首页 > 最新文献

Communications on Pure and Applied Mathematics最新文献

英文 中文
Optimal regularity for supercritical parabolic obstacle problems 超临界抛物线障碍问题的最优正则性
IF 3 1区 数学 Q1 Mathematics Pub Date : 2023-09-29 DOI: 10.1002/cpa.22166
Xavier Ros-Oton, Clara Torres-Latorre

We study the obstacle problem for parabolic operators of the type t+L$partial _t + L$, where L is an elliptic integro-differential operator of order 2s, such as (Δ)s$(-Delta )^s$, in the supercritical regime s(0,12)$s in (0,frac{1}{2})$. The best result in this context was due to Caffarelli and Figalli, who established the Cx1,s$C^{1,s}_x$ regularity of solutions for the case L=(Δ)s$L = (-Delta )^s$, the same regularity as in the elliptic setting.

Here we prove for the first time that solutions are actually more regular than in the elliptic case. More precisely, we show that they are C1, 1 in space and time, and that this is optimal. We also deduce the C1

我们研究了 ∂ t + L $partial _t + L$ 类型抛物线算子的障碍问题,其中 L 是阶数为 2s 的椭圆整微分算子,如 ( - Δ ) s $(-Delta )^s$ ,在超临界系统 s∈ ( 0 , 1 2 ) $s in (0,frac{1}{2})$ 中。在这种情况下,最好的结果是 Caffarelli 和 Figalli 取得的,他们确定了 L = ( - Δ ) s $L = (-Delta )^s$情况下的解的 C x 1 , s $C^{1,s}_x$ 正则性,这与椭圆情况下的正则性相同。更准确地说,我们证明了它们在空间和时间上都是 C1, 1,而且这是最优的。我们还推导出自由边界的 C 1 , α $C^{1,alpha }$ 规则性。此外,在所有自由边界点 ( x 0 , t 0 ) $(x_0,t_0)$ 上,我们建立了以下扩展:
{"title":"Optimal regularity for supercritical parabolic obstacle problems","authors":"Xavier Ros-Oton,&nbsp;Clara Torres-Latorre","doi":"10.1002/cpa.22166","DOIUrl":"10.1002/cpa.22166","url":null,"abstract":"<p>We study the obstacle problem for parabolic operators of the type <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>∂</mi>\u0000 <mi>t</mi>\u0000 </msub>\u0000 <mo>+</mo>\u0000 <mi>L</mi>\u0000 </mrow>\u0000 <annotation>$partial _t + L$</annotation>\u0000 </semantics></math>, where <i>L</i> is an elliptic integro-differential operator of order 2<i>s</i>, such as <math>\u0000 <semantics>\u0000 <msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mo>−</mo>\u0000 <mi>Δ</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mi>s</mi>\u0000 </msup>\u0000 <annotation>$(-Delta )^s$</annotation>\u0000 </semantics></math>, in the supercritical regime <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>s</mi>\u0000 <mo>∈</mo>\u0000 <mo>(</mo>\u0000 <mn>0</mn>\u0000 <mo>,</mo>\u0000 <mfrac>\u0000 <mn>1</mn>\u0000 <mn>2</mn>\u0000 </mfrac>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$s in (0,frac{1}{2})$</annotation>\u0000 </semantics></math>. The best result in this context was due to Caffarelli and Figalli, who established the <math>\u0000 <semantics>\u0000 <msubsup>\u0000 <mi>C</mi>\u0000 <mi>x</mi>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mi>s</mi>\u0000 </mrow>\u0000 </msubsup>\u0000 <annotation>$C^{1,s}_x$</annotation>\u0000 </semantics></math> regularity of solutions for the case <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>L</mi>\u0000 <mo>=</mo>\u0000 <msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mo>−</mo>\u0000 <mi>Δ</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mi>s</mi>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$L = (-Delta )^s$</annotation>\u0000 </semantics></math>, the same regularity as in the elliptic setting.</p><p>Here we prove for the first time that solutions are actually <i>more</i> regular than in the elliptic case. More precisely, we show that they are <i>C</i><sup>1, 1</sup> in space and time, and that this is optimal. We also deduce the <math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>C</mi>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 ","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22166","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135243489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectrum of random d-regular graphs up to the edge 随机 d 规则图谱,直至边缘
IF 3 1区 数学 Q1 Mathematics Pub Date : 2023-09-28 DOI: 10.1002/cpa.22176
Jiaoyang Huang, Horng-Tzer Yau

Consider the normalized adjacency matrices of random d-regular graphs on N vertices with fixed degree d3$dgeqslant 3$. We prove that, with probability 1N1+ε$1-N^{-1+varepsilon }$ for any ε>0$varepsilon >0$, the following two properties hold as N$N rightarrow infty$ provided that d3$dgeqslant 3$: (i) The eigenvalues are close to the classical eigenvalue locations given by the Kesten–McKay distribution. In particular, the extremal eigenvalues are concentrated with polynomial error bound in N, that is, λ2,|λN|2+Nc$lambda _2, |lambda _N|leqslant 2+N^{-c}$. (ii) All eigenvectors of random d-regular graphs are completely delocalized.

