Pub Date : 2023-10-28DOI: 10.1007/s10098-023-02617-w
Yeong Yuh Lee, Johnathan Yik, E. H. H. Koay, Hooi Hong Lau
{"title":"Application of light redirecting panels to improve sunlight utilization in multi-tiered vertical farming systems","authors":"Yeong Yuh Lee, Johnathan Yik, E. H. H. Koay, Hooi Hong Lau","doi":"10.1007/s10098-023-02617-w","DOIUrl":"https://doi.org/10.1007/s10098-023-02617-w","url":null,"abstract":"","PeriodicalId":10329,"journal":{"name":"Clean Technologies and Environmental Policy","volume":"37 1","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139312245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-26DOI: 10.1007/s10098-023-02615-y
Yinlun Huang
{"title":"From product and process scale down to finer scales: a new type of multiscale sustainability system","authors":"Yinlun Huang","doi":"10.1007/s10098-023-02615-y","DOIUrl":"https://doi.org/10.1007/s10098-023-02615-y","url":null,"abstract":"","PeriodicalId":10329,"journal":{"name":"Clean Technologies and Environmental Policy","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134908514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The rapid and unprecedented expansion of the global population highlights concerns about the sufficiency of food resources to sustain this growth. This study investigates and substantiates the feasibility of renewable food resources in order to meet the nutritional requirements of consumers. Three edible aquatic weeds, helencha (Enhydra fluctuans), malancha (Alternanthera philoxeroides), and kalmi (Ipomoea aquatica), were used to produce edible paper sheets. The composition of the raw aquatic weeds and paper sheet samples was analyzed, including the proximate composition, amino acid content, minerals and heavy metal contents, and bioactive compounds. The dried raw aquatic weeds and paper sheets showed similar proximate compositions, with carbohydrates being the highest component (50.38–64.63%), followed by crude protein (15.25–19.13%), ash (9.30–15.88%), and lipid (1.55–3.43%). The raw weeds and paper sheets were rich in essential minerals like Na, Ca, and Zn with contents ranging from 27.7 mg/100 g to 30.4 mg/100 g, 126.8 mg/100 g to 489.65 mg/100 g, and 4.5 mg/100 g to 16.3 mg/100 g, respectively. Acceptable levels of heavy metals, including Ni, Pb, and Cu, were found. The paper sheets contained seven essential and eight non-essential amino acids. Among the essential amino acids, the phenylalanine content was the highest at 2735.9 mg/100 g in E. fluctuans paper sheets, followed by methionine at 2377.29 mg/100 g in the raw E. fluctuans and histidine at 1972.6 mg/100 g in E. fluctuans paper sheets. A. philoxeroides sheets showed the highest total amino acid content (16,146.81 mg/100 g), while I. aquatica showed the lowest (13,118.67 mg/100 g). The aquatic weed paper sheets were rich in bioactive compounds, and the numbers in E. fluctuans, A. philoxeroides, and I. aquatica paper sheets were 31, 33, and 40, respectively. There were no significant changes in the nutritional content of the aquatic weeds in paper sheet form compared with the raw weeds, which suggests promising prospects for their production and consumption as a source of nutrition and bioactive compounds.
{"title":"A Green Approach to Valorizing Abundant Aquatic Weeds for Nutrient-Rich Edible Paper Sheets Production in Bangladesh","authors":"Sharmin Suraiya, Suraiya Afrin Bristy, Md. Sadek Ali, Anusree Biswas, Md. Rasal Ali, Monjurul Haq","doi":"10.3390/cleantechnol5040064","DOIUrl":"https://doi.org/10.3390/cleantechnol5040064","url":null,"abstract":"The rapid and unprecedented expansion of the global population highlights concerns about the sufficiency of food resources to sustain this growth. This study investigates and substantiates the feasibility of renewable food resources in order to meet the nutritional requirements of consumers. Three edible aquatic weeds, helencha (Enhydra fluctuans), malancha (Alternanthera philoxeroides), and kalmi (Ipomoea aquatica), were used to produce edible paper sheets. The composition of the raw aquatic weeds and paper sheet samples was analyzed, including the proximate composition, amino acid content, minerals and heavy metal contents, and bioactive compounds. The dried raw aquatic weeds and paper sheets showed similar proximate compositions, with carbohydrates being the highest component (50.38–64.63%), followed by crude protein (15.25–19.13%), ash (9.30–15.88%), and lipid (1.55–3.43%). The raw weeds and paper sheets were rich in essential minerals like Na, Ca, and Zn with contents ranging from 27.7 mg/100 g to 30.4 mg/100 g, 126.8 mg/100 g to 489.65 mg/100 g, and 4.5 mg/100 g to 16.3 mg/100 g, respectively. Acceptable levels of heavy metals, including Ni, Pb, and Cu, were found. The paper sheets contained seven essential and eight non-essential amino acids. Among the essential amino acids, the phenylalanine content was the highest at 2735.9 mg/100 g in E. fluctuans paper