Pub Date : 2022-03-24Print Date: 2022-02-01DOI: 10.1101/mcs.a006096
Alexios-Fotios A Mentis, Dimitrios Vlachakis, Eleni Papakonstantinou, Ioannis Zaganas, George P Patrinos, George P Chrousos, Efthimios Dardiotis
Amyotrophic lateral sclerosis (ALS) belongs to the ALS-frontotemporal dementia (FTD) spectrum and is hallmarked by upper and lower motor neuron degeneration. Here, we present a patient with a cytoplasmic dynein 1 heavy chain 1 (DYNC1H1) pathogenic variant who fulfilled the ALS El Escorial criteria, and we review relevant literature. Using whole-exome sequencing, we identified a deleterious point variant in DYNC1H1 (c.4106A > G (p. Q1369R)) as a likely contributor to the ALS phenotype. In silico structural analysis, molecular dynamics simulation, and protein stability analysis predicted that this variant may increase DYNC1H1 protein stability. Moreover, this variant may disrupt binding of the transcription factor TFAP4, thus potentially acting as duon. Because (a) DYNC1H1 forms part of a ubiquitous eukaryotic motor protein complex, and (b) disruption of dynein function by perturbation of the dynein-dynactin protein complex is implicated in other motor neuron degenerative conditions, this variant could disrupt processes like retrograde axonal transport, neuronal migration, and protein recycling. Our findings expand the heterogenous spectrum of the DYNC1H1 pathogenic variant-associated phenotype and prompt further investigations of the role of this gene in ALS.
肌萎缩性侧索硬化症(ALS)属于ALS-额颞叶痴呆(FTD)谱系,以上下运动神经元变性为特征。在这里,我们报告了一位细胞质动力蛋白1重链1 (DYNC1H1)致病变异的患者,他符合ALS El Escorial标准,我们回顾了相关文献。利用全外显子组测序,我们发现DYNC1H1的一个有害点变异(c.4106A > G (p. Q1369R))可能是ALS表型的一个因素。硅结构分析、分子动力学模拟和蛋白稳定性分析预测该变异可能增加DYNC1H1蛋白的稳定性。此外,该变体可能破坏转录因子TFAP4的结合,从而潜在地发挥duon的作用。因为(a) DYNC1H1是真核生物普遍存在的运动蛋白复合物的一部分,并且(b)动力蛋白-动力蛋白复合物的扰动对动力蛋白功能的破坏与其他运动神经元退行性疾病有关,这种变异可能破坏诸如逆行轴突运输、神经元迁移和蛋白质再循环等过程。我们的发现扩大了DYNC1H1致病变异相关表型的异质性谱,并促使进一步研究该基因在ALS中的作用。
{"title":"A novel variant in <i>DYNC1H1</i> could contribute to human amyotrophic lateral sclerosis-frontotemporal dementia spectrum.","authors":"Alexios-Fotios A Mentis, Dimitrios Vlachakis, Eleni Papakonstantinou, Ioannis Zaganas, George P Patrinos, George P Chrousos, Efthimios Dardiotis","doi":"10.1101/mcs.a006096","DOIUrl":"https://doi.org/10.1101/mcs.a006096","url":null,"abstract":"<p><p>Amyotrophic lateral sclerosis (ALS) belongs to the ALS-frontotemporal dementia (FTD) spectrum and is hallmarked by upper and lower motor neuron degeneration. Here, we present a patient with a cytoplasmic dynein 1 heavy chain 1 (<i>DYNC1H1</i>) pathogenic variant who fulfilled the ALS El Escorial criteria, and we review relevant literature. Using whole-exome sequencing, we identified a deleterious point variant in <i>DYNC1H1</i> (c.4106A > G (p. Q1369R)) as a likely contributor to the ALS phenotype. In silico structural analysis, molecular dynamics simulation, and protein stability analysis predicted that this variant may increase DYNC1H1 protein stability. Moreover, this variant may disrupt binding of the transcription factor TFAP4, thus potentially acting as duon. Because (a) DYNC1H1 forms part of a ubiquitous eukaryotic motor protein complex, and (b) disruption of dynein function by perturbation of the dynein-dynactin protein complex is implicated in other motor neuron degenerative conditions, this variant could disrupt processes like retrograde axonal transport, neuronal migration, and protein recycling. Our findings expand the heterogenous spectrum of the <i>DYNC1H1</i> pathogenic variant-associated phenotype and prompt further investigations of the role of this gene in ALS.</p>","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fe/9d/MCS006096Men.PMC8958913.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39427872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-24Print Date: 2022-02-01DOI: 10.1101/mcs.a006170
Annalise Jacobs, Catherine Burns, Purva Patel, Kayla Treat, Benjamin M Helm, Erin Conboy, Francesco Vetrini
