首页 > 最新文献

Comput. Oper. Res.最新文献

英文 中文
A MIP-based heuristic for a single trade routing and scheduling problem in roll-on roll-off shipping 基于mip的滚装运输单贸易路线和调度问题的启发式算法
Pub Date : 2022-06-01 DOI: 10.1016/j.cor.2022.105904
Jone R. Hansen, K. Fagerholt, F. Meisel
{"title":"A MIP-based heuristic for a single trade routing and scheduling problem in roll-on roll-off shipping","authors":"Jone R. Hansen, K. Fagerholt, F. Meisel","doi":"10.1016/j.cor.2022.105904","DOIUrl":"https://doi.org/10.1016/j.cor.2022.105904","url":null,"abstract":"","PeriodicalId":10582,"journal":{"name":"Comput. Oper. Res.","volume":"88 1","pages":"105904"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85832100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Logic-based Benders decomposition with a partial assignment acceleration technique for avionics scheduling 航电调度中基于逻辑的Benders分解与部分分配加速技术
Pub Date : 2022-06-01 DOI: 10.1016/j.cor.2022.105916
Emil Karlsson, Elina Rönnberg
{"title":"Logic-based Benders decomposition with a partial assignment acceleration technique for avionics scheduling","authors":"Emil Karlsson, Elina Rönnberg","doi":"10.1016/j.cor.2022.105916","DOIUrl":"https://doi.org/10.1016/j.cor.2022.105916","url":null,"abstract":"","PeriodicalId":10582,"journal":{"name":"Comput. Oper. Res.","volume":"49 1","pages":"105916"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79775283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
A fuzzy correlation based heuristic for Dual-mode integrated Location routing problem 基于模糊关联的双模集成位置路由启发式算法
Pub Date : 2022-06-01 DOI: 10.1016/j.cor.2022.105923
Chang Lv, Chaoyong Zhang, Yaping Ren, Leilei Meng
{"title":"A fuzzy correlation based heuristic for Dual-mode integrated Location routing problem","authors":"Chang Lv, Chaoyong Zhang, Yaping Ren, Leilei Meng","doi":"10.1016/j.cor.2022.105923","DOIUrl":"https://doi.org/10.1016/j.cor.2022.105923","url":null,"abstract":"","PeriodicalId":10582,"journal":{"name":"Comput. Oper. Res.","volume":"58 1","pages":"105923"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77878937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Mathematical programming formulations and metaheuristics for biological sample transportation problems in healthcare 医疗保健中生物样本运输问题的数学规划公式和元启发式
Pub Date : 2022-06-01 DOI: 10.1016/j.cor.2022.105921
Mario Benini, P. Detti, Garazi Zabalo Manrique de Lara
{"title":"Mathematical programming formulations and metaheuristics for biological sample transportation problems in healthcare","authors":"Mario Benini, P. Detti, Garazi Zabalo Manrique de Lara","doi":"10.1016/j.cor.2022.105921","DOIUrl":"https://doi.org/10.1016/j.cor.2022.105921","url":null,"abstract":"","PeriodicalId":10582,"journal":{"name":"Comput. Oper. Res.","volume":"8 1","pages":"105921"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72732997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Target encirclement of moving ride-hailing vehicle under uncertain environment: A multi-vehicle mutual rescue model 不确定环境下移动网约车目标包围:一种多车互救模型
Pub Date : 2022-06-01 DOI: 10.1016/j.cor.2022.105901
Dongyu Luo, Jiangfeng Wang, Wenqi Lu, Lei Chen, Zhijun Gao, Jiakuan Dong
{"title":"Target encirclement of moving ride-hailing vehicle under uncertain environment: A multi-vehicle mutual rescue model","authors":"Dongyu Luo, Jiangfeng Wang, Wenqi Lu, Lei Chen, Zhijun Gao, Jiakuan Dong","doi":"10.1016/j.cor.2022.105901","DOIUrl":"https://doi.org/10.1016/j.cor.2022.105901","url":null,"abstract":"","PeriodicalId":10582,"journal":{"name":"Comput. Oper. Res.","volume":"2016 1","pages":"105901"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86386082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Study on the optimization of urban emergency supplies distribution paths for epidemic outbreaks 城市突发疫情应急物资配送路径优化研究
Pub Date : 2022-06-01 DOI: 10.1016/j.cor.2022.105912
Haishi Liu, Yuxuan Sun, Nan Pan, Yi Li, Yuqiang An, Dilin Pan
{"title":"Study on the optimization of urban emergency supplies distribution paths for epidemic outbreaks","authors":"Haishi Liu, Yuxuan Sun, Nan Pan, Yi Li, Yuqiang An, Dilin Pan","doi":"10.1016/j.cor.2022.105912","DOIUrl":"https://doi.org/10.1016/j.cor.2022.105912","url":null,"abstract":"","PeriodicalId":10582,"journal":{"name":"Comput. Oper. Res.","volume":"11 1","pages":"105912"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85131890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Exact and approximate determination of the Pareto set using minimal correction subsets 用最小校正子集精确近似地确定帕累托集
Pub Date : 2022-04-14 DOI: 10.48550/arXiv.2204.06908
Andreia P. Guerreiro, João Cortes, D. Vanderpooten, C. Bazgan, I. Lynce, Vasco M. Manquinho, J. Figueira
Recently, it has been shown that the enumeration of Minimal Correction Subsets (MCS) of Boolean formulas allows solving Multi-Objective Boolean Optimization (MOBO) formulations. However, a major drawback of this approach is that most MCSs do not correspond to Pareto-optimal solutions. In fact, one can only know that a given MCS corresponds to a Pareto-optimal solution when all MCSs are enumerated. Moreover, if it is not possible to enumerate all MCSs, then there is no guarantee of the quality of the approximation of the Pareto frontier. This paper extends the state of the art for solving MOBO using MCSs. First, we show that it is possible to use MCS enumeration to solve MOBO problems such that each MCS necessarily corresponds to a Pareto-optimal solution. Additionally, we also propose two new algorithms that can find a (1 + {varepsilon})-approximation of the Pareto frontier using MCS enumeration. Experimental results in several benchmark sets show that the newly proposed algorithms allow finding better approximations of the Pareto frontier than state-of-the-art algorithms, and with guaranteed approximation ratios.
