, a targeted cardiovascular biomarker panel revealed expression changes in 33/92 plasma proteins post-STEMI. Interestingly, interleukin-6R, MMP9 (matrix metalloproteinase-9), and LDLR (low-density lipoprotein receptor) were affected by coronary artery disease-associated genetic risk variation, disease status, and time post-STEMI, indicating the importance of considering these aspects when defining potential future therapies.
Conclusions: Our analyses revealed the immunologic pathways disturbed by STEMI, specifying affected cell types and disease stages. Additionally, we provide insights into patients expected to benefit most from anti-inflammatory treatments by identifying the genetic variants and disease stage at which these variants affect the outcome of these (drug-targeted) pathways. These findings advance our knowledge of the immune response post-STEMI and provide guidance for future therapeutic studies.
{"title":"Single-Cell Dissection of the Immune Response After Acute Myocardial Infarction.","authors":"Irene V van Blokland, Roy Oelen, Hilde E Groot, Jan Walter Benjamins, Kami Pekayvaz, Corinna Losert, Viktoria Knottenberg, Matthias Heinig, Leo Nicolai, Konstantin Stark, Pim van der Harst, Lude Franke, Monique G P van der Wijst","doi":"10.1161/CIRCGEN.123.004374","DOIUrl":"10.1161/CIRCGEN.123.004374","url":null,"abstract":"<p><strong>Background: </strong>The immune system's role in ST-segment-elevated myocardial infarction (STEMI) remains poorly characterized but is an important driver of recurrent cardiovascular events. While anti-inflammatory drugs show promise in reducing recurrence risk, their broad immune system impairment may induce severe side effects. To overcome these challenges, a nuanced understanding of the immune response to STEMI is needed.</p><p><strong>Methods: </strong>For this, we compared peripheral blood mononuclear single-cell RNA-sequencing (scRNA-seq) and plasma protein expression over time (hospital admission, 24 hours, and 6-8 weeks post-STEMI) in 38 patients and 38 controls (95 995 diseased and 33 878 control peripheral blood mononuclear cells).</p><p><strong>Results: </strong>Compared with controls, classical monocytes were increased and CD56<sup>dim</sup> natural killer cells were decreased in patients with STEMI at admission and persisted until 24 hours post-STEMI. The largest gene expression changes were observed in monocytes, associating with changes in toll-like receptor, interferon, and interleukin signaling activity. Finally, a targeted cardiovascular biomarker panel revealed expression changes in 33/92 plasma proteins post-STEMI. Interestingly, interleukin-6R, MMP9 (matrix metalloproteinase-9), and LDLR (low-density lipoprotein receptor) were affected by coronary artery disease-associated genetic risk variation, disease status, and time post-STEMI, indicating the importance of considering these aspects when defining potential future therapies.</p><p><strong>Conclusions: </strong>Our analyses revealed the immunologic pathways disturbed by STEMI, specifying affected cell types and disease stages. Additionally, we provide insights into patients expected to benefit most from anti-inflammatory treatments by identifying the genetic variants and disease stage at which these variants affect the outcome of these (drug-targeted) pathways. These findings advance our knowledge of the immune response post-STEMI and provide guidance for future therapeutic studies.</p>","PeriodicalId":10326,"journal":{"name":"Circulation: Genomic and Precision Medicine","volume":" ","pages":"e004374"},"PeriodicalIF":6.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188632/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140944454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-06-07DOI: 10.1161/CIRCGEN.123.004448
Gabriella Captur, Ivan Doykov, Sheng-Chia Chung, Ella Field, Annabelle Barnes, Enpei Zhang, Imogen Heenan, Gabrielle Norrish, James C Moon, Perry M Elliott, Wendy E Heywood, Kevin Mills, Juan Pablo Kaski
Background: Hypertrophic cardiomyopathy (HCM) is defined clinically by pathological left ventricular hypertrophy. We have previously developed a plasma proteomics biomarker panel that correlates with clinical markers of disease severity and sudden cardiac death risk in adult patients with HCM. The aim of this study was to investigate the utility of adult biomarkers and perform new discoveries in proteomics for childhood-onset HCM.
