Pub Date : 2022-09-26DOI: 10.3390/colorants1040023
Iris Peng, Katie Hills‐Kimball, I. Lovelace, Junyu Wang, M. Rios, Ou Chen, Li-Qiong Wang
The colors of copper-containing pigments, copper (II) oxide and malachite, and their origins in ceramic glazes were systematically examined over a wide firing temperature range using a suite of analytical and spectroscopy techniques including SEM, UV-Vis FORS, XRD, FTIR, and EPR to gain new insight into the structural and chemical transformations of the glaze during firing. The two colorants investigated were black copper (II) oxide (CuO) nanopowder and blue-green basic copper carbonate, or malachite (Cu2CO3(OH)2), both of which produce a final light blue color following firing. Additionally, silicon carbide (SiC) was used to locally reduce CuO to simulate firing glazes in a reductive environment and produce a final red color. At lower temperatures, malachite was found to decompose to form CuO at 550 °C, elucidating the reason that two different copper colorants could be used interchangeably to form the same “Robin’s Egg Blue” color. At 850 °C, a glaze sintering process occurred, resulting in the distribution of Cu2+ in a square planar geometry and an observed blue color. This structural change occurred at temperatures lower than the glaze’s melting point, indicating that complete vitrification of the glaze is not required for glaze coloration. Conversely, the reduction in Cu2+ to Cu+ through the addition of SiC did not occur until the glaze was fired above the melting temperature (1000 °C), signifying that high temperatures are required for the redox reaction to occur. This study sheds light on intermediate colorant-glaze interactions that are beneficial for understanding and predicting glaze coloring upon exposure to varying temperatures, and the results from this study can be applied to better-controlled glaze production for artists and a deeper appreciation of ceramic glaze chemistry and aesthetics.
{"title":"Exploring the Colors of Copper-Containing Pigments, Copper (II) Oxide and Malachite, and Their Origins in Ceramic Glazes","authors":"Iris Peng, Katie Hills‐Kimball, I. Lovelace, Junyu Wang, M. Rios, Ou Chen, Li-Qiong Wang","doi":"10.3390/colorants1040023","DOIUrl":"https://doi.org/10.3390/colorants1040023","url":null,"abstract":"The colors of copper-containing pigments, copper (II) oxide and malachite, and their origins in ceramic glazes were systematically examined over a wide firing temperature range using a suite of analytical and spectroscopy techniques including SEM, UV-Vis FORS, XRD, FTIR, and EPR to gain new insight into the structural and chemical transformations of the glaze during firing. The two colorants investigated were black copper (II) oxide (CuO) nanopowder and blue-green basic copper carbonate, or malachite (Cu2CO3(OH)2), both of which produce a final light blue color following firing. Additionally, silicon carbide (SiC) was used to locally reduce CuO to simulate firing glazes in a reductive environment and produce a final red color. At lower temperatures, malachite was found to decompose to form CuO at 550 °C, elucidating the reason that two different copper colorants could be used interchangeably to form the same “Robin’s Egg Blue” color. At 850 °C, a glaze sintering process occurred, resulting in the distribution of Cu2+ in a square planar geometry and an observed blue color. This structural change occurred at temperatures lower than the glaze’s melting point, indicating that complete vitrification of the glaze is not required for glaze coloration. Conversely, the reduction in Cu2+ to Cu+ through the addition of SiC did not occur until the glaze was fired above the melting temperature (1000 °C), signifying that high temperatures are required for the redox reaction to occur. This study sheds light on intermediate colorant-glaze interactions that are beneficial for understanding and predicting glaze coloring upon exposure to varying temperatures, and the results from this study can be applied to better-controlled glaze production for artists and a deeper appreciation of ceramic glaze chemistry and aesthetics.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85593794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-06DOI: 10.3390/colorants1030022
Jules C. Picuri, Julia M. Natoli, S. E. Shaw, Shruthi P. Shyam, Stephen R. VanHoesen, Zhenyu Lin, W. J. Bowyer
Hematite, the mineral that gives color to bright red iron ochres, occurs naturally, but there is much evidence that early humans sometimes artificially produced hematite by heating a related mineral, goethite, in wood fires. This represents an important cognitive and technological advance in early human prehistory. Thus, there is a need to distinguish natural hematite from hematite generated by heating goethite in a wood fire. Measuring the line widths of powder X-ray diffraction (XRD) in hematite has been explored, and synthetic goethite heated in a modern furnace has been used as a model system for studying this process. We now show that to be an inappropriate model. Although chemically identical, natural goethite is physically different from and much more variable than goethite produced in a laboratory. Furthermore, by replicating the process using Stone Age technology, we show that heating goethite in a wood fire complicates the interpretation of XRD line widths of the resulting hematite. We conclude that strategies other than powder XRD are necessary to draw conclusions about the ancient processing of iron ochres.
