首页 > 最新文献

Clinical proteomics最新文献

英文 中文
Kinome and phosphoproteome reprogramming underlies the aberrant immune responses in critically ill COVID-19 patients COVID-19重症患者异常免疫反应的基因组和磷酸蛋白组重编程基础
IF 3.8 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-02-22 DOI: 10.1186/s12014-024-09457-w
Tomonori Kaneko, Sally Ezra, Rober Abdo, Courtney Voss, Shanshan Zhong, Xuguang Liu, Owen Hovey, Marat Slessarev, Logan Robert Van Nynatten, Mingliang Ye, Douglas Fraser, Shawn Shun-Cheng Li
SARS-CoV-2 infection triggers extensive host immune reactions, leading to severe diseases in certain individuals. However, the molecular basis underlying the excessive yet non-productive immune responses in severe COVID-19 remains incompletely understood. In this study, we conducted a comprehensive analysis of the peripheral blood mononuclear cell (PBMC) proteome and phosphoproteome in sepsis patients positive or negative for SARS-CoV-2 infection, as well as healthy subjects, using quantitative mass spectrometry. Our findings demonstrate dynamic changes in the COVID-19 PBMC proteome and phosphoproteome during disease progression, with distinctive protein or phosphoprotein signatures capable of distinguishing longitudinal disease states. Furthermore, SARS-CoV-2 infection induces a global reprogramming of the kinome and phosphoproteome, resulting in defective adaptive immune response mediated by the B and T lymphocytes, compromised innate immune responses involving the SIGLEC and SLAM family of immunoreceptors, and excessive cytokine-JAK-STAT signaling. In addition to uncovering host proteome and phosphoproteome aberrations caused by SARS-CoV-2, our work recapitulates several reported therapeutic targets for COVID-19 and identified numerous new candidates, including the kinases PKG1, CK2, ROCK1/2, GRK2, SYK, JAK2/3, TYK2, DNA-PK, PKCδ, and the cytokine IL-12.
SARS-CoV-2 感染会引发广泛的宿主免疫反应,导致某些人患上严重疾病。然而,人们对严重 COVID-19 中过度但非生产性免疫反应的分子基础仍然知之甚少。在这项研究中,我们使用定量质谱法对 SARS-CoV-2 感染阳性或阴性的败血症患者以及健康人的外周血单核细胞(PBMC)蛋白质组和磷酸蛋白质组进行了全面分析。我们的研究结果表明,在疾病进展过程中,COVID-19 PBMC 蛋白质组和磷蛋白组发生了动态变化,其独特的蛋白质或磷蛋白特征能够区分纵向疾病状态。此外,SARS-CoV-2 感染会诱导激酶组和磷酸蛋白组的全面重编程,导致由 B 淋巴细胞和 T 淋巴细胞介导的适应性免疫反应缺陷、涉及 SIGLEC 和 SLAM 免疫受体家族的先天性免疫反应受损以及细胞因子-JAK-STAT 信号过度。除了发现由 SARS-CoV-2 引起的宿主蛋白质组和磷酸蛋白质组畸变外,我们的研究还重现了几个已报道的 COVID-19 治疗靶点,并确定了许多新的候选靶点,包括激酶 PKG1、CK2、ROCK1/2、GRK2、SYK、JAK2/3、TYK2、DNA-PK、PKCδ 和细胞因子 IL-12。
{"title":"Kinome and phosphoproteome reprogramming underlies the aberrant immune responses in critically ill COVID-19 patients","authors":"Tomonori Kaneko, Sally Ezra, Rober Abdo, Courtney Voss, Shanshan Zhong, Xuguang Liu, Owen Hovey, Marat Slessarev, Logan Robert Van Nynatten, Mingliang Ye, Douglas Fraser, Shawn Shun-Cheng Li","doi":"10.1186/s12014-024-09457-w","DOIUrl":"https://doi.org/10.1186/s12014-024-09457-w","url":null,"abstract":"SARS-CoV-2 infection triggers extensive host immune reactions, leading to severe diseases in certain individuals. However, the molecular basis underlying the excessive yet non-productive immune responses in severe COVID-19 remains incompletely understood. In this study, we conducted a comprehensive analysis of the peripheral blood mononuclear cell (PBMC) proteome and phosphoproteome in sepsis patients positive or negative for SARS-CoV-2 infection, as well as healthy subjects, using quantitative mass spectrometry. Our findings demonstrate dynamic changes in the COVID-19 PBMC proteome and phosphoproteome during disease progression, with distinctive protein or phosphoprotein signatures capable of distinguishing longitudinal disease states. Furthermore, SARS-CoV-2 infection induces a global reprogramming of the kinome and phosphoproteome, resulting in defective adaptive immune response mediated by the B and T lymphocytes, compromised innate immune responses involving the SIGLEC and SLAM family of immunoreceptors, and excessive cytokine-JAK-STAT signaling. In addition to uncovering host proteome and phosphoproteome aberrations caused by SARS-CoV-2, our work recapitulates several reported therapeutic targets for COVID-19 and identified numerous new candidates, including the kinases PKG1, CK2, ROCK1/2, GRK2, SYK, JAK2/3, TYK2, DNA-PK, PKCδ, and the cytokine IL-12.","PeriodicalId":10468,"journal":{"name":"Clinical proteomics","volume":"72 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139925591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of early changes in tear film protein profiles after small incision lenticule extraction (SMILE) and femtosecond LASIK (FS-LASIK) surgery 小切口皮瓣摘除术(SMILE)和飞秒激光角膜切割术(FS-LASIK)术后泪膜蛋白图谱早期变化的比较
IF 3.8 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-02-17 DOI: 10.1186/s12014-024-09460-1
Petri Mäkinen, Janika Nättinen, Ulla Aapola, Juhani Pietilä, Hannu Uusitalo