Methods: Fifty-nine protein biomarkers were identified from an exploratory plasma proteomics screen in children with HCM and augmented into our existing multiplexed targeted liquid chromatography-tandem/mass spectrometry-based assay. The association of these biomarkers with clinical phenotypes and outcomes was prospectively tested in plasma collected from 148 children with HCM and 50 healthy controls. Machine learning techniques were used to develop novel pediatric plasma proteomic biomarker panels.
Results: Four previously identified adult HCM markers (aldolase fructose-bisphosphate A, complement C3a, talin-1, and thrombospondin 1) and 3 new markers (glycogen phosphorylase B, lipoprotein a and profilin 1) were elevated in pediatric HCM. Using supervised machine learning applied to training (n=137) and validation cohorts (n=61), this 7-biomarker panel differentiated HCM from healthy controls with an area under the curve of 1.0 in the training data set (sensitivity 100% [95% CI, 95-100]; specificity 100% [95% CI, 96-100]) and 0.82 in the validation data set (sensitivity 75% [95% CI, 59-86]; specificity 88% [95% CI, 75-94]). Reduced circulating levels of 4 other peptides (apolipoprotein L1, complement 5b, immunoglobulin heavy constant epsilon, and serum amyloid A4) found in children with high sudden cardiac death risk provided complete separation from the low and intermediate risk groups and predicted mortality and adverse arrhythmic outcomes (hazard ratio, 2.04 [95% CI, 1.0-4.2]; P=0.044).
Conclusions: In children, a 7-biomarker proteomics panel can distinguish HCM from controls with high sensitivity and specificity, and another 4-biomarker panel identifies those at high risk of adverse arrhythmic outcomes, including sudden cardiac death.
{"title":"Novel Multiplexed Plasma Biomarker Panel Has Diagnostic and Prognostic Potential in Children With Hypertrophic Cardiomyopathy.","authors":"Gabriella Captur, Ivan Doykov, Sheng-Chia Chung, Ella Field, Annabelle Barnes, Enpei Zhang, Imogen Heenan, Gabrielle Norrish, James C Moon, Perry M Elliott, Wendy E Heywood, Kevin Mills, Juan Pablo Kaski","doi":"10.1161/CIRCGEN.123.004448","DOIUrl":"10.1161/CIRCGEN.123.004448","url":null,"abstract":"<p><strong>Background: </strong>Hypertrophic cardiomyopathy (HCM) is defined clinically by pathological left ventricular hypertrophy. We have previously developed a plasma proteomics biomarker panel that correlates with clinical markers of disease severity and sudden cardiac death risk in adult patients with HCM. The aim of this study was to investigate the utility of adult biomarkers and perform new discoveries in proteomics for childhood-onset HCM.</p><p><strong>Methods: </strong>Fifty-nine protein biomarkers were identified from an exploratory plasma proteomics screen in children with HCM and augmented into our existing multiplexed targeted liquid chromatography-tandem/mass spectrometry-based assay. The association of these biomarkers with clinical phenotypes and outcomes was prospectively tested in plasma collected from 148 children with HCM and 50 healthy controls. Machine learning techniques were used to develop novel pediatric plasma proteomic biomarker panels.