考虑 N 个顶点上具有固定度 d ⩾ 3 $dgeqslant 3$ 的随机 d-regular 图的归一化邻接矩阵。我们证明,对于任意 ε > 0 $varepsilon >0$ ,只要 d ⩾ 3 $dgeqslant 3$,以下两个性质在 N → ∞ $N rightarrow infty$ 时成立:(i) 特征值接近凯斯顿-麦凯分布给出的经典特征值位置。特别是,极值特征值以 N 的多项式误差约束集中,即 λ 2 , | λ N | | ⩽ 2 + N - c $lambda _2, |lambda _N|leqslant 2+N^{-c}$ 。 (ii) 随机 d-regular 图形的所有特征向量都是完全非局部化的。
{"title":"Spectrum of random d-regular graphs up to the edge","authors":"Jiaoyang Huang,&nbsp;Horng-Tzer Yau","doi":"10.1002/cpa.22176","DOIUrl":"10.1002/cpa.22176","url":null,"abstract":"<p>Consider the normalized adjacency matrices of random <i>d</i>-regular graphs on <i>N</i> vertices with fixed degree <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <mo>⩾</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$dgeqslant 3$</annotation>\u0000 </semantics></math>. We prove that, with probability <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>−</mo>\u0000 <msup>\u0000 <mi>N</mi>\u0000 <mrow>\u0000 <mo>−</mo>\u0000 <mn>1</mn>\u0000 <mo>+</mo>\u0000 <mi>ε</mi>\u0000 </mrow>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$1-N^{-1+varepsilon }$</annotation>\u0000 </semantics></math> for any <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>ε</mi>\u0000 <mo>&gt;</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$varepsilon &gt;0$</annotation>\u0000 </semantics></math>, the following two properties hold as <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>N</mi>\u0000 <mo>→</mo>\u0000 <mi>∞</mi>\u0000 </mrow>\u0000 <annotation>$N rightarrow infty$</annotation>\u0000 </semantics></math> provided that <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <mo>⩾</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$dgeqslant 3$</annotation>\u0000 </semantics></math>: (i) The eigenvalues are close to the classical eigenvalue locations given by the Kesten–McKay distribution. In particular, the extremal eigenvalues are concentrated with polynomial error bound in <i>N</i>, that is, <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>λ</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <mrow>\u0000 <mo>|</mo>\u0000 <msub>\u0000 <mi>λ</mi>\u0000 <mi>N</mi>\u0000 </msub>\u0000 <mo>|</mo>\u0000 </mrow>\u0000 <mo>⩽</mo>\u0000 <mn>2</mn>\u0000 <mo>+</mo>\u0000 <msup>\u0000 <mi>N</mi>\u0000 <mrow>\u0000 <mo>−</mo>\u0000 <mi>c</mi>\u0000 </mrow>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$lambda _2, |lambda _N|leqslant 2+N^{-c}$</annotation>\u0000 </semantics></math>. (ii) All eigenvectors of random <i>d</i>-regular graphs are completely delocalized.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135387299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discrete honeycombs, rational edges, and edge states 离散蜂窝、有理边和边缘状态
IF 3 1区 数学 Q1 Mathematics Pub Date : 2023-09-22 DOI: 10.1002/cpa.22141
Charles L. Fefferman, Sonia Fliss, Michael I. Weinstein

Consider the tight binding model of graphene, sharply terminated along an edge l parallel to a direction of translational symmetry of the underlying period lattice. We classify such edges l into those of “zigzag type” and those of “armchair type”, generalizing the classical zigzag and armchair edges. We prove that zero energy / flat band edge states arise for edges of zigzag type, but never for those of armchair type. We exhibit explicit formulas for flat band edge states when they exist. We produce strong evidence for the existence of dispersive (non flat) edge state curves of nonzero energy for most l.

考虑石墨烯的紧密结合模型,沿着与底层周期晶格的平移对称方向平行的边缘 l 进行尖锐终止。我们将这种边缘 l 划分为 "人字形 "和 "扶手椅形 "边缘,对经典的人字形和扶手椅形边缘进行了概括。我们证明,"之 "字型边缘会出现零能量/平带边缘状态,而 "扶手椅 "型边缘绝不会出现这种状态。我们展示了平带边缘态存在时的明确公式。我们提出了强有力的证据,证明对于大多数 l,存在非零能量的色散(非平坦)边缘状态曲线。
{"title":"Discrete honeycombs, rational edges, and edge states","authors":"Charles L. Fefferman,&nbsp;Sonia Fliss,&nbsp;Michael I. Weinstein","doi":"10.1002/cpa.22141","DOIUrl":"10.1002/cpa.22141","url":null,"abstract":"<p>Consider the tight binding model of graphene, sharply terminated along an edge <b>l</b> parallel to a direction of translational symmetry of the underlying period lattice. We classify such edges <b>l</b> into those of “zigzag type” and those of “armchair type”, generalizing the classical zigzag and armchair edges. We prove that zero energy / flat band edge states arise for edges of zigzag type, but never for those of armchair type. We exhibit explicit formulas for flat band edge states when they exist. We produce strong evidence for the existence of dispersive (non flat) edge state curves of nonzero energy for most <b>l</b>.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136010814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum for “Global Identifiability of Differential Models” “微分模型的全局可辨识性”的勘误
IF 3 1区 数学 Q1 Mathematics Pub Date : 2023-09-22 DOI: 10.1002/cpa.22163
Hoon Hong, Alexey Ovchinnikov, Gleb Pogudin, Chee Yap

We are grateful to Peter Thompson for pointing out an error in [1, Lemma 3.5, p. 1848]. The original proof worked only under the assumption that θ̂$hat{theta }$ is a vector of constants. However, some of the components of θ̂$hat{bm{theta }}$ could be the states of the dynamic under consideration, and the lemma was used in such a setup (i.e., with θ̂$hat{bm{theta }}$ involving states) later in [1, Proposition 3.4].