Small incision lenticule extraction (SMILE) and femtosecond laser-assisted in situ keratomileusis (LASIK) are widely used surgical methods to correct myopia with comparable efficacy, predictability, and safety. We examined and compared the early changes of tear protein profiles after SMILE and FS-LASIK surgery in order to find possible differences in the initial corneal healing process. SMILE operations for 26 eyes were made with Visumax femtosecond laser. In FS-LASIK surgery for 30 eyes, the flaps were made with Ziemer FEMTO LDV Z6 femtosecond laser and stromal ablation with Wavelight EX500 excimer laser. Tear samples were collected preoperatively, and 1.5 h and 1 month postoperatively using glass microcapillary tubes. Tear protein identification and quantification were performed with sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS). Immediately (1.5 h) after we found differences in 89 proteins after SMILE and in 123 after FS-LASIK operation compared to preoperative protein levels. Of these differentially expressed proteins, 48 proteins were common for both surgery types. There were, however, quantitative differences between SMILE and FS-LASIK. Upregulated proteins were mostly connected to inflammatory response and migration of the cells connected to immune system. One month after the operation protein expressions levels were returned to baseline levels with both surgical methods. Our study showed that immediate changes in protein profiles after SMILE and FS-LASIK surgeries and differences between the methods are connected to inflammatory process, and the protein levels quickly return to the baseline within 1 month. The differences in protein profiles between the methods are probably associated with the different size of the epithelial wound induced.
小切口皮瓣摘除术(SMILE)和飞秒激光辅助原位角膜磨镶术(LASIK)是目前广泛使用的矫治近视的手术方法,其疗效、可预测性和安全性都不相上下。我们研究并比较了 SMILE 和 FS-LASIK 手术后泪液蛋白的早期变化,以发现角膜初期愈合过程中可能存在的差异。我们使用 Visumax 飞秒激光为 26 只眼睛进行了 SMILE 手术。在30只眼睛的FS-LASIK手术中,使用Ziemer FEMTO LDV Z6飞秒激光制作角膜瓣,并使用Wavelight EX500准分子激光消融基质。使用玻璃微毛细管收集术前、术后 1.5 小时和 1 个月的泪液样本。泪液蛋白质的鉴定和定量是通过所有理论片段离子谱质谱(SWATH-MS)的顺序窗口采集进行的。与术前蛋白水平相比,我们发现SMILE术后89种蛋白和FS-LASIK术后123种蛋白在术后1.5小时立即出现了差异。在这些表达不同的蛋白质中,有 48 种蛋白质在两种手术类型中都有。但是,SMILE 和 FS-LASIK 在数量上存在差异。上调的蛋白质主要与炎症反应和与免疫系统有关的细胞迁移有关。手术一个月后,两种手术方法的蛋白质表达水平都恢复到了基线水平。我们的研究表明,SMILE 和 FS-LASIK 手术后蛋白质谱的即时变化以及不同方法之间的差异与炎症过程有关,蛋白质水平在一个月内迅速恢复到基线水平。不同方法之间蛋白质含量的差异可能与诱导的上皮伤口大小不同有关。
{"title":"Comparison of early changes in tear film protein profiles after small incision lenticule extraction (SMILE) and femtosecond LASIK (FS-LASIK) surgery","authors":"Petri Mäkinen, Janika Nättinen, Ulla Aapola, Juhani Pietilä, Hannu Uusitalo","doi":"10.1186/s12014-024-09460-1","DOIUrl":"https://doi.org/10.1186/s12014-024-09460-1","url":null,"abstract":"Small incision lenticule extraction (SMILE) and femtosecond laser-assisted in situ keratomileusis (LASIK) are widely used surgical methods to correct myopia with comparable efficacy, predictability, and safety. We examined and compared the early changes of tear protein profiles after SMILE and FS-LASIK surgery in order to find possible differences in the initial corneal healing process. SMILE operations for 26 eyes were made with Visumax femtosecond laser. In FS-LASIK surgery for 30 eyes, the flaps were made with Ziemer FEMTO LDV Z6 femtosecond laser and stromal ablation with Wavelight EX500 excimer laser. Tear samples were collected preoperatively, and 1.5 h and 1 month postoperatively using glass microcapillary tubes. Tear protein identification and quantification were performed with sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS). Immediately (1.5 h) after we found differences in 89 proteins after SMILE and in 123 after FS-LASIK operation compared to preoperative protein levels. Of these differentially expressed proteins, 48 proteins were common for both surgery types. There were, however, quantitative differences between SMILE and FS-LASIK. Upregulated proteins were mostly connected to inflammatory response and migration of the cells connected to immune system. One month after the operation protein expressions levels were returned to baseline levels with both surgical methods. Our study showed that immediate changes in protein profiles after SMILE and FS-LASIK surgeries and differences between the methods are connected to inflammatory process, and the protein levels quickly return to the baseline within 1 month. The differences in protein profiles between the methods are probably associated with the different size of the epithelial wound induced.","PeriodicalId":10468,"journal":{"name":"Clinical proteomics","volume":"50 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139767975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the novel duo of Reticulocalbin, and Sideroflexin as future biomarker candidates for Exacerbated Chronic Obstructive Pulmonary Disease. 探索网状钙化素和苷元钙化素的新型二重奏,作为未来慢性阻塞性肺疾病恶化的候选生物标记物。
IF 3.8 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-02-14 DOI: 10.1186/s12014-024-09459-8
Sonu Das, Supriya Adiody, Jinsu Varghese, M Vanditha, Evelyn Maria, Mathew John