{"title":"Can X-ray Diffraction Distinguish Natural from Anthropogenic Hematite? Replication of the Conversion of Natural Goethite in Both Furnace and Campfire","authors":"Jules C. Picuri, Julia M. Natoli, S. E. Shaw, Shruthi P. Shyam, Stephen R. VanHoesen, Zhenyu Lin, W. J. Bowyer","doi":"10.3390/colorants1030022","DOIUrl":"https://doi.org/10.3390/colorants1030022","url":null,"abstract":"Hematite, the mineral that gives color to bright red iron ochres, occurs naturally, but there is much evidence that early humans sometimes artificially produced hematite by heating a related mineral, goethite, in wood fires. This represents an important cognitive and technological advance in early human prehistory. Thus, there is a need to distinguish natural hematite from hematite generated by heating goethite in a wood fire. Measuring the line widths of powder X-ray diffraction (XRD) in hematite has been explored, and synthetic goethite heated in a modern furnace has been used as a model system for studying this process. We now show that to be an inappropriate model. Although chemically identical, natural goethite is physically different from and much more variable than goethite produced in a laboratory. Furthermore, by replicating the process using Stone Age technology, we show that heating goethite in a wood fire complicates the interpretation of XRD line widths of the resulting hematite. We conclude that strategies other than powder XRD are necessary to draw conclusions about the ancient processing of iron ochres.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"71 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76385884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-01DOI: 10.3390/colorants1030020
Ryohei Oka, Tomoyo Nouchi, Toshiyuki Masui
Tb4+-doped sodium zirconate samples, Na2Zr1−xTbxO3, were synthesized as novel environmentally friendly inorganic yellow pigments by a conventional solid-state reaction method. Their crystal structures, optical properties, and colors were characterized. A single-phase form was obtained for the samples in the x range of x ≤ 0.18, while impurity phases were detected for the sample with x = 0.20. All samples showed strong optical absorption in the blue light region, due to the charge transfer transition between O2− and Tb4+. As a result, the sample color became yellow, which is the complementary color of blue, and the color became more vivid with increasing Tb4+ content in the single-phase region. Among the samples, Na2Zr0.82Tb0.18O3 was the optimal composition, with the highest yellowness (b* = +67.2) and pure yellow hue (h° = 90.1). Although the b* value was lower than commercial yellow pigments such as BiVO4 and ZrSiO4:Pr, this sample had a purer yellow hue. Since Na2Zr0.82Tb0.18O3 is composed of non-toxic elements, it could be a new environmentally friendly inorganic yellow pigment.