近年来,布尔公式的最小修正子集(MCS)枚举使得求解多目标布尔优化(MOBO)公式成为可能。然而,这种方法的一个主要缺点是大多数mcs不对应于帕累托最优解。事实上,只有当所有的MCS都被枚举时,我们才能知道给定的MCS对应于一个帕累托最优解。此外,如果不可能列举出所有的mcs,那么就不能保证帕累托边界近似的质量。本文扩展了使用mcs解决MOBO的技术状态。首先,我们证明了使用MCS枚举来解决MOBO问题是可能的,这样每个MCS必然对应于一个帕累托最优解。此外,我们还提出了两种新的算法,可以使用MCS枚举找到帕累托边界的(1 + {varepsilon})-近似。几个基准集的实验结果表明,新提出的算法可以找到比最先进的算法更好的帕累托边界近似值,并且具有保证的近似值比率。
{"title":"Exact and approximate determination of the Pareto set using minimal correction subsets","authors":"Andreia P. Guerreiro, João Cortes, D. Vanderpooten, C. Bazgan, I. Lynce, Vasco M. Manquinho, J. Figueira","doi":"10.48550/arXiv.2204.06908","DOIUrl":"https://doi.org/10.48550/arXiv.2204.06908","url":null,"abstract":"Recently, it has been shown that the enumeration of Minimal Correction Subsets (MCS) of Boolean formulas allows solving Multi-Objective Boolean Optimization (MOBO) formulations. However, a major drawback of this approach is that most MCSs do not correspond to Pareto-optimal solutions. In fact, one can only know that a given MCS corresponds to a Pareto-optimal solution when all MCSs are enumerated. Moreover, if it is not possible to enumerate all MCSs, then there is no guarantee of the quality of the approximation of the Pareto frontier. This paper extends the state of the art for solving MOBO using MCSs. First, we show that it is possible to use MCS enumeration to solve MOBO problems such that each MCS necessarily corresponds to a Pareto-optimal solution. Additionally, we also propose two new algorithms that can find a (1 + {varepsilon})-approximation of the Pareto frontier using MCS enumeration. Experimental results in several benchmark sets show that the newly proposed algorithms allow finding better approximations of the Pareto frontier than state-of-the-art algorithms, and with guaranteed approximation ratios.","PeriodicalId":10582,"journal":{"name":"Comput. Oper. Res.","volume":"41 2 1","pages":"106153"},"PeriodicalIF":0.0,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83556608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Scheduling unrelated additive manufacturing machines with practical constraints 具有实际约束的不相关增材制造机器调度
Pub Date : 2022-04-01 DOI: 10.1016/j.cor.2022.105847
K. Hu, Yuxin Che, Zhenzhen Zhang
{"title":"Scheduling unrelated additive manufacturing machines with practical constraints","authors":"K. Hu, Yuxin Che, Zhenzhen Zhang","doi":"10.1016/j.cor.2022.105847","DOIUrl":"https://doi.org/10.1016/j.cor.2022.105847","url":null,"abstract":"","PeriodicalId":10582,"journal":{"name":"Comput. Oper. Res.","volume":"76 1","pages":"105847"},"PeriodicalIF":0.0,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86011576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Multi-objective optimization of the 3D container stowage planning problem in a barge convoy system 驳船运输系统三维集装箱积载规划问题的多目标优化
Pub Date : 2022-03-01 DOI: 10.1016/j.cor.2022.105796
Amina El Yaagoubi, Mohamed Charhbili, J. Boukachour, A. Alaoui
{"title":"Multi-objective optimization of the 3D container stowage planning problem in a barge convoy system","authors":"Amina El Yaagoubi, Mohamed Charhbili, J. Boukachour, A. Alaoui","doi":"10.1016/j.cor.2022.105796","DOIUrl":"https://doi.org/10.1016/j.cor.2022.105796","url":null,"abstract":"","PeriodicalId":10582,"journal":{"name":"Comput. Oper. Res.","volume":"3 1","pages":"105796"},"PeriodicalIF":0.0,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84845812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Learning to Schedule Heuristics for the Simultaneous Stochastic Optimization of Mining Complexes 采矿复合体同步随机优化的学习调度启发式
Pub Date : 2022-02-25 DOI: 10.2139/ssrn.4229477
Yassine Yaakoubi, R. Dimitrakopoulos