Background: COPD is a complex respiratory disorder with high morbidity and mortality rates. Even with the current conventional diagnostic methods, including circulating inflammatory biomarkers, underdiagnosis rates in COPD remain as high as 70%. Our study was a comparative cross-sectional study that aimed to address the diagnostic challenges by identifying future biomarker candidates in COPD variants.

Methods: This study used a label-free plasma proteomics approach that combined mass spectrometric data with bioinformatics to shed light on the functional roles of differentially expressed proteins in the COPD lung microenvironment. The predictive capacity of the screened proteins was assessed using Receiver Operating Characteristic (ROC) curves, with Western blot analysis validating protein expression patterns in an independent cohort.

Results: Our study identified three DEPs-reticulocalbin-1, sideroflexin-4, and liprinα-3 that consistently exhibited altered expression in COPD exacerbation. ROC analysis indicated strong predictive potential, with AUC values of 0.908, 0.715, and 0.856 for RCN1, SFXN4, and LIPα-3, respectively. Validation through Western blot analysis confirmed their expression patterns in an independent validation cohort.

Conclusions: Our study discovered a novel duo of proteins reticulocalbin-1, and sideroflexin-4 that showed potential as valuable future biomarkers for the diagnosis and clinical management of COPD exacerbations.

背景:慢性阻塞性肺病是一种复杂的呼吸系统疾病,发病率和死亡率都很高。即使采用包括循环炎症生物标志物在内的现有常规诊断方法,慢性阻塞性肺病的漏诊率仍高达 70%。我们的研究是一项横断面比较研究,旨在通过确定慢性阻塞性肺病变体中未来的候选生物标志物来应对诊断挑战:本研究采用无标记血浆蛋白质组学方法,将质谱数据与生物信息学相结合,揭示 COPD 肺微环境中差异表达蛋白质的功能作用。利用接收者操作特征曲线(ROC)评估了筛选出的蛋白质的预测能力,并在一个独立队列中通过 Western 印迹分析验证了蛋白质的表达模式:结果:我们的研究发现了三种DEPs--网织红细胞介素-1、苷元叶绿素-4和脂蛋白α-3,它们在慢性阻塞性肺疾病加重时的表达持续发生变化。ROC分析表明,RCN1、SFXN4和LIPα-3的AUC值分别为0.908、0.715和0.856,具有很强的预测潜力。在一个独立的验证队列中,通过Western印迹分析验证确认了它们的表达模式:结论:我们的研究发现了网状钙化蛋白-1(reticulocalbin-1)和络氨酸钙化蛋白-4(sideroflexin-4)这两种新型蛋白质,它们有望成为未来诊断和临床治疗慢性阻塞性肺疾病加重的重要生物标记物。
{"title":"Exploring the novel duo of Reticulocalbin, and Sideroflexin as future biomarker candidates for Exacerbated Chronic Obstructive Pulmonary Disease.","authors":"Sonu Das, Supriya Adiody, Jinsu Varghese, M Vanditha, Evelyn Maria, Mathew John","doi":"10.1186/s12014-024-09459-8","DOIUrl":"10.1186/s12014-024-09459-8","url":null,"abstract":"<p><strong>Background: </strong>COPD is a complex respiratory disorder with high morbidity and mortality rates. Even with the current conventional diagnostic methods, including circulating inflammatory biomarkers, underdiagnosis rates in COPD remain as high as 70%. Our study was a comparative cross-sectional study that aimed to address the diagnostic challenges by identifying future biomarker candidates in COPD variants.</p><p><strong>Methods: </strong>This study used a label-free plasma proteomics approach that combined mass spectrometric data with bioinformatics to shed light on the functional roles of differentially expressed proteins in the COPD lung microenvironment. The predictive capacity of the screened proteins was assessed using Receiver Operating Characteristic (ROC) curves, with Western blot analysis validating protein expression patterns in an independent cohort.</p><p><strong>Results: </strong>Our study identified three DEPs-reticulocalbin-1, sideroflexin-4, and liprinα-3 that consistently exhibited altered expression in COPD exacerbation. ROC analysis indicated strong predictive potential, with AUC values of 0.908, 0.715, and 0.856 for RCN1, SFXN4, and LIPα-3, respectively. Validation through Western blot analysis confirmed their expression patterns in an independent validation cohort.</p><p><strong>Conclusions: </strong>Our study discovered a novel duo of proteins reticulocalbin-1, and sideroflexin-4 that showed potential as valuable future biomarkers for the diagnosis and clinical management of COPD exacerbations.</p>","PeriodicalId":10468,"journal":{"name":"Clinical proteomics","volume":"21 1","pages":"10"},"PeriodicalIF":3.8,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10865594/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139734677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Glial cell proteome using targeted quantitative methods for potential multi-diagnostic biomarkers. 更正:胶质细胞蛋白质组使用靶向定量方法寻找潜在的多种诊断生物标记物。
IF 3.8 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-02-10 DOI: 10.1186/s12014-024-09456-x
Narae Kang, Hyun Jeong Oh, Ji Hye Hong, Hyo Eun Moon, Yona Kim, Hyeon-Jeong Lee, Hophil Min, Hyeonji Park, Sang Hun Lee, Sun Ha Paek, Jonghwa Jin
{"title":"Correction: Glial cell proteome using targeted quantitative methods for potential multi-diagnostic biomarkers.","authors":"Narae Kang, Hyun Jeong Oh, Ji Hye Hong, Hyo Eun Moon, Yona Kim, Hyeon-Jeong Lee, Hophil Min, Hyeonji Park, Sang Hun Lee, Sun Ha Paek, Jonghwa Jin","doi":"10.1186/s12014-024-09456-x","DOIUrl":"10.1186/s12014-024-09456-x","url":null,"abstract":"","PeriodicalId":10468,"journal":{"name":"Clinical proteomics","volume":"21 1","pages":"9"},"PeriodicalIF":3.8,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10858455/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139715892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Absolute quantitation of human wild-type DNAI1 protein in lung tissue using a nanoLC-PRM-MS-based targeted proteomics approach coupled with immunoprecipitation. 利用基于纳米液相色谱-PRM-MS 的靶向蛋白质组学方法和免疫沉淀技术,对肺组织中的人类野生型 DNAI1 蛋白进行绝对定量。
IF 3.8 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-02-04 DOI: 10.1186/s12014-024-09453-0
Hui Wang, Xiaoyan Ni, Nicholas Clark, Kristen Randall, Lianne Boeglin, Sudha Chivukula, Caroline Woo, Frank DeRosa, Gang Sun

Background: Dynein axonemal intermediate chain 1 protein (DNAI1) plays an essential role in cilia structure and function, while its mutations lead to primary ciliary dyskinesia (PCD). Accurate quantitation of DNAI1 in lung tissue is crucial for comprehensive understanding of its involvement in PCD, as well as for developing the potential PCD therapies. However, the current protein quantitation method is not sensitive enough to detect the endogenous level of DNAI1 in complex biological matrix such as lung tissue.

Methods: In this study, a quantitative method combining immunoprecipitation with nanoLC-MS/MS was developed to measure the expression level of human wild-type (WT) DNAI1 protein in lung tissue. To our understanding, it is the first immunoprecipitation (IP)-MS based method for absolute quantitation of DNAI1 protein in lung tissue. The DNAI1 quantitation was achieved through constructing a standard curve with recombinant human WT DNAI1 protein spiked into lung tissue matrix.

Results: This method was qualified with high sensitivity and accuracy. The lower limit of quantitation of human DNAI1 was 4 pg/mg tissue. This assay was successfully applied to determine the endogenous level of WT DNAI1 in human lung tissue.

Conclusions: The results clearly demonstrate that the developed assay can accurately quantitate low-abundance WT DNAI1 protein in human lung tissue with high sensitivity, indicating its high potential use in the drug development for DNAI1 mutation-caused PCD therapy.