</p><p><strong>Results: </strong>Four previously identified adult HCM markers (aldolase fructose-bisphosphate A, complement C3a, talin-1, and thrombospondin 1) and 3 new markers (glycogen phosphorylase B, lipoprotein a and profilin 1) were elevated in pediatric HCM. Using supervised machine learning applied to training (n=137) and validation cohorts (n=61), this 7-biomarker panel differentiated HCM from healthy controls with an area under the curve of 1.0 in the training data set (sensitivity 100% [95% CI, 95-100]; specificity 100% [95% CI, 96-100]) and 0.82 in the validation data set (sensitivity 75% [95% CI, 59-86]; specificity 88% [95% CI, 75-94]). Reduced circulating levels of 4 other peptides (apolipoprotein L1, complement 5b, immunoglobulin heavy constant epsilon, and serum amyloid A4) found in children with high sudden cardiac death risk provided complete separation from the low and intermediate risk groups and predicted mortality and adverse arrhythmic outcomes (hazard ratio, 2.04 [95% CI, 1.0-4.2]; <i>P</i>=0.044).</p><p><strong>Conclusions: </strong>In children, a 7-biomarker proteomics panel can distinguish HCM from controls with high sensitivity and specificity, and another 4-biomarker panel identifies those at high risk of adverse arrhythmic outcomes, including sudden cardiac death.</p>","PeriodicalId":10326,"journal":{"name":"Circulation: Genomic and Precision Medicine","volume":" ","pages":"e004448"},"PeriodicalIF":6.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188636/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141283099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-01Epub Date: 2024-05-28DOI: 10.1161/CIRCGEN.123.004320
Lu-Chen Weng, Shaan Khurshid, Amelia Weber Hall, Victor Nauffal, Valerie N Morrill, Yan V Sun, Joel T Rämö, Dominik Beer, Simon Lee, Girish Nadkarni, Renee Johnson, Laura Andreasen, Anne Clayton, Clive R Pullinger, Zachary T Yoneda, Daniel J Friedman, Matthew C Hyman, Renae L Judy, Allan C Skanes, Kate M Orland, Paloma Jordà, Timothy M Treu, Matthew T Oetjens, Rajesh Subbiah, Jacob P Hartmann, Heidi T May, John P Kane, Tariq Z Issa, Navid A Nafissi, Peter Leong-Sit, Marie-Pierre Dubé, Carolina Roselli, Seung Hoan Choi, Jean-Claude Tardif, Habib R Khan, Stacey Knight, Jesper H Svendsen, Bruce Walker, Richard Karlsson Linnér, J Michael Gaziano, Rafik Tadros, Diane Fatkin, Daniel J Rader, Svati H Shah, Dan M Roden, Gregory M Marcus, Ruth J F Loos, Scott M Damrauer, Christopher M Haggerty, Kelly Cho, Aarno Palotie, Morten S Olesen, Lee L Eckhardt, Jason D Roberts, Michael J Cutler, M Benjamin Shoemaker, Peter W F Wilson, Patrick T Ellinor, Steven A Lubitz
Background: Substantial data support a heritable basis for supraventricular tachycardias, but the genetic determinants and molecular mechanisms of these arrhythmias are poorly understood. We sought to identify genetic loci associated with atrioventricular nodal reentrant tachycardia (AVNRT) and atrioventricular accessory pathways or atrioventricular reciprocating tachycardia (AVAPs/AVRT).
Methods: We performed multiancestry meta-analyses of genome-wide association studies to identify genetic loci for AVNRT (4 studies) and AVAP/AVRT (7 studies). We assessed evidence supporting the potential causal effects of candidate genes by analyzing relations between associated variants and cardiac gene expression, performing transcriptome-wide analyses, and examining prior genome-wide association studies.
Results: Analyses comprised 2384 AVNRT cases and 106 489 referents, and 2811 AVAP/AVRT cases and 1,483 093 referents. We identified 2 significant loci for AVNRT, which implicate NKX2-5 and TTN as disease susceptibility genes. A transcriptome-wide association analysis supported an association between reduced predicted cardiac expression of NKX2-5 and AVNRT. We identified 3 significant loci for AVAP/AVRT, which implicate SCN5A, SCN10A, and TTN/CCDC141. Variant associations at several loci have been previously reported for cardiac phenotypes, including atrial fibrillation, stroke, Brugada syndrome, and electrocardiographic intervals.