We give a more explicit version of the statement and provide a correct proof. The desired statement will be deduced from the following:

The following corollary is equivalent to [1, Lemma 3.5, p. 1848] but explicitly highlights that some of the entries of θ̂$hat{bm{theta }}$ may be initial conditions, not only system parameters.

我们感谢彼得·汤普森指出了[1,引理3.5,第1848页]中的一个错误。最初的证明只有在θ´$hat{ θ}$是一个常数向量的假设下才有效。然而,θ θ $hat{bm{theta}}$的一些分量可以是所考虑的动态状态,引理在后面的[1,命题3.4]中被用于这样的设置(即θ θ $hat{bm{theta}}$涉及状态)。我们给出了一个更明确的版本,并提供了一个正确的证明。我们想要的表述将从下面推导出来:引理1。考虑一个微分方程组x1 ' = f1 (x,μ,u),⋮xn”= fn (x,μ,u), $ $ 开始{方程}{{病例}开始x_1 ^ { '} = f ( bm {x} bm{μ} bm{你}), vdots x_n ^ { '} = fn ( bm {x} bm{μ} bm{你}),结束{病例}}{方程}$ $结束(1)x = (x1,…,xn)美元 bm {x} = (x_1、 ldots x_n)美元和u = (u1,……,嗯)美元 bm{你}= (u_1 ldots, u_m)美元的元组微分不定,μ=(μ1,…,μλ)美元 bm{μ}=(μ_1 ldots μ_ λ)美元是标量参数,和f1,…,fn∈C (x,μ,u) $ f ldots,f_n in mathbb {C}(bm{x}, bm{mu}, bm{u})$。让问(x,μ,u)∈C (x,μ,u)问美元( bm {x} bm{μ} bm{你})中 mathbb {C} [ bm {x} bm{μ} bm{你}]美元的LCM f1的分母,…,fn $ f ldots fn美元。设P∈C[x,μ]{u}$P in mathbb {C}[bm{x}, bm{mu}]lbrace bm{u}rbrace$是一个非零微分多项式。然后存在非零P1∈C (x,μ)P_1美元 mathbb {C} [ * bm {x} bm{μ}]美元和P2∈C{你}$ P_2 mathbb {C} lbrace bm{你} rbrace美元,每一个元组μ̂Cλ∈美元的帽子{ bm{μ}}中 mathbb {C} ^ λ美元每个幂级数解(x̂,u) $ ({ * bm {x}} 帽子,帽子 { bm{你}})美元(1)的参数μ̂美元帽子{ bm{μ}}在C [[t]]美元 mathbb {C} [ [t] !]美元这样问(x̂,μ̂,u) | t = 0≠0 $ $ {方程*}开始问(帽子{ * bm {x}} 帽子{ bm{μ}},帽子{ bm{你}})| _ {t = 0} 0 ne {方程*}$ $结束我们P1 (x̂,μ̂)| t = 0≠0,P2 (u) | t = 0≠0⇒P (x̂,μ̂,u)≠0。$ ${方程*}{ 开始离开(P_1 ({ * bm {x}} 帽子,帽子 { bm{μ}})| _ {t = 0} 0 ne ; , ;P_2(帽子{ bm{你}})| _ {t = 0} 0 ne 右)} Rightarrow P(帽子{ * bm {x}} 帽子{ bm{μ}},帽子 { bm{你}}) 0。结束{方程*}$ $的证明。考虑下面的微分理想我:=⟨(Qxi−Qfi) (j)、P (j)∣1⩽我⩽n, j⩾0⟩:问∞⊂C(μ){x, u}。$ $ {方程*}我开始:= langle (Qx_i ^ { '} - Qf_i) ^ {(j)}, P ^ {(j)} 1 leqslant我 leqslant n,中期;j geqslant 0 rangle: Q^ inty 子集mathbb {C}[bm{mu}]lbrace bm{x}, bm{u}rbrace。我们声明I包含一个形式为P1P2$P_1P_2$的非零多项式,使得P1∈C[x,μ]$P_1 in mathbb {C}[bm{x}, bm{mu}]$和P2∈C{u}$P_2 in mathbb {C}lbrace bm{u}rbrace$。首先,我们将证明,如果断言为真,那么P1和P2满足引理的条件。相反,假设有一个幂级数解(x̂,u) $ ({ * bm {x}} 帽子,帽子 { bm{你}})美元(1)的参数μ̂美元帽子{ bm{μ}}$的常数项Q (x̂,μ̂,u) P1 (x̂,μ̂)P2 (u)问美元({ * bm {x}} 帽子,帽子 { bm{μ}},帽子 { bm{你}})P_1 ({ * bm {x}} 帽子,帽子 { bm{μ}})P_2(帽子{ bm{你}})美元零但P (x̂,μ̂,u) = 0 $ P ({ * bm {x}} 帽子,帽子 { bm{μ}},帽子 { bm{你}})= 0美元。由于(x³,μ³,û)$(hat{bm{x}}, hat{bm{mu}}, hat{bm{u}})$是微分多项式P和Qxi ' - Qfi$Qx_i^{素数}- Qf_i$的零,对于每一个1≤i≤n$1 leqslant i leqslant n$,它是理想⟨(Qxi ' - Qfi)(j),P(j)∣1≤i≤n,j≠0⟩的零。$ ${方程*} 开始langle (Qx_i ^ { '} - Qf_i) ^ {(j)}, P ^ {(j)} 中期1 leqslant leqslant n ;J geqslant 0 rangle。{方程*}$ $结束以来Q (x̂,μ̂,u) | t = 0≠0美元Q ({ * bm {x}} 帽子,帽子 { bm{μ}},帽子 { bm{你}})| _ {t = 0} 0美元,在我每一个元素,这是上面的理想的饱和,也消失在(x̂,μ̂,u)美元({ * bm {x}} 帽子,帽子 { bm{μ}},帽子 { bm{你}})美元。特别是,P1P2 P_1P_2消失在美元(x̂,μ̂,u)美元(帽子{ * bm {x}} 帽子{ bm{μ}},帽子{ bm{你}})美元,我们到达的矛盾与P1 (x̂,μ̂)P2 (u)≠0美元P_1(帽子{ * bm {x}} 帽子{ bm{μ}})P_2(帽子{ bm{你}}) 0美元。现在我们来证明这个说法。考虑环R: = C (x,μ){你}[1 / Q] $ R: = mathbb {C} [ * bm {x} bm{μ}] lbrace bm{你} rbrace [1 / Q]美元。设J是r中I∩C[x,μ]{u}$I cap mathbb {C}[bm{x}, bm{mu}]lbrace bm{u}rbrace$生成的理想。通过Q处的饱和定义I意味着J∩C[x,μ]{u}=I∩C[x,μ]{u}。$ $ {方程*}开始J 帽 mathbb {C} [ bm {x}, { bm{μ}}] lbrace bm{你} rbrace =我帽 mathbb {C} [ bm {x}, { bm{μ}}] lbrace bm{你} rbrace。因此,足以证明存在一个形式为P1P2$P_1 P_2$的元素,其中P1∈C[x,μ]$P_1 in mathbb {C}[bm{x}, bm{mu}]$, P2∈C{u