背景:Dynein轴突中间链1蛋白(DNAI1)在纤毛结构和功能中起着至关重要的作用,而其突变会导致原发性纤毛运动障碍(PCD)。准确定量肺组织中的 DNAI1 蛋白对于全面了解其在 PCD 中的参与以及开发潜在的 PCD 治疗方法至关重要。然而,目前的蛋白质定量方法不够灵敏,无法检测肺组织等复杂生物基质中DNAI1的内源性水平:本研究开发了一种结合免疫沉淀和纳米液相色谱-质谱(nanoLC-MS/MS)的定量方法来测量肺组织中人类野生型(WT)DNAI1蛋白的表达水平。据我们了解,这是第一种基于免疫沉淀(IP)-MS的肺组织中DNAI1蛋白绝对定量方法。DNAI1的定量是通过在肺组织基质中添加重组人WT DNAI1蛋白构建标准曲线实现的:结果:该方法灵敏度高、准确性好。人DNAI1的定量下限为4 pg/mg组织。结果:该方法灵敏度高、准确度高,定量下限为4 pg/mg组织,可成功测定人肺组织中WT DNAI1的内源性水平:结果表明,所开发的检测方法能准确定量检测人肺部组织中低丰度的WT DNAI1蛋白,且灵敏度高。
{"title":"Absolute quantitation of human wild-type DNAI1 protein in lung tissue using a nanoLC-PRM-MS-based targeted proteomics approach coupled with immunoprecipitation.","authors":"Hui Wang, Xiaoyan Ni, Nicholas Clark, Kristen Randall, Lianne Boeglin, Sudha Chivukula, Caroline Woo, Frank DeRosa, Gang Sun","doi":"10.1186/s12014-024-09453-0","DOIUrl":"10.1186/s12014-024-09453-0","url":null,"abstract":"<p><strong>Background: </strong>Dynein axonemal intermediate chain 1 protein (DNAI1) plays an essential role in cilia structure and function, while its mutations lead to primary ciliary dyskinesia (PCD). Accurate quantitation of DNAI1 in lung tissue is crucial for comprehensive understanding of its involvement in PCD, as well as for developing the potential PCD therapies. However, the current protein quantitation method is not sensitive enough to detect the endogenous level of DNAI1 in complex biological matrix such as lung tissue.</p><p><strong>Methods: </strong>In this study, a quantitative method combining immunoprecipitation with nanoLC-MS/MS was developed to measure the expression level of human wild-type (WT) DNAI1 protein in lung tissue. To our understanding, it is the first immunoprecipitation (IP)-MS based method for absolute quantitation of DNAI1 protein in lung tissue. The DNAI1 quantitation was achieved through constructing a standard curve with recombinant human WT DNAI1 protein spiked into lung tissue matrix.</p><p><strong>Results: </strong>This method was qualified with high sensitivity and accuracy. The lower limit of quantitation of human DNAI1 was 4 pg/mg tissue. This assay was successfully applied to determine the endogenous level of WT DNAI1 in human lung tissue.</p><p><strong>Conclusions: </strong>The results clearly demonstrate that the developed assay can accurately quantitate low-abundance WT DNAI1 protein in human lung tissue with high sensitivity, indicating its high potential use in the drug development for DNAI1 mutation-caused PCD therapy.</p>","PeriodicalId":10468,"journal":{"name":"Clinical proteomics","volume":"21 1","pages":"8"},"PeriodicalIF":3.8,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10840268/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139680807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent developments in mass-spectrometry-based targeted proteomics of clinical cancer biomarkers. 基于质谱的临床癌症生物标志物靶向蛋白质组学的最新进展。
IF 2.8 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-01-30 DOI: 10.1186/s12014-024-09452-1
Deborah Wenk, Charlotte Zuo, Thomas Kislinger, Lusia Sepiashvili

Routine measurement of cancer biomarkers is performed for early detection, risk classification, and treatment monitoring, among other applications, and has substantially contributed to better clinical outcomes for patients. However, there remains an unmet need for clinically validated assays of cancer protein biomarkers. Protein tumor markers are of particular interest since proteins carry out the majority of biological processes and thus dynamically reflect changes in cancer pathophysiology. Mass spectrometry-based targeted proteomics is a powerful tool for absolute peptide and protein quantification in biological matrices with numerous advantages that make it attractive for clinical applications in oncology. The use of liquid chromatography-tandem mass spectrometry (LC-MS/MS) based methodologies has allowed laboratories to overcome challenges associated with immunoassays that are more widely used for tumor marker measurements. Yet, clinical implementation of targeted proteomics methodologies has so far been limited to a few cancer markers. This is due to numerous challenges associated with paucity of robust validation studies of new biomarkers and the labor-intensive and operationally complex nature of LC-MS/MS workflows. The purpose of this review is to provide an overview of targeted proteomics applications in cancer, workflows used in targeted proteomics, and requirements for clinical validation and implementation of targeted proteomics assays. We will also discuss advantages and challenges of targeted MS-based proteomics assays for clinical cancer biomarker analysis and highlight some recent developments that will positively contribute to the implementation of this technique into clinical laboratories.