IGF1R-related disorders are associated with intrauterine growth restriction (IUGR), postnatal growth failure, short stature, microcephaly, developmental delay, and dysmorphic facial features. We report a patient who presented to medical genetics at 7 mo of age with a history of IUGR, poor feeding, mild developmental delays, microcephaly, and dysmorphic facial features. Whole-exome sequencing revealed a novel c.1464T > G p.(Cys488Trp) variant in the IGF1R gene, initially classified as a variation of uncertain significance (VUS). We enrolled the patient in the URDC (Undiagnosed Rare Disease Clinic) and performed additional studies including deep phenotyping and familial segregation analysis, which demonstrated that the patient's IGF1R VUS was present in phenotypically similar family members. Furthermore, biochemical testing revealed an elevated serum IGF-1 level consistent with abnormal IGF-1 receptor function. Workup resulted in the patient's variant being upgraded from a VUS to likely pathogenic. Our report expands the variant and phenotypic spectrum of IGF1R-related disorders and illustrates benefits and feasibility of reassessing a VUS beyond the initial molecular diagnosis by deep phenotyping, 3D modeling, additional biochemical testing, and familial segregation studies through the URDC, a multidisciplinary clinical program whose major goal is to end the diagnostic odyssey in patients with rare diseases.
igf1r相关疾病与宫内生长受限(IUGR)、出生后生长衰竭、身材矮小、小头畸形、发育迟缓和面部畸形有关。我们报告一位7月龄时就诊于医学遗传学的患者,有IUGR病史、喂养不良、轻度发育迟缓、小头畸形和面部畸形。全外显子组测序显示,IGF1R基因中存在一种新的c.1464T > G .(Cys488Trp)变异,最初被归类为不确定意义变异(VUS)。我们将患者纳入URDC(未确诊罕见病诊所),并进行了额外的研究,包括深度表型和家族分离分析,结果表明患者的IGF1R VUS存在于表型相似的家庭成员中。此外,生化检测显示血清IGF-1水平升高与IGF-1受体功能异常一致。检查结果表明,患者的变异从VUS升级为可能致病。我们的报告扩展了igf1r相关疾病的变异和表型谱,并通过URDC(一个多学科临床项目,其主要目标是结束罕见疾病患者的诊断过程)通过深度表型、3D建模、额外的生化测试和家族分离研究,阐明了在初始分子诊断之外重新评估VUS的益处和可行性。
{"title":"Reanalysis of a novel variant in the <i>IGF1R</i> gene in a family with variable prenatal and postnatal growth retardation and dysmorphic features: benefits and feasibility of IUSM-URDC (Undiagnosed Rare Disease Clinic) program.","authors":"Annalise Jacobs, Catherine Burns, Purva Patel, Kayla Treat, Benjamin M Helm, Erin Conboy, Francesco Vetrini","doi":"10.1101/mcs.a006170","DOIUrl":"https://doi.org/10.1101/mcs.a006170","url":null,"abstract":"<p><p><i>IGF1R</i>-related disorders are associated with intrauterine growth restriction (IUGR), postnatal growth failure, short stature, microcephaly, developmental delay, and dysmorphic facial features. We report a patient who presented to medical genetics at 7 mo of age with a history of IUGR, poor feeding, mild developmental delays, microcephaly, and dysmorphic facial features. Whole-exome sequencing revealed a novel c.1464T > G p.(Cys488Trp) variant in the <i>IGF1R</i> gene, initially classified as a variation of uncertain significance (VUS). We enrolled the patient in the URDC (Undiagnosed Rare Disease Clinic) and performed additional studies including deep phenotyping and familial segregation analysis, which demonstrated that the patient's <i>IGF1R</i> VUS was present in phenotypically similar family members. Furthermore, biochemical testing revealed an elevated serum IGF-1 level consistent with abnormal IGF-1 receptor function. Workup resulted in the patient's variant being upgraded from a VUS to likely pathogenic. Our report expands the variant and phenotypic spectrum of <i>IGF1R</i>-related disorders and illustrates benefits and feasibility of reassessing a VUS beyond the initial molecular diagnosis by deep phenotyping, 3D modeling, additional biochemical testing, and familial segregation studies through the URDC, a multidisciplinary clinical program whose major goal is to end the diagnostic odyssey in patients with rare diseases.</p>","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/56/33/MCS006170Jac.PMC8958911.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39868558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-03-24Print Date: 2022-02-01DOI: 10.1101/mcs.a006193