{"title":"Erratum for “Global Identifiability of Differential Models”","authors":"Hoon Hong,&nbsp;Alexey Ovchinnikov,&nbsp;Gleb Pogudin,&nbsp;Chee Yap","doi":"10.1002/cpa.22163","DOIUrl":"10.1002/cpa.22163","url":null,"abstract":"<p>We are grateful to Peter Thompson for pointing out an error in [<span>1</span>, Lemma 3.5, p. 1848]. The original proof worked only under the assumption that <math>\u0000 <semantics>\u0000 <mover>\u0000 <mi>θ</mi>\u0000 <mo>̂</mo>\u0000 </mover>\u0000 <annotation>$hat{theta }$</annotation>\u0000 </semantics></math> is a vector of constants. However, some of the components of <math>\u0000 <semantics>\u0000 <mover>\u0000 <mi>θ</mi>\u0000 <mo>̂</mo>\u0000 </mover>\u0000 <annotation>$hat{bm{theta }}$</annotation>\u0000 </semantics></math> could be the states of the dynamic under consideration, and the lemma was used in such a setup (i.e., with <math>\u0000 <semantics>\u0000 <mover>\u0000 <mi>θ</mi>\u0000 <mo>̂</mo>\u0000 </mover>\u0000 <annotation>$hat{bm{theta }}$</annotation>\u0000 </semantics></math> involving states) later in [<span>1</span>, Proposition 3.4].</p><p>We give a more explicit version of the statement and provide a correct proof. The desired statement will be deduced from the following:\u0000\u0000 </p><p>\u0000 </p><p>The following corollary is equivalent to [<span>1</span>, Lemma 3.5, p. 1848] but explicitly highlights that some of the entries of <math>\u0000 <semantics>\u0000 <mover>\u0000 <mi>θ</mi>\u0000 <mo>̂</mo>\u0000 </mover>\u0000 <annotation>$hat{bm{theta }}$</annotation>\u0000 </semantics></math> may be initial conditions, not only system parameters.\u0000\u0000 </p><p>\u0000 </p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22163","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138504551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An upper Minkowski dimension estimate for the interior singular set of area minimizing currents 面积最小电流内部奇异集的上闵可夫斯基维估计
IF 3 1区 数学 Q1 Mathematics Pub Date : 2023-09-18 DOI: 10.1002/cpa.22165
Anna Skorobogatova

We show that for an area minimizing m-dimensional integral current T of codimension at least two inside a sufficiently regular Riemannian manifold, the upper Minkowski dimension of the interior singular set is at most m2$m-2$. This provides a strengthening of the existing (m2)$(m-2)$-dimensional Hausdorff dimension bound due to Almgren and De Lellis & Spadaro. As a by-product of the proof, we establish an improvement on the persistence of singularities along the sequence of center manifolds taken to approximate T along blow-up scales.