对癌症生物标志物进行常规测量,主要用于早期检测、风险分类和治疗监测等,大大提高了患者的临床疗效。然而,对于经过临床验证的癌症蛋白质生物标志物检测方法的需求仍未得到满足。蛋白质肿瘤标志物尤其令人感兴趣,因为蛋白质执行着大多数生物过程,因此能动态反映癌症病理生理学的变化。基于质谱的靶向蛋白质组学是对生物基质中的肽和蛋白质进行绝对定量的强大工具,它具有众多优势,因此在肿瘤学的临床应用中极具吸引力。基于液相色谱-串联质谱(LC-MS/MS)的方法使实验室能够克服与免疫测定相关的挑战,而免疫测定在肿瘤标志物测量中应用更为广泛。然而,迄今为止,靶向蛋白质组学方法的临床应用还仅限于少数几种癌症标志物。这是由于缺乏对新生物标记物的可靠验证研究以及 LC-MS/MS 工作流程的劳动密集型和操作复杂性所带来的诸多挑战。本综述旨在概述靶向蛋白质组学在癌症中的应用、靶向蛋白质组学中使用的工作流程以及靶向蛋白质组学测定的临床验证和实施要求。我们还将讨论基于 MS 的靶向蛋白质组学测定在临床癌症生物标记物分析中的优势和挑战,并重点介绍一些最新进展,这些进展将对临床实验室实施这项技术起到积极的推动作用。
{"title":"Recent developments in mass-spectrometry-based targeted proteomics of clinical cancer biomarkers.","authors":"Deborah Wenk, Charlotte Zuo, Thomas Kislinger, Lusia Sepiashvili","doi":"10.1186/s12014-024-09452-1","DOIUrl":"10.1186/s12014-024-09452-1","url":null,"abstract":"<p><p>Routine measurement of cancer biomarkers is performed for early detection, risk classification, and treatment monitoring, among other applications, and has substantially contributed to better clinical outcomes for patients. However, there remains an unmet need for clinically validated assays of cancer protein biomarkers. Protein tumor markers are of particular interest since proteins carry out the majority of biological processes and thus dynamically reflect changes in cancer pathophysiology. Mass spectrometry-based targeted proteomics is a powerful tool for absolute peptide and protein quantification in biological matrices with numerous advantages that make it attractive for clinical applications in oncology. The use of liquid chromatography-tandem mass spectrometry (LC-MS/MS) based methodologies has allowed laboratories to overcome challenges associated with immunoassays that are more widely used for tumor marker measurements. Yet, clinical implementation of targeted proteomics methodologies has so far been limited to a few cancer markers. This is due to numerous challenges associated with paucity of robust validation studies of new biomarkers and the labor-intensive and operationally complex nature of LC-MS/MS workflows. The purpose of this review is to provide an overview of targeted proteomics applications in cancer, workflows used in targeted proteomics, and requirements for clinical validation and implementation of targeted proteomics assays. We will also discuss advantages and challenges of targeted MS-based proteomics assays for clinical cancer biomarker analysis and highlight some recent developments that will positively contribute to the implementation of this technique into clinical laboratories.</p>","PeriodicalId":10468,"journal":{"name":"Clinical proteomics","volume":"21 1","pages":"6"},"PeriodicalIF":2.8,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10826105/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139575428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frozen tissue coring and layered histological analysis improves cell type-specific proteogenomic characterization of pancreatic adenocarcinoma 冷冻组织取芯和分层组织学分析改进了胰腺腺癌细胞类型特异性蛋白质组学特征描述
IF 3.8 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-01-30 DOI: 10.1186/s12014-024-09450-3
Sara R. Savage, Yuefan Wang, Lijun Chen, Scott Jewell, Chelsea Newton, Yongchao Dou, Qing Kay Li, Oliver F. Bathe, Ana I. Robles, Gilbert S. Omenn, Mathangi Thiagarajan, Hui Zhang, Galen Hostetter, Bing Zhang
Omics characterization of pancreatic adenocarcinoma tissue is complicated by the highly heterogeneous and mixed populations of cells. We evaluate the feasibility and potential benefit of using a coring method to enrich specific regions from bulk tissue and then perform proteogenomic analyses. We used the Biopsy Trifecta Extraction (BioTExt) technique to isolate cores of epithelial-enriched and stroma-enriched tissue from pancreatic tumor and adjacent tissue blocks. Histology was assessed at multiple depths throughout each core. DNA sequencing, RNA sequencing, and proteomics were performed on the cored and bulk tissue samples. Supervised and unsupervised analyses were performed based on integrated molecular and histology data. Tissue cores had mixed cell composition at varying depths throughout. Average cell type percentages assessed by histology throughout the core were better associated with KRAS variant allele frequencies than standard histology assessment of the cut surface. Clustering based on serial histology data separated the cores into three groups with enrichment of neoplastic epithelium, stroma, and acinar cells, respectively. Using this classification, tumor overexpressed proteins identified in bulk tissue analysis were assigned into epithelial- or stroma-specific categories, which revealed novel epithelial-specific tumor overexpressed proteins. Our study demonstrates the feasibility of multi-omics data generation from tissue cores, the necessity of interval H&E stains in serial histology sections, and the utility of coring to improve analysis over bulk tissue data.
由于细胞群高度异质性和混合性,胰腺腺癌组织的 Omics 表征非常复杂。我们评估了使用抽芯方法从大块组织中富集特定区域,然后进行蛋白质组分析的可行性和潜在益处。我们使用活检三连抽提(BioTExt)技术从胰腺肿瘤和邻近组织块中分离出上皮富集和间质富集的组织核心。组织学评估在每个核心的多个深度进行。DNA测序、RNA测序和蛋白质组学研究均在取芯和块状组织样本上进行。根据分子和组织学综合数据进行了监督和非监督分析。在整个组织中,不同深度的组织核心具有混合的细胞组成。与切面的标准组织学评估相比,组织学评估的整个组织核心的平均细胞类型百分比与KRAS变异等位基因频率有更好的关联。根据序列组织学数据进行的聚类将癌核分为三组,分别富含肿瘤上皮细胞、基质细胞和尖突细胞。利用这种分类方法,大块组织分析中发现的肿瘤高表达蛋白被归入上皮或基质特异性类别,从而发现了新的上皮特异性肿瘤高表达蛋白。我们的研究证明了从组织核芯生成多组学数据的可行性、在连续组织学切片中间隔H&E染色的必要性,以及核芯分析在改进批量组织数据分析方面的实用性。
{"title":"Frozen tissue coring and layered histological analysis improves cell type-specific proteogenomic characterization of pancreatic adenocarcinoma","authors":"Sara R. Savage, Yuefan Wang, Lijun Chen, Scott Jewell, Chelsea Newton, Yongchao Dou, Qing Kay Li, Oliver F. Bathe, Ana I. Robles, Gilbert S. Omenn, Mathangi Thiagarajan, Hui Zhang, Galen Hostetter, Bing Zhang","doi":"10.1186/s12014-024-09450-3","DOIUrl":"https://doi.org/10.1186/s12014-024-09450-3","url":null,"abstract":"Omics characterization of pancreatic adenocarcinoma tissue is complicated by the highly heterogeneous and mixed populations of cells. We evaluate the feasibility and potential benefit of using a coring method to enrich specific regions from bulk tissue and then perform proteogenomic analyses. We used the Biopsy Trifecta Extraction (BioTExt) technique to isolate cores of epithelial-enriched and stroma-enriched tissue from pancreatic tumor and adjacent tissue blocks. Histology was assessed at multiple depths throughout each core. DNA sequencing, RNA sequencing, and proteomics were performed on the cored and bulk tissue samples. Supervised and unsupervised analyses were performed based on integrated molecular and histology data. Tissue cores had mixed cell composition at varying depths throughout. Average cell type percentages assessed by histology throughout the core were better associated with KRAS variant allele frequencies than standard histology assessment of the cut surface. Clustering based on serial histology data separated the cores into three groups with enrichment of neoplastic epithelium, stroma, and acinar cells, respectively. Using this classification, tumor overexpressed proteins identified in bulk tissue analysis were assigned into epithelial- or stroma-specific categories, which revealed novel epithelial-specific tumor overexpressed proteins. Our study demonstrates the feasibility of multi-omics data generation from tissue cores, the necessity of interval H&E stains in serial histology sections, and the utility of coring to improve analysis over bulk tissue data.","PeriodicalId":10468,"journal":{"name":"Clinical proteomics","volume":"101 1","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139584257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An LC-MS-based designated comparison method with similar performance to the Lp(a) reference measurement procedure to guide molar Lp(a) standardization. 一种基于 LC-MS 的指定比较方法,其性能与 Lp(a) 参考测量程序相似,可用于指导摩尔 Lp(a) 标准化。
IF 2.8 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-01-24 DOI: 10.1186/s12014-023-09446-5
Nina M Diederiks, L Renee Ruhaak, Fred P H T M Romijn, Mervin M Pieterse, Nico P M Smit, Christa M Cobbaert