Ari Horton, Kai Mun Hong, Dinusha Pandithan, Meredith Allen, Caroline Killick, Stacy Goergen, Amanda Springer, Dean Phelan, Melanie Marty, Rebecca Halligan, Joy Lee, James Pitt, Belinda Chong, John Christodoulou, Sebastian Lunke, Zornitza Stark, Michael Fahey
Ethylmalonic encephalopathy (MIM #602473) is a rare autosomal recessive metabolic condition caused by biallelic variants in ETHE1 (MIM #608451), characterized by global developmental delay, infantile hypotonia, seizures, and microvascular damage. The microvascular changes result in a pattern of relapsing spontaneous diffuse petechiae and purpura, positional acrocyanosis, and pedal edema, hemorrhagic suffusions of mucous membranes, and chronic diarrhea. Here, we describe an instructive case in which ethylmalonic encephalopathy masqueraded as meningococcal septicemia and shock. Ultrarapid whole-genome testing (time to result 60 h) and prompt biochemical analysis facilitated accurate diagnosis and counseling with rapid implementation of precision treatment for the metabolic crisis related to this condition. This case provides a timely reminder to consider rare genetic diagnoses when atypical features of more common conditions are present, with an early referral to ensure prompt biochemical and genomic diagnosis.
{"title":"Ethylmalonic encephalopathy masquerading as meningococcemia.","authors":"Ari Horton, Kai Mun Hong, Dinusha Pandithan, Meredith Allen, Caroline Killick, Stacy Goergen, Amanda Springer, Dean Phelan, Melanie Marty, Rebecca Halligan, Joy Lee, James Pitt, Belinda Chong, John Christodoulou, Sebastian Lunke, Zornitza Stark, Michael Fahey","doi":"10.1101/mcs.a006193","DOIUrl":"https://doi.org/10.1101/mcs.a006193","url":null,"abstract":"<p><p>Ethylmalonic encephalopathy (MIM #602473) is a rare autosomal recessive metabolic condition caused by biallelic variants in <i>ETHE1</i> (MIM #608451), characterized by global developmental delay, infantile hypotonia, seizures, and microvascular damage. The microvascular changes result in a pattern of relapsing spontaneous diffuse petechiae and purpura, positional acrocyanosis, and pedal edema, hemorrhagic suffusions of mucous membranes, and chronic diarrhea. Here, we describe an instructive case in which ethylmalonic encephalopathy masqueraded as meningococcal septicemia and shock. Ultrarapid whole-genome testing (time to result 60 h) and prompt biochemical analysis facilitated accurate diagnosis and counseling with rapid implementation of precision treatment for the metabolic crisis related to this condition. This case provides a timely reminder to consider rare genetic diagnoses when atypical features of more common conditions are present, with an early referral to ensure prompt biochemical and genomic diagnosis.</p>","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9d/aa/MCS006193Hor.PMC8958906.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39924099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Feng Xu, E. Aref-Eshghi, Jinhua Wu, J. Schubert, G. Wertheim, T. Bhatti, J. Pogoriler, Maha Patel, K. Cao, Ariel Long, Zhiqian Fan, E. Denenberg, Elizabeth A. Fanning, D. Wilmoth, Minjie Luo, L. Conlin, A. Dain, Sarah E Baldino, Kristin Zelley, N. Balamuth, S. MacFarland, Marilyn M. Li, Y. Zhong
Li–Fraumeni syndrome (LFS) is one of the most common cancer predisposition syndromes that affects both children and adults. Individuals with LFS are at an increased risk of developing various types of cancer over their lifetime including soft tissue sarcomas, osteosarcomas, breast cancer, leukemia, brain tumors, and adrenocortical carcinoma. Heterozygous germline pathogenic variants in the tumor suppressor gene TP53 are the known causal genetic defect for LFS. Single-nucleotide variants (SNVs) including missense substitutions that occur in the highly conserved DNA binding domain of the protein are the most common alterations, followed by nonsense and splice site variants. Gross copy-number changes in TP53 are rare and account