我们证明了在一个充分正则黎曼流形中,对于余维至少为2的m维积分电流T的面积最小化,内部奇异集的上闵可夫斯基维不超过m-2$ m-2$。这提供了现有的(m−2)$ (m-2)$维Hausdorff维界由于Almgren和De Lellis &;斯巴达罗。作为证明的一个副产品,我们建立了一个关于沿膨胀尺度近似T的中心流形序列上奇点持久性的改进。
{"title":"An upper Minkowski dimension estimate for the interior singular set of area minimizing currents","authors":"Anna Skorobogatova","doi":"10.1002/cpa.22165","DOIUrl":"10.1002/cpa.22165","url":null,"abstract":"<p>We show that for an area minimizing <i>m</i>-dimensional integral current <i>T</i> of codimension at least two inside a sufficiently regular Riemannian manifold, the upper Minkowski dimension of the interior singular set is at most <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 <mo>−</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$m-2$</annotation>\u0000 </semantics></math>. This provides a strengthening of the existing <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>m</mi>\u0000 <mo>−</mo>\u0000 <mn>2</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(m-2)$</annotation>\u0000 </semantics></math>-dimensional Hausdorff dimension bound due to Almgren and De Lellis &amp; Spadaro. As a by-product of the proof, we establish an improvement on the persistence of singularities along the sequence of center manifolds taken to approximate <i>T</i> along blow-up scales.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135153622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Logarithmic cotangent bundles, Chern-Mather classes, and the Huh-Sturmfels involution conjecture 对数余切束,chen - mather类,和Huh-Sturmfels对合猜想
IF 3 1区 数学 Q1 Mathematics Pub Date : 2023-09-15 DOI: 10.1002/cpa.22156
Laurenţiu G. Maxim, Jose Israel Rodriguez, Botong Wang, Lei Wu

Using compactifications in the logarithmic cotangent bundle, we obtain a formula for the Chern classes of the pushforward of Lagrangian cycles under an open embedding with normal crossing complement. This generalizes earlier results of Aluffi and Wu-Zhou. The first application of our formula is a geometric description of Chern-Mather classes of an arbitrary very affine variety, generalizing earlier results of Huh which held under the smooth and schön assumptions. As the second application, we prove an involution formula relating sectional maximum likelihood (ML) degrees and ML bidegrees, which was conjectured by Huh and Sturmfels in 2013.

利用对数余切束中的紧化,我们得到了具有正交补的开嵌入下拉格朗日循环推进的Chern类的公式。这概括了Aluffi和Wu-Zhou的早期结果。我们的公式的第一个应用是对任意非常仿射变化的chen - mather类的几何描述,推广了Huh在光滑和schön假设下的早期结果。作为第二种应用,我们证明了一个由Huh和Sturmfels在2013年推测的关于截面最大似然度(ML)和ML二度的对合公式。
{"title":"Logarithmic cotangent bundles, Chern-Mather classes, and the Huh-Sturmfels involution conjecture","authors":"Laurenţiu G. Maxim,&nbsp;Jose Israel Rodriguez,&nbsp;Botong Wang,&nbsp;Lei Wu","doi":"10.1002/cpa.22156","DOIUrl":"10.1002/cpa.22156","url":null,"abstract":"<p>Using compactifications in the logarithmic cotangent bundle, we obtain a formula for the Chern classes of the pushforward of Lagrangian cycles under an open embedding with normal crossing complement. This generalizes earlier results of Aluffi and Wu-Zhou. The first application of our formula is a geometric description of Chern-Mather classes of an arbitrary very affine variety, generalizing earlier results of Huh which held under the smooth and schön assumptions. As the second application, we prove an involution formula relating sectional maximum likelihood (ML) degrees and ML bidegrees, which was conjectured by Huh and Sturmfels in 2013.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22156","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135437037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Global minimizers of a large class of anisotropic attractive-repulsive interaction energies in 2D 二维中一大类各向异性吸引-排斥相互作用能的全局最小值
IF 3 1区 数学 Q1 Mathematics Pub Date : 2023-09-14 DOI: 10.1002/cpa.22162
José A. Carrillo, Ruiwen Shu

We study a large family of Riesz-type singular interaction potentials with anisotropy in two dimensions. Their associated global energy minimizers are given by explicit formulas whose supports are determined by ellipses under certain assumptions. More precisely, by parameterizing the strength of the anisotropic part we characterize the sharp range in which these explicit ellipse-supported configurations are the global minimizers based on linear convexity arguments. Moreover, for certain anisotropic parts, we prove that for large values of the parameter the global minimizer is only given by vertically concentrated measures corresponding to one dimensional minimizers. We also show that these ellipse-supported configurations generically do not collapse to a vertically concentrated measure at the critical value for convexity, leading to an interesting gap of the parameters in between. In this intermediate range, we conclude by infinitesimal concavity that any superlevel set of any local minimizer in a suitable sense does not have interior points. Furthermore, for certain anisotropic parts, their support cannot contain any vertical segment for a restricted range of parameters, and moreover the global minimizers are expected to exhibit a zigzag behavior. All these results hold for the limiting case of the logarithmic repulsive potential, extending and generalizing previous results in the literature. Various examples of anisotropic parts leading to even more complex behavior are numerically explored.