sheets, followed by methionine at 2377.29 mg/100 g in the raw E. fluctuans and histidine at 1972.6 mg/100 g in E. fluctuans paper sheets. A. philoxeroides sheets showed the highest total amino acid content (16,146.81 mg/100 g), while I. aquatica showed the lowest (13,118.67 mg/100 g). The aquatic weed paper sheets were rich in bioactive compounds, and the numbers in E. fluctuans, A. philoxeroides, and I. aquatica paper sheets were 31, 33, and 40, respectively. There were no significant changes in the nutritional content of the aquatic weeds in paper sheet form compared with the raw weeds, which suggests promising prospects for their production and consumption as a source of nutrition and bioactive compounds.","PeriodicalId":10329,"journal":{"name":"Clean Technologies and Environmental Policy","volume":"3 8","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135405142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-21DOI: 10.1007/s10098-023-02610-3
Dhrub Kumar Das, Aditya Kumar Tiwary
{"title":"Influence of nano bentonite clay and nano fly ash on the mechanical and durability properties of concrete","authors":"Dhrub Kumar Das, Aditya Kumar Tiwary","doi":"10.1007/s10098-023-02610-3","DOIUrl":"https://doi.org/10.1007/s10098-023-02610-3","url":null,"abstract":"","PeriodicalId":10329,"journal":{"name":"Clean Technologies and Environmental Policy","volume":"54 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135512538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-20DOI: 10.3390/cleantechnol5040063
Dina Bakranova, David Nagel
The rise in the Earth’s surface temperature on an annual basis has stimulated scientific and engineering interest in developing and implementing alternative energy sources. Besides cost, the main requirements for alternative energy sources are renewability and environmental friendliness. A prominent representative that allows the production of “green” energy is the conversion of solar photons into a practical energy source. Among the existing approaches in solar energy conversion, the process of photoelectrochemical (PEC) hydrogen extraction from water, which mimics natural photosynthesis, is promising. However, direct decomposition of water by sunlight is practically impossible since water is transparent to light waves longer than 190 nm. Therefore, applying a photoelectrochemical process using semiconductor materials and organic compounds is necessary. Semiconductor materials possessing appropriately positioned valence and conduction bands are vital constituents of photoelectrodes. Certain materials exhibit semiconductor characteristics that facilitate the reduction-oxidation (RedOx) reaction of water (H2O) under specific circumstances. ZnO holds a unique position in the field of photocatalysis due to its outstanding characteristics, including remarkable electron mobility, high thermal conductivity, transparency, and more. This article offers an overview of studies exploring ZnO’s role as a photocatalyst in the generation of hydrogen from water.
{"title":"ZnO for Photoelectrochemical Hydrogen Generation","authors":"Dina Bakranova, David Nagel","doi":"10.3390/cleantechnol5040063","DOIUrl":"https://doi.org/10.3390/cleantechnol5040063","url":null,"abstract":"The rise in the Earth’s surface temperature on an annual basis has stimulated scientific and engineering interest in developing and implementing alternative energy sources. Besides cost, the main requirements for alternative energy sources are renewability and environmental friendliness. A prominent representative that allows the production of “green” energy is the conversion of solar photons into a practical energy source. Among the existing approaches in solar energy conversion, the process of photoelectrochemical (PEC) hydrogen extraction from water, which mimics natural photosynthesis, is promising. However, direct decomposition of water by sunlight is practically impossible since water is transparent to light waves longer than 190 nm. Therefore, applying a photoelectrochemical process using semiconductor materials and organic compounds is necessary. Semiconductor materials possessing appropriately positioned valence and conduction bands are vital constituents of photoelectrodes. Certain materials exhibit semiconductor characteristics that facilitate the reduction-oxidation (RedOx) reaction of water (H2O) under specific circumstances. ZnO holds a unique position in the field of photocatalysis due to its outstanding characteristics, including remarkable electron mobility, high thermal conductivity, transparency, and more. This article offers an overview of studies exploring ZnO’s role as a photocatalyst in the generation of hydrogen from water.","PeriodicalId":10329,"journal":{"name":"Clean Technologies and Environmental Policy","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135617148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-19DOI: 10.1007/s10098-023-02613-0