for <1% of all variants. Using next-generation sequencing (NGS) panels, we identified a paternally inherited germline intragenic duplication of TP53 in a child with metastatic osteosarcoma who later developed acute myeloid leukemia (AML). Transcriptome sequencing (RNA-seq) demonstrated the duplication was tandem, encompassing exons 2–6 and 28 nt of the untranslated region (UTR) upstream of the start codon in exon 2. The inclusion of the 28 nt is expected to result in a frameshift with a stop codon 18 codons downstream from the exon 6, leading to a loss-of-function allele. This case highlights the significance of simultaneous identification of both significant copy-number variants as well as SNVs/indels using NGS panels.
{"title":"A novel TP53 tandem duplication in a child with Li–Fraumeni syndrome","authors":"Feng Xu, E. Aref-Eshghi, Jinhua Wu, J. Schubert, G. Wertheim, T. Bhatti, J. Pogoriler, Maha Patel, K. Cao, Ariel Long, Zhiqian Fan, E. Denenberg, Elizabeth A. Fanning, D. Wilmoth, Minjie Luo, L. Conlin, A. Dain, Sarah E Baldino, Kristin Zelley, N. Balamuth, S. MacFarland, Marilyn M. Li, Y. Zhong","doi":"10.1101/mcs.a006181","DOIUrl":"https://doi.org/10.1101/mcs.a006181","url":null,"abstract":"Li–Fraumeni syndrome (LFS) is one of the most common cancer predisposition syndromes that affects both children and adults. Individuals with LFS are at an increased risk of developing various types of cancer over their lifetime including soft tissue sarcomas, osteosarcomas, breast cancer, leukemia, brain tumors, and adrenocortical carcinoma. Heterozygous germline pathogenic variants in the tumor suppressor gene TP53 are the known causal genetic defect for LFS. Single-nucleotide variants (SNVs) including missense substitutions that occur in the highly conserved DNA binding domain of the protein are the most common alterations, followed by nonsense and splice site variants. Gross copy-number changes in TP53 are rare and account for <1% of all variants. Using next-generation sequencing (NGS) panels, we identified a paternally inherited germline intragenic duplication of TP53 in a child with metastatic osteosarcoma who later developed acute myeloid leukemia (AML). Transcriptome sequencing (RNA-seq) demonstrated the duplication was tandem, encompassing exons 2–6 and 28 nt of the untranslated region (UTR) upstream of the start codon in exon 2. The inclusion of the 28 nt is expected to result in a frameshift with a stop codon 18 codons downstream from the exon 6, leading to a loss-of-function allele. This case highlights the significance of simultaneous identification of both significant copy-number variants as well as SNVs/indels using NGS panels.","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90642634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jeffrey Jean, Eirini Christodoulou, Xiaowu Gai, B. Tamrazi, M. Vera, W. Mitchell, Ryan J. Schmidt
Variants in the mitochondrial genome can result in dysfunction of Complex I within the electron transport chain, thus causing disruptions in oxidative phosphorylation. Pathogenic variants in the MT-ND1 (NADH:ubiquinone oxidoreductase core subunit 1) gene that result in Complex I dysfunction are a known cause of Leigh syndrome. The patient is a 4-yr-old female who initially presented with generalized tonic–clonic seizures, with other symptoms of Leigh syndrome becoming apparent after the seizures. A three-generation pedigree revealed no family history of mitochondrial disorders. Laboratory studies were remarkable for elevated blood lactate, alanine, and GDF15. T2-weighted magnetic resonance imaging (MRI) revealed bilateral asymmetric signal hyperintensities in the basal ganglia, specifically in the bilateral putamen and right caudate. Magnetic resonance spectroscopy showed regionally elevated glucose and lactate. Mitochondrial respiratory chain enzyme analysis on skin fibroblasts demonstrated slightly reduced Complex I function. A 16-gene dystonia panel and chromosomal microarray analysis did not