Background: The 2022 consensus statement of the European Atherosclerosis Society (EAS) on lipoprotein(a) (Lp(a)) recognizes the role of Lp(a) as a relevant genetically determined risk factor and recommends its measurement at least once in an individual's lifetime. It also strongly urges that Lp(a) test results are expressed as apolipoprotein (a) (apo(a)) amount of substance in molar units and no longer in confounded Lp(a) mass units (mg/dL or mg/L). Therefore, IVD manufacturers should transition to molar units. A prerequisite for this transition is the availability of an Lp(a) Reference Measurement Procedure (RMP) that allows unequivocal molecular detection and quantification of apo(a) in Lp(a). To that end an ISO 17511:2020 compliant LC-MS based and IFCC-endorsed RMP has been established that targets proteotypic peptides of apolipoprotein(a) (apo(a)) in Lp(a). The RMP is laborious and requires highly skilled operators. To guide IVD-manufacturers of immunoassay-based Lp(a) test kits in the transition from mass to molar units, a Designated Comparison Method (DCM) has been developed and evaluated.

Methods: To assess whether the DCM provides equivalent results compared to the RMP, the procedural designs were compared and the analytical performance of DCM and RMP were first evaluated in a head-to-head comparison. Subsequently, apo(a) was quantified in 153 human clinical serum samples. Both DCM and RMP were calibrated using external native calibrators that produce results traceable to SRM2B. Measurement uncertainty (MU) was checked against predefined allowable MU.

Results: The major difference in the design of the DCM for apo(a) is the use of only one enzymatic digestion step. The analytical performance of the DCM and RMP for apo(a) is highly similar. In a direct method comparison, equivalent results were obtained with a median regression slope 0.997 of and a median bias of - 0.2 nmol/L (- 0.2%); the intermediate imprecision of the test results was within total allowable error (TEa) (CVa of 10.2% at 90 nmol/L).

Conclusions: The semi-automated, higher throughput, LC-MS-based method for Lp(a) meets the predefined analytical performance specifications and allowable MU and is hence applicable as a higher order Designated Comparison Method, which is ideally suited to guide IVD manufacturers in the transition from Lp(a) mass to molar units.

背景:欧洲动脉粥样硬化学会(EAS)关于脂蛋白(a)(Lp(a))的 2022 年共识声明承认脂蛋白(a)是由基因决定的相关风险因素,并建议在人的一生中至少测量一次脂蛋白(a)。该组织还强烈要求脂蛋白(a)检测结果以摩尔单位表示载脂蛋白(a)(apo(a))的物质的量,而不再以容易混淆的脂蛋白(a)质量单位(毫克/分升或毫克/升)表示。因此,IVD 制造商应向摩尔单位过渡。实现这一过渡的先决条件是要有可对脂蛋白(a)中载脂蛋白(a)进行明确的分子检测和定量的脂蛋白(a)参考测量程序(RMP)。为此,我们建立了一个符合 ISO 17511:2020 标准、基于液相色谱-质谱联用仪(LC-MS)并经 IFCC 认可的 RMP,它以脂蛋白(a)(载脂蛋白(a))的蛋白型肽为目标。RMP 操作费力,需要熟练的操作人员。为了指导基于免疫测定的脂蛋白(a)检测试剂盒的 IVD 生产商从质量单位过渡到摩尔单位,我们开发并评估了一种指定比较方法(DCM):为了评估 DCM 是否能提供与 RMP 相当的结果,首先对程序设计进行了比较,并对 DCM 和 RMP 的分析性能进行了正面比较评估。随后,对 153 份人体临床血清样本中的载脂蛋白(a)进行了定量。DCM 和 RMP 均使用外部本机校准物进行校准,校准结果可溯源至 SRM2B。测量不确定性(MU)与预定义的允许 MU 进行了核对:载脂蛋白(a)的 DCM 设计的主要区别在于只使用了一个酶解步骤。DCM 和 RMP 对载脂蛋白(a)的分析性能非常相似。在直接方法比较中,得到的结果相当,中位回归斜率为 0.997,中位偏差为 - 0.2 nmol/L(- 0.2%);检测结果的中间不精确度在总允许误差 (TEa) 范围内(90 nmol/L 时 CVa 为 10.2%):基于 LC-MS 的半自动化、高通量脂蛋白(a)检测方法符合预定的分析性能指标和允许误差,因此可作为高阶指定比较方法,非常适合指导 IVD 制造商从脂蛋白(a)质量单位过渡到摩尔单位。
{"title":"An LC-MS-based designated comparison method with similar performance to the Lp(a) reference measurement procedure to guide molar Lp(a) standardization.","authors":"Nina M Diederiks, L Renee Ruhaak, Fred P H T M Romijn, Mervin M Pieterse, Nico P M Smit, Christa M Cobbaert","doi":"10.1186/s12014-023-09446-5","DOIUrl":"10.1186/s12014-023-09446-5","url":null,"abstract":"<p><strong>Background: </strong>The 2022 consensus statement of the European Atherosclerosis Society (EAS) on lipoprotein(a) (Lp(a)) recognizes the role of Lp(a) as a relevant genetically determined risk factor and recommends its measurement at least once in an individual's lifetime. It also strongly urges that Lp(a) test results are expressed as apolipoprotein (a) (apo(a)) amount of substance in molar units and no longer in confounded Lp(a) mass units (mg/dL or mg/L). Therefore, IVD manufacturers should transition to molar units. A prerequisite for this transition is the availability of an Lp(a) Reference Measurement Procedure (RMP) that allows unequivocal molecular detection and quantification of apo(a) in Lp(a). To that end an ISO 17511:2020 compliant LC-MS based and IFCC-endorsed RMP has been established that targets proteotypic peptides of apolipoprotein(a) (apo(a)) in Lp(a). The RMP is laborious and requires highly skilled operators. To guide IVD-manufacturers of immunoassay-based Lp(a) test kits in the transition from mass to molar units, a Designated Comparison Method (DCM) has been developed and evaluated.</p><p><strong>Methods: </strong>To assess whether the DCM provides equivalent results compared to the RMP, the procedural designs were compared and the analytical performance of DCM and RMP were first evaluated in a head-to-head comparison. Subsequently, apo(a) was quantified in 153 human clinical serum samples. Both DCM and RMP were calibrated using external native calibrators that produce results traceable to SRM2B. Measurement uncertainty (MU) was checked against predefined allowable MU.</p><p><strong>Results: </strong>The major difference in the design of the DCM for apo(a) is the use of only one enzymatic digestion step. The analytical performance of the DCM and RMP for apo(a) is highly similar. In a direct method comparison, equivalent results were obtained with a median regression slope 0.997 of and a median bias of - 0.2 nmol/L (- 0.2%); the intermediate imprecision of the test results was within total allowable error (TEa) (CVa of 10.2% at 90 nmol/L).</p><p><strong>Conclusions: </strong>The semi-automated, higher throughput, LC-MS-based method for Lp(a) meets the predefined analytical performance specifications and allowable MU and is hence applicable as a higher order Designated Comparison Method, which is ideally suited to guide IVD manufacturers in the transition from Lp(a) mass to molar units.</p>","PeriodicalId":10468,"journal":{"name":"Clinical proteomics","volume":"21 1","pages":"5"},"PeriodicalIF":2.8,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10809433/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139544871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping three-dimensional intratumor proteomic heterogeneity in uterine serous carcinoma by multiregion microsampling. 通过多区域微取样绘制子宫浆液性癌的三维瘤内蛋白质组异质性图谱
IF 2.8 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-01-22 DOI: 10.1186/s12014-024-09451-2
Allison L Hunt, Nicholas W Bateman, Waleed Barakat, Sasha C Makohon-Moore, Tamara Abulez, Jordan A Driscoll, Joshua P Schaaf, Brian L Hood, Kelly A Conrads, Ming Zhou, Valerie Calvert, Mariaelena Pierobon, Jeremy Loffredo, Katlin N Wilson, Tracy J Litzi, Pang-Ning Teng, Julie Oliver, Dave Mitchell, Glenn Gist, Christine Rojas, Brian Blanton, Kathleen M Darcy, Uma N M Rao, Emanuel F Petricoin, Neil T Phippen, G Larry Maxwell, Thomas P Conrads