The simultaneous stochastic optimization of mining complexes (SSOMC) is a large-scale stochastic combinatorial optimization problem that simultaneously manages the extraction of materials from multiple mines and their processing using interconnected facilities to generate a set of final products, while taking into account material supply (geological) uncertainty to manage the associated risk. Although simulated annealing has been shown to outperform comparing methods for solving the SSOMC, early performance might dominate recent performance in that a combination of the heuristics' performance is used to determine which perturbations to apply. This work proposes a data-driven framework for heuristic scheduling in a fully self-managed hyper-heuristic to solve the SSOMC. The proposed learn-to-perturb (L2P) hyper-heuristic is a multi-neighborhood simulated annealing algorithm. The L2P selects the heuristic (perturbation) to be applied in a self-adaptive manner using reinforcement learning to efficiently explore which local search is best suited for a particular search point. Several state-of-the-art agents have been incorporated into L2P to better adapt the search and guide it towards better solutions. By learning from data describing the performance of the heuristics, a problem-specific ordering of heuristics that collectively finds better solutions faster is obtained. L2P is tested on several real-world mining complexes, with an emphasis on efficiency, robustness, and generalization capacity. Results show a reduction in the number of iterations by 30-50% and in the computational time by 30-45%.
矿山复合体同步随机优化(SSOMC)是一个大规模随机组合优化问题,它同时管理从多个矿山中提取材料并使用相互关联的设施进行加工以产生一组最终产品,同时考虑材料供应(地质)的不确定性以管理相关风险。虽然模拟退火在解决SSOMC方面的表现优于比较方法,但早期的性能可能会主导最近的性能,因为启发式性能的组合用于确定应用哪种扰动。本文提出了一个数据驱动的启发式调度框架,在一个完全自我管理的超启发式中解决SSOMC问题。提出的L2P超启发式算法是一种多邻域模拟退火算法。L2P选择启发式(扰动)以自适应的方式应用,使用强化学习来有效地探索最适合特定搜索点的局部搜索。几个最先进的代理已被纳入L2P,以更好地适应搜索并引导其找到更好的解决方案。通过从描述启发式性能的数据中学习,可以获得特定于问题的启发式排序,从而更快地找到更好的解决方案。L2P在几个现实世界的采矿复合体上进行了测试,重点是效率、鲁棒性和泛化能力。结果表明,迭代次数减少了30-50%,计算时间减少了30-45%。
{"title":"Learning to Schedule Heuristics for the Simultaneous Stochastic Optimization of Mining Complexes","authors":"Yassine Yaakoubi, R. Dimitrakopoulos","doi":"10.2139/ssrn.4229477","DOIUrl":"https://doi.org/10.2139/ssrn.4229477","url":null,"abstract":"The simultaneous stochastic optimization of mining complexes (SSOMC) is a large-scale stochastic combinatorial optimization problem that simultaneously manages the extraction of materials from multiple mines and their processing using interconnected facilities to generate a set of final products, while taking into account material supply (geological) uncertainty to manage the associated risk. Although simulated annealing has been shown to outperform comparing methods for solving the SSOMC, early performance might dominate recent performance in that a combination of the heuristics' performance is used to determine which perturbations to apply. This work proposes a data-driven framework for heuristic scheduling in a fully self-managed hyper-heuristic to solve the SSOMC. The proposed learn-to-perturb (L2P) hyper-heuristic is a multi-neighborhood simulated annealing algorithm. The L2P selects the heuristic (perturbation) to be applied in a self-adaptive manner using reinforcement learning to efficiently explore which local search is best suited for a particular search point. Several state-of-the-art agents have been incorporated into L2P to better adapt the search and guide it towards better solutions. By learning from data describing the performance of the heuristics, a problem-specific ordering of heuristics that collectively finds better solutions faster is obtained. L2P is tested on several real-world mining complexes, with an emphasis on efficiency, robustness, and generalization capacity. Results show a reduction in the number of iterations by 30-50% and in the computational time by 30-45%.","PeriodicalId":10582,"journal":{"name":"Comput. Oper. Res.","volume":"54 1","pages":"106349"},"PeriodicalIF":0.0,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74078013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Comput. Oper. Res.
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1