identify any disease-causing variants. Combined exome and mitochondrial genome sequencing identified the m.3685T > C (MT-ND1 p.Tyr127His) variant with 62.3% heteroplasmy with no alternative cause for the patient's condition. Mitochondrial genome sequencing of the mother demonstrated that the m.3685T > C variant occurred de novo. The m.3685T > C variant is absent from population databases. The tyrosine 127 residue is highly conserved, and several nearby pathogenic variants in the MT-ND1 gene have been previously associated with Leigh syndrome. We propose that the m.3685T > C variant is a novel mitochondrial DNA variant that causes Leigh syndrome, and we classify this variant as likely pathogenic based on currently available information.
{"title":"m.3685T > C is a novel mitochondrial DNA variant that causes Leigh syndrome","authors":"Jeffrey Jean, Eirini Christodoulou, Xiaowu Gai, B. Tamrazi, M. Vera, W. Mitchell, Ryan J. Schmidt","doi":"10.1101/mcs.a006136","DOIUrl":"https://doi.org/10.1101/mcs.a006136","url":null,"abstract":"Variants in the mitochondrial genome can result in dysfunction of Complex I within the electron transport chain, thus causing disruptions in oxidative phosphorylation. Pathogenic variants in the MT-ND1 (NADH:ubiquinone oxidoreductase core subunit 1) gene that result in Complex I dysfunction are a known cause of Leigh syndrome. The patient is a 4-yr-old female who initially presented with generalized tonic–clonic seizures, with other symptoms of Leigh syndrome becoming apparent after the seizures. A three-generation pedigree revealed no family history of mitochondrial disorders. Laboratory studies were remarkable for elevated blood lactate, alanine, and GDF15. T2-weighted magnetic resonance imaging (MRI) revealed bilateral asymmetric signal hyperintensities in the basal ganglia, specifically in the bilateral putamen and right caudate. Magnetic resonance spectroscopy showed regionally elevated glucose and lactate. Mitochondrial respiratory chain enzyme analysis on skin fibroblasts demonstrated slightly reduced Complex I function. A 16-gene dystonia panel and chromosomal microarray analysis did not identify any disease-causing variants. Combined exome and mitochondrial genome sequencing identified the m.3685T > C (MT-ND1 p.Tyr127His) variant with 62.3% heteroplasmy with no alternative cause for the patient's condition. Mitochondrial genome sequencing of the mother demonstrated that the m.3685T > C variant occurred de novo. The m.3685T > C variant is absent from population databases. The tyrosine 127 residue is highly conserved, and several nearby pathogenic variants in the MT-ND1 gene have been previously associated with Leigh syndrome. We propose that the m.3685T > C variant is a novel mitochondrial DNA variant that causes Leigh syndrome, and we classify this variant as likely pathogenic based on currently available information.","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":"57 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88457800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ingeborg Hauth, H. Waterham, R. Wanders, S. N. van der Crabben, C. V. van Karnebeek
Sodium-dependent multivitamin transporter (SMVT) deficiency is a recently described multivitamin-responsive inherited metabolic disorder (IMD) of which the phenotypic spectrum and response to treatment remains to be elucidated. So far, four pediatric patients have been described in three case reports with symptoms ranging from severe neurodevelopmental delay to feeding problems and failure to thrive, who demonstrated significant improvement after initiation of enhancement of targeted multivitamin treatment (biotin, pantothenic acid, and lipoic acid). We describe a fifth case of a patient presenting at the relatively mild end of the phenotypic spectrum with failure to thrive, frequent vomiting and metabolic acidosis with hypoglycemia, and mild osteopenia, who was diagnosed with SMVT deficiency due to compound heterozygous variants in