{"title":"Synthesis and Color Evaluation of Tb4+-Doped Na2ZrO3 for Inorganic Yellow Pigments","authors":"Ryohei Oka, Tomoyo Nouchi, Toshiyuki Masui","doi":"10.3390/colorants1030020","DOIUrl":"https://doi.org/10.3390/colorants1030020","url":null,"abstract":"Tb4+-doped sodium zirconate samples, Na2Zr1−xTbxO3, were synthesized as novel environmentally friendly inorganic yellow pigments by a conventional solid-state reaction method. Their crystal structures, optical properties, and colors were characterized. A single-phase form was obtained for the samples in the x range of x ≤ 0.18, while impurity phases were detected for the sample with x = 0.20. All samples showed strong optical absorption in the blue light region, due to the charge transfer transition between O2− and Tb4+. As a result, the sample color became yellow, which is the complementary color of blue, and the color became more vivid with increasing Tb4+ content in the single-phase region. Among the samples, Na2Zr0.82Tb0.18O3 was the optimal composition, with the highest yellowness (b* = +67.2) and pure yellow hue (h° = 90.1). Although the b* value was lower than commercial yellow pigments such as BiVO4 and ZrSiO4:Pr, this sample had a purer yellow hue. Since Na2Zr0.82Tb0.18O3 is composed of non-toxic elements, it could be a new environmentally friendly inorganic yellow pigment.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"61 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78322782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-01DOI: 10.3390/colorants1030021
Masafumi Yano, Mai Sasaoka, K. Tamada, Misaki Nakai, T. Yajima, K. Mitsudo, Yukiyasu Kashiwagi
Five triphenyltriphenylamines with various substituents were investigated as precursors for near-infrared absorbing materials. Cyclic voltammetry (CV) studies showed that they all give stable radical cations in solution. The radical cations obtained by one-electron chemical oxidation of these compounds show strong absorption in the near-infrared region, and the position of the absorption is strongly influenced by the substituent. DFT (density functional theory) calculations suggest that the introduction of stronger electron-donating substituents would result in a smaller HOMO–SOMO energy gap and thus a larger long wavelength shift, which is consistent with the experimental results. On the other hand, strong electron-withdrawing substituents increase the HOMO–SOMO energy gap, resulting in a short wavelength shift. The position of the near-infrared absorption peak of the triphenylamine radical cation can be controlled to the longer or shorter wavelength direction depending on the substituent. A molecular design of near-infrared absorbing dyes utilizing the electronic effects of substituents is described.
{"title":"Substituent Control of Near-Infrared Absorption of Triphenylamine Radical Cation","authors":"Masafumi Yano, Mai Sasaoka, K. Tamada, Misaki Nakai, T. Yajima, K. Mitsudo, Yukiyasu Kashiwagi","doi":"10.3390/colorants1030021","DOIUrl":"https://doi.org/10.3390/colorants1030021","url":null,"abstract":"Five triphenyltriphenylamines with various substituents were investigated as precursors for near-infrared absorbing materials. Cyclic voltammetry (CV) studies showed that they all give stable radical cations in solution. The radical cations obtained by one-electron chemical oxidation of these compounds show strong absorption in the near-infrared region, and the position of the absorption is strongly influenced by the substituent. DFT (density functional theory) calculations suggest that the introduction of stronger electron-donating substituents would result in a smaller HOMO–SOMO energy gap and thus a larger long wavelength shift, which is consistent with the experimental results. On the other hand, strong electron-withdrawing substituents increase the HOMO–SOMO energy gap, resulting in a short wavelength shift. The position of the near-infrared absorption peak of the triphenylamine radical cation can be controlled to the longer or shorter wavelength direction depending on the substituent. A molecular design of near-infrared absorbing dyes utilizing the electronic effects of substituents is described.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"284 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73399020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-13DOI: 10.3390/colorants1030019
M. V. Orna, M. Fontani
Naturally occurring and synthetic ancient pigments have a history of use spanning thousands of years. Curiously, some of their newly discovered properties make them excellent candidates for semiconductors, anticounterfeiting agents and so much more. In this paper, we will review their ancient roots in art and modern emergence as 21st century workhorses. You can never judge a pigment by its color alone!