研究了二维上具有各向异性的riesz型奇异相互作用势。它们相关的全局能量最小值由明确的公式给出,这些公式的支持在某些假设下由椭圆决定。更准确地说,通过参数化各向异性部分的强度,我们描述了这些显式椭圆支持构型是基于线性凸性参数的全局最小值的尖锐范围。此外,对于某些各向异性部件,我们证明了当参数值较大时,全局最小值只能由与一维最小值相对应的垂直集中测度给出。我们还表明,这些椭圆支持的构型通常不会在凸度临界值处坍缩为垂直集中的度量,导致两者之间的参数有一个有趣的间隙。在这个中间范围内,我们由无穷小凹性得出:任何局部极小器的任何超水平集在适当意义上都不存在内点。此外,对于某些各向异性部件,它们的支撑在有限的参数范围内不能包含任何垂直段,而且全局最小值预计会表现出锯齿状行为。所有这些结果都适用于对数排斥势的极限情况,扩展和推广了以往文献中的结果。各向异性部件导致更复杂的行为的各种例子进行了数值探索。
{"title":"Global minimizers of a large class of anisotropic attractive-repulsive interaction energies in 2D","authors":"José A. Carrillo,&nbsp;Ruiwen Shu","doi":"10.1002/cpa.22162","DOIUrl":"10.1002/cpa.22162","url":null,"abstract":"<p>We study a large family of Riesz-type singular interaction potentials with anisotropy in two dimensions. Their associated global energy minimizers are given by explicit formulas whose supports are determined by ellipses under certain assumptions. More precisely, by parameterizing the strength of the anisotropic part we characterize the sharp range in which these explicit ellipse-supported configurations are the global minimizers based on linear convexity arguments. Moreover, for certain anisotropic parts, we prove that for large values of the parameter the global minimizer is only given by vertically concentrated measures corresponding to one dimensional minimizers. We also show that these ellipse-supported configurations generically do not collapse to a vertically concentrated measure at the critical value for convexity, leading to an interesting gap of the parameters in between. In this intermediate range, we conclude by infinitesimal concavity that any superlevel set of any local minimizer in a suitable sense does not have interior points. Furthermore, for certain anisotropic parts, their support cannot contain any vertical segment for a restricted range of parameters, and moreover the global minimizers are expected to exhibit a zigzag behavior. All these results hold for the limiting case of the logarithmic repulsive potential, extending and generalizing previous results in the literature. Various examples of anisotropic parts leading to even more complex behavior are numerically explored.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22162","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135488330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Complex analytic dependence on the dielectric permittivity in ENZ materials: The photonic doping example 复解析对ENZ材料介电常数的依赖:光子掺杂的例子
IF 3 1区 数学 Q1 Mathematics Pub Date : 2023-09-14 DOI: 10.1002/cpa.22138
Robert V. Kohn, Raghavendra Venkatraman

Motivated by the physics literature on “photonic doping” of scatterers made from “epsilon-near-zero” (ENZ) materials, we consider how the scattering of time-harmonic TM electromagnetic waves by a cylindrical ENZ region Ω×R$Omega times mathbb {R}$ is affected by the presence of a “dopant” DΩ$D subset Omega$ in which the dielectric permittivity is not near zero. Mathematically, this reduces to analysis of a 2D Helmholtz equation div(a(x)u)+k2u=f$mathrm{div}, (a(x)nabla u) + k^2 u = f$ with a piecewise-constant, complex valued coefficient a that is nearly infinite (say a=1δ$a = frac{1}{delta }$ with δ0$delta approx 0$) in ΩD¯$Omega setminus overline{D}$. We show (under suitable hypotheses) that the solution u depends analytically on δ near 0, and we give a simple PDE characterization of the terms in its Taylor expansion. For the appli