SLC5A6. Additional genetic testing of variants of unknown significance (VUSs) as well as the clinical improvement in all aspects of the patient's disease upon initiation of treatment with biotin and pantothenic acid (plus lipoate as antioxidant) aided in the confirmation of this diagnosis. This case report aims to enhance recognition of the broad phenotypic spectrum of SMVT deficiency due to SLC5A6 mutations and discusses the different treatment strategies. It demonstrates how combining biochemical and genetic testing with the evaluation of (early) treatment response (i.e., using a “diagnostic therapeuticum”) can influence confirmation of pathogenicity of genomic variants.
{"title":"A mild case of sodium-dependent multivitamin transporter (SMVT) deficiency illustrating the importance of treatment response in variant classification","authors":"Ingeborg Hauth, H. Waterham, R. Wanders, S. N. van der Crabben, C. V. van Karnebeek","doi":"10.1101/mcs.a006185","DOIUrl":"https://doi.org/10.1101/mcs.a006185","url":null,"abstract":"Sodium-dependent multivitamin transporter (SMVT) deficiency is a recently described multivitamin-responsive inherited metabolic disorder (IMD) of which the phenotypic spectrum and response to treatment remains to be elucidated. So far, four pediatric patients have been described in three case reports with symptoms ranging from severe neurodevelopmental delay to feeding problems and failure to thrive, who demonstrated significant improvement after initiation of enhancement of targeted multivitamin treatment (biotin, pantothenic acid, and lipoic acid). We describe a fifth case of a patient presenting at the relatively mild end of the phenotypic spectrum with failure to thrive, frequent vomiting and metabolic acidosis with hypoglycemia, and mild osteopenia, who was diagnosed with SMVT deficiency due to compound heterozygous variants in SLC5A6. Additional genetic testing of variants of unknown significance (VUSs) as well as the clinical improvement in all aspects of the patient's disease upon initiation of treatment with biotin and pantothenic acid (plus lipoate as antioxidant) aided in the confirmation of this diagnosis. This case report aims to enhance recognition of the broad phenotypic spectrum of SMVT deficiency due to SLC5A6 mutations and discusses the different treatment strategies. It demonstrates how combining biochemical and genetic testing with the evaluation of (early) treatment response (i.e., using a “diagnostic therapeuticum”) can influence confirmation of pathogenicity of genomic variants.","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":"14 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86818245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pyridoxine-dependent epilepsy due to mutations in ALDH7A1 (PDH-ALDH7A1) is a highly treatable developmental and epileptic encephalopathy. Pharmacologic doses of pyridoxine are associated with dramatic clinical seizure improvement, and most patients achieve adequate seizure control with pyridoxine alone. Unfortunately, some patients with PDE-ALDH7A1 have died prior to when the diagnosis was made and subsequent treatment with pyridoxine could be implemented, highlighting the importance of a timely diagnosis. Although critical for seizure control, pyridoxine treatment alone is not sufficient for normal outcomes as most patients suffer intellectual and developmental delay. Adjunct lysine reduction therapies are associated with significant developmental improvements, although these treatments have limited efficacy if delayed after the first few months of life. Recently two biomarkers were identified that overcome previous technical hurdles for newborn screening. Herein we provide commentary that PDE-ALDH7A1 meets both current and historic criteria for newborn screening, and that a neonatal diagnosis and treatment can both reduce mortality from uncontrolled seizures and significantly improve the cognitive delay that is pervasive in this treatable disorder.