{"title":"The Modernity of Ancient Pigments: A Historical Approach","authors":"M. V. Orna, M. Fontani","doi":"10.3390/colorants1030019","DOIUrl":"https://doi.org/10.3390/colorants1030019","url":null,"abstract":"Naturally occurring and synthetic ancient pigments have a history of use spanning thousands of years. Curiously, some of their newly discovered properties make them excellent candidates for semiconductors, anticounterfeiting agents and so much more. In this paper, we will review their ancient roots in art and modern emergence as 21st century workhorses. You can never judge a pigment by its color alone!","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85608024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-09DOI: 10.3390/colorants1030018
Iu. V. Aksenova, E. Bocharnikova, M. Ashmarina
This article compares spectroscopic properties of the series of dipyrromethene dyes, namely their complexes of boron (III), zinc(II) and cadmium(II) with the halogenated ligands of the same structure. Absorption and emission spectra, lifetimes of long-lived emission and quantum yields of luminescence were studied as the functions of molecular structure of dipyrromethene complexes. The role of the position and nature of a substituent in a ligand, polarity of a solvent and temperature of media were also investigated. The studies demonstrate that replacing the central atom boron(III) by zinc(II) decreases the fluorescence quantum yield, indicating the increased role of non-radiative processes in excitation energy deactivations such as intersystem crossings. In addition, according to the heavy atom effect, the efficiency of intersystem crossings in halogen-substituted zinc(II) and cadmium(II) dipyrromethene complexes is higher than in the corresponding boron fluoride dipyrromethenes (BODIPY), which leads to increase in phosphorescence at low temperatures (frozen solutions). The obtained results make it possible to carry out further investigations of potential sensory properties that are required for systematic use of halogenated dipyrromethene complexes for the creation of modern optical oxygen sensors and singlet oxygen photosensitizers for photodynamic therapy or photocatalytic oxidative reactions.
{"title":"Photonics of Halogenated Zinc(II) and Cadmium(II) Dipyrromethene Complexes","authors":"Iu. V. Aksenova, E. Bocharnikova, M. Ashmarina","doi":"10.3390/colorants1030018","DOIUrl":"https://doi.org/10.3390/colorants1030018","url":null,"abstract":"This article compares spectroscopic properties of the series of dipyrromethene dyes, namely their complexes of boron (III), zinc(II) and cadmium(II) with the halogenated ligands of the same structure. Absorption and emission spectra, lifetimes of long-lived emission and quantum yields of luminescence were studied as the functions of molecular structure of dipyrromethene complexes. The role of the position and nature of a substituent in a ligand, polarity of a solvent and temperature of media were also investigated. The studies demonstrate that replacing the central atom boron(III) by zinc(II) decreases the fluorescence quantum yield, indicating the increased role of non-radiative processes in excitation energy deactivations such as intersystem crossings. In addition, according to the heavy atom effect, the efficiency of intersystem crossings in halogen-substituted zinc(II) and cadmium(II) dipyrromethene complexes is higher than in the corresponding boron fluoride dipyrromethenes (BODIPY), which leads to increase in phosphorescence at low temperatures (frozen solutions). The obtained results make it possible to carry out further investigations of potential sensory properties that are required for systematic use of halogenated dipyrromethene complexes for the creation of modern optical oxygen sensors and singlet oxygen photosensitizers for photodynamic therapy or photocatalytic oxidative reactions.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82630814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-05DOI: 10.3390/colorants1030017
Jianhua Ran, Victoria G. Pryazhnikova, F. Telegin
The efficiency of chemoinformatics methods based on a fragment approach for the analysis of relationships between the chemical structure of textile dyes and colour fastness of the dyeings have been shown by examining a large set of properties, including the light fastness of acid dyes on wool and polyamide fibres, the sensitivity of acid dyes on wool to oxygen bleaching, the wash fastness of acid dyes on wool, the adsorption of direct dyes on cotton, and the photodegradation of azo dyes in solution. An analysis of the developed regression models depicted the contribution of ten substructural molecular fragments for each indicator of the colour fastness properties of acid and direct azo dyes on textile materials. The similarity of several individual multi-atomic fragments for acid and direct azo dyes was found for wool, polyamide, and cotton fibres, which indicates the coinciding mechanisms of the physicochemical processes that accompany the destruction of dyes while testing the light fastness and sensitivity of the dyeings to oxygen bleaching, as well as their adsorption/desorption with the wash fastness and dyeability of wool and cotton.