Conclusions: Our findings highlight gene regions associated with ion channel function (AVAP/AVRT), as well as cardiac development and the sarcomere (AVAP/AVRT and AVNRT) as important potential effectors of supraventricular tachycardia susceptibility.
{"title":"Meta-Analysis of Genome-Wide Association Studies Reveals Genetic Mechanisms of Supraventricular Arrhythmias.","authors":"Lu-Chen Weng, Shaan Khurshid, Amelia Weber Hall, Victor Nauffal, Valerie N Morrill, Yan V Sun, Joel T Rämö, Dominik Beer, Simon Lee, Girish Nadkarni, Renee Johnson, Laura Andreasen, Anne Clayton, Clive R Pullinger, Zachary T Yoneda, Daniel J Friedman, Matthew C Hyman, Renae L Judy, Allan C Skanes, Kate M Orland, Paloma Jordà, Timothy M Treu, Matthew T Oetjens, Rajesh Subbiah, Jacob P Hartmann, Heidi T May, John P Kane, Tariq Z Issa, Navid A Nafissi, Peter Leong-Sit, Marie-Pierre Dubé, Carolina Roselli, Seung Hoan Choi, Jean-Claude Tardif, Habib R Khan, Stacey Knight, Jesper H Svendsen, Bruce Walker, Richard Karlsson Linnér, J Michael Gaziano, Rafik Tadros, Diane Fatkin, Daniel J Rader, Svati H Shah, Dan M Roden, Gregory M Marcus, Ruth J F Loos, Scott M Damrauer, Christopher M Haggerty, Kelly Cho, Aarno Palotie, Morten S Olesen, Lee L Eckhardt, Jason D Roberts, Michael J Cutler, M Benjamin Shoemaker, Peter W F Wilson, Patrick T Ellinor, Steven A Lubitz","doi":"10.1161/CIRCGEN.123.004320","DOIUrl":"10.1161/CIRCGEN.123.004320","url":null,"abstract":"<p><strong>Background: </strong>Substantial data support a heritable basis for supraventricular tachycardias, but the genetic determinants and molecular mechanisms of these arrhythmias are poorly understood. We sought to identify genetic loci associated with atrioventricular nodal reentrant tachycardia (AVNRT) and atrioventricular accessory pathways or atrioventricular reciprocating tachycardia (AVAPs/AVRT).</p><p><strong>Methods: </strong>We performed multiancestry meta-analyses of genome-wide association studies to identify genetic loci for AVNRT (4 studies) and AVAP/AVRT (7 studies). We assessed evidence supporting the potential causal effects of candidate genes by analyzing relations between associated variants and cardiac gene expression, performing transcriptome-wide analyses, and examining prior genome-wide association studies.</p><p><strong>Results: </strong>Analyses comprised 2384 AVNRT cases and 106 489 referents, and 2811 AVAP/AVRT cases and 1,483 093 referents. We identified 2 significant loci for AVNRT, which implicate <i>NKX2-5</i> and <i>TTN</i> as disease susceptibility genes. A transcriptome-wide association analysis supported an association between reduced predicted cardiac expression of <i>NKX2-5</i> and AVNRT. We identified 3 significant loci for AVAP/AVRT, which implicate <i>SCN5A</i>, <i>SCN10A</i>, and <i>TTN/CCDC141</i>. Variant associations at several loci have been previously reported for cardiac phenotypes, including atrial fibrillation, stroke, Brugada syndrome, and electrocardiographic intervals.</p><p><strong>Conclusions: </strong>Our findings highlight gene regions associated with ion channel function (AVAP/AVRT), as well as cardiac development and the sarcomere (AVAP/AVRT and AVNRT) as important potential effectors of supraventricular tachycardia susceptibility.</p>","PeriodicalId":10326,"journal":{"name":"Circulation: Genomic and Precision Medicine","volume":" ","pages":"e004320"},"PeriodicalIF":6.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11187659/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141157181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}