{"title":"A case for newborn screening for pyridoxine-dependent epilepsy","authors":"C. Coughlin, Laura A Tseng, C. V. van Karnebeek","doi":"10.1101/mcs.a006197","DOIUrl":"https://doi.org/10.1101/mcs.a006197","url":null,"abstract":"Pyridoxine-dependent epilepsy due to mutations in ALDH7A1 (PDH-ALDH7A1) is a highly treatable developmental and epileptic encephalopathy. Pharmacologic doses of pyridoxine are associated with dramatic clinical seizure improvement, and most patients achieve adequate seizure control with pyridoxine alone. Unfortunately, some patients with PDE-ALDH7A1 have died prior to when the diagnosis was made and subsequent treatment with pyridoxine could be implemented, highlighting the importance of a timely diagnosis. Although critical for seizure control, pyridoxine treatment alone is not sufficient for normal outcomes as most patients suffer intellectual and developmental delay. Adjunct lysine reduction therapies are associated with significant developmental improvements, although these treatments have limited efficacy if delayed after the first few months of life. Recently two biomarkers were identified that overcome previous technical hurdles for newborn screening. Herein we provide commentary that PDE-ALDH7A1 meets both current and historic criteria for newborn screening, and that a neonatal diagnosis and treatment can both reduce mortality from uncontrolled seizures and significantly improve the cognitive delay that is pervasive in this treatable disorder.","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":"115 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79403122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
My underlying diagnosis since birth was congenital muscular dystrophy not otherwise specified. Being born in 1970 meant that there were no genetic testing, no standards of care, and no true understanding of the pathology that separates one congenital-onset neuromuscular disorder from the next. Two muscle biopsies described histological abnormalities of small type 1 fibers and were among the first of M.H. Brooke's cases described as congenital fiber-type disproportion (Brooke, Experta Medica 295: 147 [1973]).
{"title":"Patient perspective: my rare disease journey","authors":"R. Alvarez","doi":"10.1101/mcs.a006205","DOIUrl":"https://doi.org/10.1101/mcs.a006205","url":null,"abstract":"My underlying diagnosis since birth was congenital muscular dystrophy not otherwise specified. Being born in 1970 meant that there were no genetic testing, no standards of care, and no true understanding of the pathology that separates one congenital-onset neuromuscular disorder from the next. Two muscle biopsies described histological abnormalities of small type 1 fibers and were among the first of M.H. Brooke's cases described as congenital fiber-type disproportion (Brooke, Experta Medica 295: 147 [1973]).","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":"44 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90216419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the past 5 years transcriptome or RNA-sequencing (RNA-seq) has steadily emerged as a complementary assay for rare disease diagnosis and discovery. In this perspective, we summarize several recent developments and challenges in the use of RNA-seq for rare disease investigation. Using an accessible patient sample, such as blood, skin, or muscle, RNA-seq enables the assay of expressed RNA transcripts. Analysis of RNA-seq allows the identification of aberrant or outlier gene expression and alternative splicing as functional evidence to support rare disease study and diagnosis. Further, many types of variant effects can be profiled beyond coding variants, as the consequences of noncoding variants that impact gene expression and splicing can be directly observed. This is particularly apparent for structural variants that disproportionately underlie outlier gene expression and for splicing variants in which RNA-seq can both measure aberrant canonical splicing and detect deep intronic effects. However, a major potential limitation of RNA-seq in rare disease investigation is the developmental and cell type specificity of gene expression as a pathogenic variant's effect may be limited to a specific spatiotemporal context and access to a patient's tissue sample from the relevant tissue and timing of disease expression may not be possible. We speculate that as advances in computational methods and emerging experimental techniques overcome both developmental and cell type specificity, there will be broadening use of RNA sequencing and multiomics in rare disease diagnosis and delivery of precision health.