{"title":"Chemoinformatics Analysis of the Colour Fastness Properties of Acid and Direct Dyes in Textile Coloration","authors":"Jianhua Ran, Victoria G. Pryazhnikova, F. Telegin","doi":"10.3390/colorants1030017","DOIUrl":"https://doi.org/10.3390/colorants1030017","url":null,"abstract":"The efficiency of chemoinformatics methods based on a fragment approach for the analysis of relationships between the chemical structure of textile dyes and colour fastness of the dyeings have been shown by examining a large set of properties, including the light fastness of acid dyes on wool and polyamide fibres, the sensitivity of acid dyes on wool to oxygen bleaching, the wash fastness of acid dyes on wool, the adsorption of direct dyes on cotton, and the photodegradation of azo dyes in solution. An analysis of the developed regression models depicted the contribution of ten substructural molecular fragments for each indicator of the colour fastness properties of acid and direct azo dyes on textile materials. The similarity of several individual multi-atomic fragments for acid and direct azo dyes was found for wool, polyamide, and cotton fibres, which indicates the coinciding mechanisms of the physicochemical processes that accompany the destruction of dyes while testing the light fastness and sensitivity of the dyeings to oxygen bleaching, as well as their adsorption/desorption with the wash fastness and dyeability of wool and cotton.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77192895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-23DOI: 10.3390/colorants1030016
W. D. de Grip, J. Lugtenburg
Rhodopsin, the first visual pigment identified in the animal retina, was shown to be a photosensitive membrane protein containing covalently bound retinal in the 11-cis configuration, as a chromophore. Upon photoexcitation the chromophore isomerizes in femtoseconds to all-trans, which drives the protein into the active state. Soon thereafter, another geometric isomer—9-cis retinal—was also shown to stably incorporate into the binding pocket, generating a slightly blue-shifted photosensitive protein. This pigment, coined isorhodopsin, was less photosensitive, but could also reach the active state. However, 9-cis retinal was not detected as a chromophore in any of the many animal visual pigments studied, and isorhodopsin was passed over as an exotic and little-relevant rhodopsin analog. Consequently, few in-depth studies of its photochemistry and activation mechanism have been performed. In this review, we aim to illustrate that it is unfortunate that isorhodopsin has received little attention in the visual research and literature. Elementary differences in photoexcitation of rhodopsin and isorhodopsin have already been reported. Further in-depth studies of the photochemical properties and pathways of isorhodopsin would be quite enlightening for the initial steps in vision, as well as being beneficial for biotechnological applications of retinal proteins.
{"title":"Isorhodopsin: An Undervalued Visual Pigment Analog","authors":"W. D. de Grip, J. Lugtenburg","doi":"10.3390/colorants1030016","DOIUrl":"https://doi.org/10.3390/colorants1030016","url":null,"abstract":"Rhodopsin, the first visual pigment identified in the animal retina, was shown to be a photosensitive membrane protein containing covalently bound retinal in the 11-cis configuration, as a chromophore. Upon photoexcitation the chromophore isomerizes in femtoseconds to all-trans, which drives the protein into the active state. Soon thereafter, another geometric isomer—9-cis retinal—was also shown to stably incorporate into the binding pocket, generating a slightly blue-shifted photosensitive protein. This pigment, coined isorhodopsin, was less photosensitive, but could also reach the active state. However, 9-cis retinal was not detected as a chromophore in any of the many animal visual pigments studied, and isorhodopsin was passed over as an exotic and little-relevant rhodopsin analog. Consequently, few in-depth studies of its photochemistry and activation mechanism have been performed. In this review, we aim to illustrate that it is unfortunate that isorhodopsin has received little attention in the visual research and literature. Elementary differences in photoexcitation of rhodopsin and isorhodopsin have already been reported. Further in-depth studies of the photochemical properties and pathways of isorhodopsin would be quite enlightening for the initial steps in vision, as well as being beneficial for biotechnological applications of retinal proteins.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"300 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91456296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-14DOI: 10.3390/colorants1020015
E. Istifli
Organic azo dyes, which are widely used in industrial, health and cosmetic fields, pose genotoxic risks due to their chemical structures; however, the molecular details of the undesirable effects of these dyes on DNA have been poorly or insufficiently clarified. In this computational molecular docking study, the DNA binding modes and binding affinities of 14 azo dyes, previously determined to show DNA clastogenicity, were characterized using 2 different double-stranded DNA (dsDNA) conformations (an intact dsDNA and dsDNA with an intercalation gap). In this study, it was determined that 10 out of the 14 genotoxic azo dyes were strong dsDNA minor groove binders, while the remaining ones formed tight binding complexes with dsDNA through intercalation or threading intercalation modes. The azo, nitro, hydroxyl, ammonium, sulfonate, naphthalene, methoxyphenyl, bromine, nitrophenyl, imidazole, amino-phenylethanol and chloro-nitrophenyl groups were found to play primary role in the most favorable binding conformations of these dyes on dsDNA with an affinity ranging from −6.35 kcal/mol to −9.42 kcal/mol. It was determined that dsDNA sequences containing GT dinucleotides are frequently preferred in binding by these dyes, and that rings and polar groups are important features for tight binding with dsDNA. It was concluded that these dyes may be banned, or non-genotoxic congeners should be manufactured with appropriate molecular optimization for the genetic health of the human population and for future generations.