受“epsilon-near-zero”(ENZ)材料散射体“光子掺杂”的物理文献的启发,我们考虑时谐TM电磁波在圆柱形ENZ区域Ω × R $Omega times mathbb {R}$中的散射如何受到介电常数不接近于零的“掺杂剂”D∧Ω $D subset Omega$的影响。数学上,这可以简化为二维亥姆霍兹方程div (a (x)∇u) + k2u的分析= f $mathrm{div}, (a(x)nabla u) + k^2 u = f$分段常数,复值系数a在Ω∈中近似无穷大(例如a = 1 δ $a = frac{1}{delta }$, δ≈0 $delta approx 0$)D¯$Omega setminus overline{D}$。我们证明(在适当的假设下)解u解析地依赖于0附近的δ,并给出了其泰勒展开式中项的简单偏微分方程表征。对于光子掺杂的应用,δ的阶修正是最有趣的:它们解释了为什么光子掺杂只受到损耗的轻微影响,以及为什么即使在介电常数很小的频率下也能看到它。同样重要的是:我们的研究结果包括了ENZ区域的先导级电场δ→0 $delta rightarrow 0$的PDE表征,而现有的关于光子掺杂的文献只提供了先导级磁场。
{"title":"Complex analytic dependence on the dielectric permittivity in ENZ materials: The photonic doping example","authors":"Robert V. Kohn,&nbsp;Raghavendra Venkatraman","doi":"10.1002/cpa.22138","DOIUrl":"10.1002/cpa.22138","url":null,"abstract":"<p>Motivated by the physics literature on “photonic doping” of scatterers made from “epsilon-near-zero” (ENZ) materials, we consider how the scattering of time-harmonic TM electromagnetic waves by a cylindrical ENZ region <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Ω</mi>\u0000 <mo>×</mo>\u0000 <mi>R</mi>\u0000 </mrow>\u0000 <annotation>$Omega times mathbb {R}$</annotation>\u0000 </semantics></math> is affected by the presence of a “dopant” <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>D</mi>\u0000 <mo>⊂</mo>\u0000 <mi>Ω</mi>\u0000 </mrow>\u0000 <annotation>$D subset Omega$</annotation>\u0000 </semantics></math> in which the dielectric permittivity is not near zero. Mathematically, this reduces to analysis of a 2D Helmholtz equation <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>div</mi>\u0000 <mspace></mspace>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>a</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>x</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>∇</mo>\u0000 <mi>u</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>+</mo>\u0000 <msup>\u0000 <mi>k</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <mi>u</mi>\u0000 <mo>=</mo>\u0000 <mi>f</mi>\u0000 </mrow>\u0000 <annotation>$mathrm{div}, (a(x)nabla u) + k^2 u = f$</annotation>\u0000 </semantics></math> with a piecewise-constant, complex valued coefficient <i>a</i> that is nearly infinite (say <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>a</mi>\u0000 <mo>=</mo>\u0000 <mfrac>\u0000 <mn>1</mn>\u0000 <mi>δ</mi>\u0000 </mfrac>\u0000 </mrow>\u0000 <annotation>$a = frac{1}{delta }$</annotation>\u0000 </semantics></math> with <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>δ</mi>\u0000 <mo>≈</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$delta approx 0$</annotation>\u0000 </semantics></math>) in <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Ω</mi>\u0000 <mo>∖</mo>\u0000 <mover>\u0000 <mi>D</mi>\u0000 <mo>¯</mo>\u0000 </mover>\u0000 </mrow>\u0000 <annotation>$Omega setminus overline{D}$</annotation>\u0000 </semantics></math>. We show (under suitable hypotheses) that the solution <i>u</i> depends analytically on δ near 0, and we give a simple PDE characterization of the terms in its Taylor expansion. For the appli","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134911078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Landscape complexity beyond invariance and the elastic manifold 超越不变和弹性流形的景观复杂性
IF 3 1区 数学 Q1 Mathematics Pub Date : 2023-09-14 DOI: 10.1002/cpa.22146
Gérard Ben Arous, Paul Bourgade, Benjamin McKenna

This paper characterizes the annealed, topological complexity (both of total critical points and of local minima) of the elastic manifold. This classical model of a disordered elastic system captures point configurations with self-interactions in a random medium. We establish the simple versus glassy phase diagram in the model parameters, with these phases separated by a physical boundary known as the Larkin mass, confirming formulas of Fyodorov and Le Doussal. One essential, dynamical, step of the proof also applies to a general signal-to-noise model of soft spins in an anisotropic well, for which we prove a negative-second-moment threshold distinguishing positive from zero complexity. A universal near-critical behavior appears within this phase portrait, namely quadratic near-critical vanishing of the complexity of total critical points, and cubic near-critical vanishing of the complexity of local minima. These two models serve as a paradigm of complexity calculations for Gaussian landscapes exhibiting few distributional symmetries, that is, beyond the invariant setting. The two main inputs for the proof are determinant asymptotics for non-invariant random matrices from our companion paper (Ben Arous, Bourgade, McKenna 2022), and the atypical convexity and integrability of the limiting variational problems.