{"title":"Toward transcriptomics as a primary tool for rare disease investigation","authors":"S. Montgomery, J. Bernstein, M. Wheeler","doi":"10.1101/mcs.a006198","DOIUrl":"https://doi.org/10.1101/mcs.a006198","url":null,"abstract":"In the past 5 years transcriptome or RNA-sequencing (RNA-seq) has steadily emerged as a complementary assay for rare disease diagnosis and discovery. In this perspective, we summarize several recent developments and challenges in the use of RNA-seq for rare disease investigation. Using an accessible patient sample, such as blood, skin, or muscle, RNA-seq enables the assay of expressed RNA transcripts. Analysis of RNA-seq allows the identification of aberrant or outlier gene expression and alternative splicing as functional evidence to support rare disease study and diagnosis. Further, many types of variant effects can be profiled beyond coding variants, as the consequences of noncoding variants that impact gene expression and splicing can be directly observed. This is particularly apparent for structural variants that disproportionately underlie outlier gene expression and for splicing variants in which RNA-seq can both measure aberrant canonical splicing and detect deep intronic effects. However, a major potential limitation of RNA-seq in rare disease investigation is the developmental and cell type specificity of gene expression as a pathogenic variant's effect may be limited to a specific spatiotemporal context and access to a patient's tissue sample from the relevant tissue and timing of disease expression may not be possible. We speculate that as advances in computational methods and emerging experimental techniques overcome both developmental and cell type specificity, there will be broadening use of RNA sequencing and multiomics in rare disease diagnosis and delivery of precision health.","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":"165 10 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86770441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ryan J Patrick, Jill Weimer, Laura Davis-Keppen, Megan L Landsverk
Pathogenic variants in CKAP2L have previously been reported in Filippi syndrome (FS), a rare autosomal recessive, craniodigital syndrome characterized by microcephaly, syndactyly, short stature, intellectual disability, and dysmorphic facial features. To date, fewer than 10 patients with pathogenic variants in CKAP2L associated with FS have been reported. All of the previously reported probands have presumed loss-of-function variants (frameshift, canonical splice site, starting methionine), and all but one have been homozygous for a pathogenic variant. Here we describe two brothers who presented with microcephaly, micrognathia, syndactyly, dysmorphic features, and intellectual disability. Whole-exome sequencing of the family identified a missense variant, c.2066G > A;p.(Arg689His), in trans with a frameshift variant, c.1169_1173del;p.(Ile390LysfsTer4), in CKAP2L To our knowledge, these are the first patients with FS to be reported with a missense variant in CKAP2L and only the second family to be reported with two variants in trans.
{"title":"Novel variants identified in <i>CKAP2L</i> in two siblings with Filippi syndrome.","authors":"Ryan J Patrick, Jill Weimer, Laura Davis-Keppen, Megan L Landsverk","doi":"10.1101/mcs.a006130","DOIUrl":"https://doi.org/10.1101/mcs.a006130","url":null,"abstract":"<p><p>Pathogenic variants in <i>CKAP2L</i> have previously been reported in Filippi syndrome (FS), a rare autosomal recessive, craniodigital syndrome characterized by microcephaly, syndactyly, short stature, intellectual disability, and dysmorphic facial features. To date, fewer than 10 patients with pathogenic variants in <i>CKAP2L</i> associated with FS have been reported. All of the previously reported probands have presumed loss-of-function variants (frameshift, canonical splice site, starting methionine), and all but one have been homozygous for a pathogenic variant. Here we describe two brothers who presented with microcephaly, micrognathia, syndactyly, dysmorphic features, and intellectual disability. Whole-exome sequencing of the family identified a missense variant, c.2066G > A;p.(Arg689His), in <i>trans</i> with a frameshift variant, c.1169_1173del;p.(Ile390LysfsTer4), in <i>CKAP2L</i> To our knowledge, these are the first patients with FS to be reported with a missense variant in <i>CKAP2L</i> and only the second family to be reported with two variants in <i>trans</i>.</p>","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":"8 2","pages":""},"PeriodicalIF":1.8,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2d/82/MCS006130Pat.PMC8958909.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10540628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}