Background: Although uterine serous carcinoma (USC) represents a small proportion of all uterine cancer cases, patients with this aggressive subtype typically have high rates of chemotherapy resistance and disease recurrence that collectively result in a disproportionately high death rate. The goal of this study was to provide a deeper view of the tumor microenvironment of this poorly characterized uterine cancer variant through multi-region microsampling and quantitative proteomics.

Methods: Tumor epithelium, tumor-involved stroma, and whole "bulk" tissue were harvested by laser microdissection (LMD) from spatially resolved levels from nine USC patient tumor specimens and underwent proteomic analysis by mass spectrometry and reverse phase protein arrays, as well as transcriptomic analysis by RNA-sequencing for one patient's tumor.

Results: LMD enriched cell subpopulations demonstrated varying degrees of relatedness, indicating substantial intratumor heterogeneity emphasizing the necessity for enrichment of cellular subpopulations prior to molecular analysis. Known prognostic biomarkers were quantified with stable levels in both LMD enriched tumor and stroma, which were shown to be highly variable in bulk tissue. These USC data were further used in a comparative analysis with a data generated from another serous gynecologic malignancy, high grade serous ovarian carcinoma, and have been added to our publicly available data analysis tool, the Heterogeneity Analysis Portal ( https://lmdomics.org/ ).

Conclusions: Here we identified extensive three-dimensional heterogeneity within the USC tumor microenvironment, with disease-relevant biomarkers present in both the tumor and the stroma. These data underscore the critical need for upfront enrichment of cellular subpopulations from tissue specimens for spatial proteogenomic analysis.

背景:尽管子宫浆液性癌(USC)在所有子宫癌病例中所占比例很小,但这种侵袭性亚型患者通常具有很高的化疗耐药性和疾病复发率,这共同导致了过高的死亡率。本研究的目的是通过多区域微取样和定量蛋白质组学研究,更深入地了解这种特征不明显的子宫癌变体的肿瘤微环境:方法:通过激光显微切割(LMD)从9例USC患者肿瘤标本的空间分辨水平采集肿瘤上皮、肿瘤相关基质和整个 "大块 "组织,并通过质谱和反相蛋白阵列进行蛋白质组学分析,以及通过RNA测序对1例患者的肿瘤进行转录组学分析:结果:LMD 富集的细胞亚群表现出不同程度的相关性,这表明肿瘤内存在大量异质性,强调了在进行分子分析之前富集细胞亚群的必要性。已知的预后生物标志物在 LMD 富集的肿瘤和基质中都有稳定的量化水平,而在大块组织中则显示出高度的可变性。这些USC数据被进一步用于与另一种浆液性妇科恶性肿瘤--高级别浆液性卵巢癌--产生的数据进行比较分析,并被添加到我们的公开数据分析工具--异质性分析门户网站( https://lmdomics.org/ )中。结论:在这里,我们发现了南加州大学肿瘤微环境中广泛的三维异质性,肿瘤和基质中都存在与疾病相关的生物标志物。这些数据强调了从组织标本中富集细胞亚群进行空间蛋白质组学分析的迫切需要。
{"title":"Mapping three-dimensional intratumor proteomic heterogeneity in uterine serous carcinoma by multiregion microsampling.","authors":"Allison L Hunt, Nicholas W Bateman, Waleed Barakat, Sasha C Makohon-Moore, Tamara Abulez, Jordan A Driscoll, Joshua P Schaaf, Brian L Hood, Kelly A Conrads, Ming Zhou, Valerie Calvert, Mariaelena Pierobon, Jeremy Loffredo, Katlin N Wilson, Tracy J Litzi, Pang-Ning Teng, Julie Oliver, Dave Mitchell, Glenn Gist, Christine Rojas, Brian Blanton, Kathleen M Darcy, Uma N M Rao, Emanuel F Petricoin, Neil T Phippen, G Larry Maxwell, Thomas P Conrads","doi":"10.1186/s12014-024-09451-2","DOIUrl":"10.1186/s12014-024-09451-2","url":null,"abstract":"<p><strong>Background: </strong>Although uterine serous carcinoma (USC) represents a small proportion of all uterine cancer cases, patients with this aggressive subtype typically have high rates of chemotherapy resistance and disease recurrence that collectively result in a disproportionately high death rate. The goal of this study was to provide a deeper view of the tumor microenvironment of this poorly characterized uterine cancer variant through multi-region microsampling and quantitative proteomics.</p><p><strong>Methods: </strong>Tumor epithelium, tumor-involved stroma, and whole \"bulk\" tissue were harvested by laser microdissection (LMD) from spatially resolved levels from nine USC patient tumor specimens and underwent proteomic analysis by mass spectrometry and reverse phase protein arrays, as well as transcriptomic analysis by RNA-sequencing for one patient's tumor.</p><p><strong>Results: </strong>LMD enriched cell subpopulations demonstrated varying degrees of relatedness, indicating substantial intratumor heterogeneity emphasizing the necessity for enrichment of cellular subpopulations prior to molecular analysis. Known prognostic biomarkers were quantified with stable levels in both LMD enriched tumor and stroma, which were shown to be highly variable in bulk tissue. These USC data were further used in a comparative analysis with a data generated from another serous gynecologic malignancy, high grade serous ovarian carcinoma, and have been added to our publicly available data analysis tool, the Heterogeneity Analysis Portal ( https://lmdomics.org/ ).</p><p><strong>Conclusions: </strong>Here we identified extensive three-dimensional heterogeneity within the USC tumor microenvironment, with disease-relevant biomarkers present in both the tumor and the stroma. These data underscore the critical need for upfront enrichment of cellular subpopulations from tissue specimens for spatial proteogenomic analysis.</p>","PeriodicalId":10468,"journal":{"name":"Clinical proteomics","volume":"21 1","pages":"4"},"PeriodicalIF":2.8,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10804562/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139520144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kinase inhibitor pulldown assay (KiP) for clinical proteomics. 用于临床蛋白质组学的激酶抑制剂下拉测定(KiP)。
IF 2.8 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-01-16 DOI: 10.1186/s12014-023-09448-3
Alexander B Saltzman, Doug W Chan, Matthew V Holt, Junkai Wang, Eric J Jaehnig, Meenakshi Anurag, Purba Singh, Anna Malovannaya, Beom-Jun Kim, Matthew J Ellis