{"title":"Preliminary in Silico Studies of the Interactions of Certain Genotoxic Azo Dyes with Different Double-Stranded DNA Conformations","authors":"E. Istifli","doi":"10.3390/colorants1020015","DOIUrl":"https://doi.org/10.3390/colorants1020015","url":null,"abstract":"Organic azo dyes, which are widely used in industrial, health and cosmetic fields, pose genotoxic risks due to their chemical structures; however, the molecular details of the undesirable effects of these dyes on DNA have been poorly or insufficiently clarified. In this computational molecular docking study, the DNA binding modes and binding affinities of 14 azo dyes, previously determined to show DNA clastogenicity, were characterized using 2 different double-stranded DNA (dsDNA) conformations (an intact dsDNA and dsDNA with an intercalation gap). In this study, it was determined that 10 out of the 14 genotoxic azo dyes were strong dsDNA minor groove binders, while the remaining ones formed tight binding complexes with dsDNA through intercalation or threading intercalation modes. The azo, nitro, hydroxyl, ammonium, sulfonate, naphthalene, methoxyphenyl, bromine, nitrophenyl, imidazole, amino-phenylethanol and chloro-nitrophenyl groups were found to play primary role in the most favorable binding conformations of these dyes on dsDNA with an affinity ranging from −6.35 kcal/mol to −9.42 kcal/mol. It was determined that dsDNA sequences containing GT dinucleotides are frequently preferred in binding by these dyes, and that rings and polar groups are important features for tight binding with dsDNA. It was concluded that these dyes may be banned, or non-genotoxic congeners should be manufactured with appropriate molecular optimization for the genetic health of the human population and for future generations.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"42 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83038995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-02DOI: 10.3390/colorants1020014
Masafumi Yano, K. Tamada, Misaki Nakai, K. Mitsudo, Yukiyasu Kashiwagi
Four triphenylamines with extended π-systems were synthesized. Cyclic voltammetry (CV) measurements showed that they gave radical cations, which are stable in solution. Radical cations obtained upon one electron chemical oxidation showed strong absorption in the near-infrared region. The radical cations of the naphthalene-substituted derivatives show a maximum absorption wavelength above 1000 nm and are classified as NIR-II dyes. Molecular design rules of novel near-infrared absorbing dyes are described.
{"title":"Near-Infrared Absorbing Molecule Based on Triphenylamine Radical Cation with Extended Homoaryl π-System","authors":"Masafumi Yano, K. Tamada, Misaki Nakai, K. Mitsudo, Yukiyasu Kashiwagi","doi":"10.3390/colorants1020014","DOIUrl":"https://doi.org/10.3390/colorants1020014","url":null,"abstract":"Four triphenylamines with extended π-systems were synthesized. Cyclic voltammetry (CV) measurements showed that they gave radical cations, which are stable in solution. Radical cations obtained upon one electron chemical oxidation showed strong absorption in the near-infrared region. The radical cations of the naphthalene-substituted derivatives show a maximum absorption wavelength above 1000 nm and are classified as NIR-II dyes. Molecular design rules of novel near-infrared absorbing dyes are described.","PeriodicalId":10539,"journal":{"name":"Colorants","volume":"52 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90729212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}