本文刻画了弹性流形的退火、拓扑复杂性(总临界点和局部极小值)。这个经典的无序弹性系统模型捕捉了随机介质中具有自相互作用的点构型。我们在模型参数中建立了简单与玻璃相图,这些相被称为拉金质量的物理边界分开,证实了Fyodorov和Le Doussal的公式。证明的一个重要的动力学步骤也适用于各向异性井中软自旋的一般信噪模型,为此我们证明了区分正和零复杂性的负秒矩阈值。在这幅相图中出现了一种普遍的近临界行为,即总临界点复杂性的二次近临界消失和局部极小值复杂性的三次近临界消失。这两个模型作为高斯景观复杂性计算的范例,表现出很少的分布对称性,即超出不变设置。证明的两个主要输入是来自我们的同伴论文(Ben Arous, Bourgade, McKenna 2022)的非不变随机矩阵的行列式渐近性,以及极限变分问题的非典型凸性和可积性。
{"title":"Landscape complexity beyond invariance and the elastic manifold","authors":"Gérard Ben Arous,&nbsp;Paul Bourgade,&nbsp;Benjamin McKenna","doi":"10.1002/cpa.22146","DOIUrl":"10.1002/cpa.22146","url":null,"abstract":"<p>This paper characterizes the annealed, topological complexity (both of total critical points and of local minima) of the elastic manifold. This classical model of a disordered elastic system captures point configurations with self-interactions in a random medium. We establish the simple versus glassy phase diagram in the model parameters, with these phases separated by a physical boundary known as the Larkin mass, confirming formulas of Fyodorov and Le Doussal. One essential, dynamical, step of the proof also applies to a general signal-to-noise model of soft spins in an anisotropic well, for which we prove a negative-second-moment threshold distinguishing positive from zero complexity. A universal near-critical behavior appears within this phase portrait, namely quadratic near-critical vanishing of the complexity of total critical points, and cubic near-critical vanishing of the complexity of local minima. These two models serve as a paradigm of complexity calculations for Gaussian landscapes exhibiting few distributional symmetries, that is, beyond the invariant setting. The two main inputs for the proof are determinant asymptotics for non-invariant random matrices from our companion paper (Ben Arous, Bourgade, McKenna 2022), and the atypical convexity and integrability of the limiting variational problems.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135487689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Phase diagram and topological expansion in the complex quartic random matrix model 复四次随机矩阵模型的相图与拓扑展开
IF 3 1区 数学 Q1 Mathematics Pub Date : 2023-09-14 DOI: 10.1002/cpa.22164
Pavel Bleher, Roozbeh Gharakhloo, Kenneth T-R McLaughlin

We use the Riemann–Hilbert approach, together with string and Toda equations, to study the topological expansion in the quartic random matrix model. The coefficients of the topological expansion are generating functions for the numbers Nj(g)$mathcal {N}_j(g)$ of 4-valent connected graphs with j vertices on a compact Riemann surface of genus g. We explicitly evaluate these numbers for Riemann surfaces of genus 0,1,2, and 3. Also, for a Riemann surface of an arbitrary genus g, we calculate the leading term in the asymptotics of Nj(g)$mathcal {N}_j(g)$ as the number of vertices tends to infinity. Using the theory of quadratic differentials, we characterize the critical contours in the complex parameter plane where phase transitions in the quartic model take place, thereby proving a result of David. These phase transitions are of the following four types: (a) one-cut to two-cut through the splitting of the cut at the origin, (b) two-cut to three-cut through the birth of a new cut at the origin, (c) one-cut to three-cut through the splitting of the cut at two symmetric points, and (d) one-cut to three-cut through the birth of two symmetric cuts.

我们利用Riemann-Hilbert方法,结合弦方程和Toda方程,研究了四次随机矩阵模型的拓扑展开。拓扑展开的系数是在g属的紧致黎曼曲面上具有j个顶点的4价连通图N j(g)$ mathcal {N}_j(g)$的生成函数对0、1、2和3属的黎曼曲面求这些数。同样,对于任意格g的黎曼曲面,我们计算了N j(g)$ mathcal {N}_j(g)$在顶点数趋于无穷时的渐近项。利用二次微分理论,我们描述了四次模型中发生相变的复参数平面的关键轮廓,从而证明了David的一个结果。这些相变有以下四种类型:(a)一切到二切,通过原点切割的分裂;(b)二切到三切,通过原点新切割的诞生;(c)一切到三切,通过两个对称点切割的分裂;(d)一切到三切,通过两个对称切割的诞生。
{"title":"Phase diagram and topological expansion in the complex quartic random matrix model","authors":"Pavel Bleher,&nbsp;Roozbeh Gharakhloo,&nbsp;Kenneth T-R McLaughlin","doi":"10.1002/cpa.22164","DOIUrl":"10.1002/cpa.22164","url":null,"abstract":"<p>We use the Riemann–Hilbert approach, together with string and Toda equations, to study the topological expansion in the quartic random matrix model. The coefficients of the topological expansion are generating functions for the numbers <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>N</mi>\u0000 <mi>j</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>g</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$mathcal {N}_j(g)$</annotation>\u0000 </semantics></math> of 4-valent connected graphs with <i>j</i> vertices on a compact Riemann surface of genus <i>g</i>. We explicitly evaluate these numbers for Riemann surfaces of genus 0,1,2, and 3. Also, for a Riemann surface of an arbitrary genus <i>g</i>, we calculate the leading term in the asymptotics of <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>N</mi>\u0000 <mi>j</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>g</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$mathcal {N}_j(g)$</annotation>\u0000 </semantics></math> as the number of vertices tends to infinity. Using the theory of quadratic differentials, we characterize the critical contours in the complex parameter plane where phase transitions in the quartic model take place, thereby proving a result of David. These phase transitions are of the following four types: (a) one-cut to two-cut through the splitting of the cut at the origin, (b) two-cut to three-cut through the birth of a new cut at the origin, (c) one-cut to three-cut through the splitting of the cut at two symmetric points, and (d) one-cut to three-cut through the birth of two symmetric cuts.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22164","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134911088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
期刊
Communications on Pure and Applied Mathematics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1