Protein kinases are frequently dysregulated and/or mutated in cancer and represent essential targets for therapy. Accurate quantification is essential. For breast cancer treatment, the identification and quantification of the protein kinase ERBB2 is critical for therapeutic decisions. While immunohistochemistry (IHC) is the current clinical diagnostic approach, it is only semiquantitative. Mass spectrometry-based proteomics offers quantitative assays that, unlike IHC, can be used to accurately evaluate hundreds of kinases simultaneously. The enrichment of less abundant kinase targets for quantification, along with depletion of interfering proteins, improves sensitivity and thus promotes more effective downstream analyses. Multiple kinase inhibitors were therefore deployed as a capture matrix for kinase inhibitor pulldown (KiP) assays designed to profile the human protein kinome as broadly as possible. Optimized assays were initially evaluated in 16 patient derived xenograft models (PDX) where KiP identified multiple differentially expressed and biologically relevant kinases. From these analyses, an optimized single-shot parallel reaction monitoring (PRM) method was developed to improve quantitative fidelity. The PRM KiP approach was then reapplied to low quantities of proteins typical of yields from core needle biopsies of human cancers. The initial prototype targeting 100 kinases recapitulated intrinsic subtyping of PDX models obtained from comprehensive proteomic and transcriptomic profiling. Luminal and HER2 enriched OCT-frozen patient biopsies subsequently analyzed through KiP-PRM also clustered by subtype. Finally, stable isotope labeled peptide standards were developed to define a prototype clinical method. Data are available via ProteomeXchange with identifiers PXD044655 and PXD046169.

蛋白激酶经常在癌症中失调和/或突变,是治疗的重要靶点。准确的定量至关重要。在乳腺癌治疗中,蛋白激酶 ERBB2 的鉴定和定量对于治疗决策至关重要。虽然免疫组织化学(IHC)是目前的临床诊断方法,但它只能进行半定量分析。与 IHC 不同的是,基于质谱的蛋白质组学可提供定量检测方法,可同时准确评估数百种激酶。对含量较低的激酶靶标进行富集定量,同时去除干扰蛋白,可提高灵敏度,从而促进更有效的下游分析。因此,多种激酶抑制剂被用作激酶抑制剂下拉(KiP)测定的捕获基质,旨在尽可能广泛地剖析人类蛋白质激酶组。最初在 16 个患者衍生异种移植模型(PDX)中对优化的检测方法进行了评估,在这些模型中,KiP 发现了多种不同表达和生物相关的激酶。通过这些分析,开发出了一种优化的单次平行反应监测(PRM)方法,以提高定量保真度。随后,PRM KiP 方法被重新应用于人类癌症核心针活检中典型的低量蛋白质。最初的原型针对 100 个激酶,再现了通过全面蛋白质组和转录组分析获得的 PDX 模型的内在亚型。随后通过 KiP-PRM 分析的富含 Luminal 和 HER2 的 OCT 冷冻患者活检组织也按亚型进行了分类。最后,还开发了稳定同位素标记肽标准,以确定一种原型临床方法。数据可通过蛋白质组交换(ProteomeXchange)获得,标识符为 PXD044655 和 PXD046169。
{"title":"Kinase inhibitor pulldown assay (KiP) for clinical proteomics.","authors":"Alexander B Saltzman, Doug W Chan, Matthew V Holt, Junkai Wang, Eric J Jaehnig, Meenakshi Anurag, Purba Singh, Anna Malovannaya, Beom-Jun Kim, Matthew J Ellis","doi":"10.1186/s12014-023-09448-3","DOIUrl":"10.1186/s12014-023-09448-3","url":null,"abstract":"<p><p>Protein kinases are frequently dysregulated and/or mutated in cancer and represent essential targets for therapy. Accurate quantification is essential. For breast cancer treatment, the identification and quantification of the protein kinase ERBB2 is critical for therapeutic decisions. While immunohistochemistry (IHC) is the current clinical diagnostic approach, it is only semiquantitative. Mass spectrometry-based proteomics offers quantitative assays that, unlike IHC, can be used to accurately evaluate hundreds of kinases simultaneously. The enrichment of less abundant kinase targets for quantification, along with depletion of interfering proteins, improves sensitivity and thus promotes more effective downstream analyses. Multiple kinase inhibitors were therefore deployed as a capture matrix for kinase inhibitor pulldown (KiP) assays designed to profile the human protein kinome as broadly as possible. Optimized assays were initially evaluated in 16 patient derived xenograft models (PDX) where KiP identified multiple differentially expressed and biologically relevant kinases. From these analyses, an optimized single-shot parallel reaction monitoring (PRM) method was developed to improve quantitative fidelity. The PRM KiP approach was then reapplied to low quantities of proteins typical of yields from core needle biopsies of human cancers. The initial prototype targeting 100 kinases recapitulated intrinsic subtyping of PDX models obtained from comprehensive proteomic and transcriptomic profiling. Luminal and HER2 enriched OCT-frozen patient biopsies subsequently analyzed through KiP-PRM also clustered by subtype. Finally, stable isotope labeled peptide standards were developed to define a prototype clinical method. Data are available via ProteomeXchange with identifiers PXD044655 and PXD046169.</p>","PeriodicalId":10468,"journal":{"name":"Clinical proteomics","volume":"21 1","pages":"3"},"PeriodicalIF":2.8,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10790396/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139472174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Clinical proteomics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1