Syed Enamul Kabir, Md Khan Sobayel Bin Rafiq, Md. Uzir Hossain Uzir, Ibrahim A. Alnaser, Mohammad Rezaul Karim, Md. Shahiduzzaman, Md. Akhtaruzzaman
{"title":"Analysing economic feasibility of recycling end-of-life solar photovoltaic modules of Bangladesh","authors":"Syed Enamul Kabir, Md Khan Sobayel Bin Rafiq, Md. Uzir Hossain Uzir, Ibrahim A. Alnaser, Mohammad Rezaul Karim, Md. Shahiduzzaman, Md. Akhtaruzzaman","doi":"10.1007/s10098-023-02613-0","DOIUrl":"https://doi.org/10.1007/s10098-023-02613-0","url":null,"abstract":"","PeriodicalId":10329,"journal":{"name":"Clean Technologies and Environmental Policy","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135730424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-19DOI: 10.1007/s10098-023-02604-1
Mohamed M. Eissa, Samir H. Botros, Mohamed Diab, Emad S. Shafik, Nehad N. Rozik
Abstract Bio-based natural wastes could be considered eco-friendly alternatives to conventional fillers for enhancing the properties and reducing the cost of final rubber products. Thus, in the present research, EPDM/NBR rubber blend composites filled with kaolin and mixed with rice husk fibers (RHFs) were prepared. Homogeneity of the EPDM/NBR blends was improved by the incorporation of maleic anhydride (MAH) as a compatibilizing agent (1 phr), as evidenced by scanning electron microscopy (SEM). Of all EPDM/NBR blend ratios investigated, the 25/75 blend revealed good mechanical properties, thermal stability, and the least weight swell at equilibrium (Q%) in motor oil and brake fluid. EPDM/NBR/kaolin (25/75/30) blend vulcanizates containing RHFs at various loadings demonstrated a significant improvement in swelling resistance, primarily in motor oil and brake fluid, accompanied by a slight reduction in the mechanical properties at high RHFs content. That was complemented by the enhancement of thermal stability of the rubber blends, as demonstrated by TGA analysis. Among the filler types investigated (RHFs, silica ash (SA), rice husk silica (RHS), and kaolin), RHFs exhibited the best swelling resistance of the composite vulcanizates in motor oil and brake fluid. In addition, RHS could be used successfully as a supporting filler for carbon black-reinforced EPDM/NBR composite vulcanizates because it enhanced their thermal stability and swelling resistance in the motor oil. Graphical Abstract
{"title":"Rice husk fibers and their extracted silica as promising bio-based fillers for EPDM/NBR rubber blend vulcanizates","authors":"Mohamed M. Eissa, Samir H. Botros, Mohamed Diab, Emad S. Shafik, Nehad N. Rozik","doi":"10.1007/s10098-023-02604-1","DOIUrl":"https://doi.org/10.1007/s10098-023-02604-1","url":null,"abstract":"Abstract Bio-based natural wastes could be considered eco-friendly alternatives to conventional fillers for enhancing the properties and reducing the cost of final rubber products. Thus, in the present research, EPDM/NBR rubber blend composites filled with kaolin and mixed with rice husk fibers (RHFs) were prepared. Homogeneity of the EPDM/NBR blends was improved by the incorporation of maleic anhydride (MAH) as a compatibilizing agent (1 phr), as evidenced by scanning electron microscopy (SEM). Of all EPDM/NBR blend ratios investigated, the 25/75 blend revealed good mechanical properties, thermal stability, and the least weight swell at equilibrium (Q%) in motor oil and brake fluid. EPDM/NBR/kaolin (25/75/30) blend vulcanizates containing RHFs at various loadings demonstrated a significant improvement in swelling resistance, primarily in motor oil and brake fluid, accompanied by a slight reduction in the mechanical properties at high RHFs content. That was complemented by the enhancement of thermal stability of the rubber blends, as demonstrated by TGA analysis. Among the filler types investigated (RHFs, silica ash (SA), rice husk silica (RHS), and kaolin), RHFs exhibited the best swelling resistance of the composite vulcanizates in motor oil and brake fluid. In addition, RHS could be used successfully as a supporting filler for carbon black-reinforced EPDM/NBR composite vulcanizates because it enhanced their thermal stability and swelling resistance in the motor oil. Graphical Abstract","PeriodicalId":10329,"journal":{"name":"Clean Technologies and Environmental Policy","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135779150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-19DOI: 10.1007/s10098-023-02607-y
Shruti Sharma, Asokan Pappu, Shyam R. Asolekar
{"title":"Sustainable recycling of paddy straw through development of short-fiber-reinforced composites: exploring gainful utilization of agricultural waste","authors":"Shruti Sharma, Asokan Pappu, Shyam R. Asolekar","doi":"10.1007/s10098-023-02607-y","DOIUrl":"https://doi.org/10.1007/s10098-023-02607-y","url":null,"abstract":"","PeriodicalId":10329,"journal":{"name":"Clean Technologies and Environmental Policy","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135779325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}