Pub Date : 2023-01-05DOI: 10.3390/compounds3010005
Joaquim Bié, B. Sepodes, Pedro C. B. Fernandes, M. Ribeiro
Polyphenolic compounds (PC) are among the most abundant secondary metabolites in nature. They are widely distributed in the world and can be found in fruits, cereals, tea, coffee, and beverages. Due to their structural diversity, polyphenols have many different properties and biological effects. They are resistant to the acid of the gastric tract, and very few are hydrolysed or absorbed in the stomach. Significant portions of ingested polyphenols reach the large intestine and interact with the local bacteria, the so-called gut microbiota. Epidemiological studies confirm that moderate and prolonged intake of foods rich in polyphenols could prevent the development of cancer and chronic diseases, such as cardiovascular, neurodegenerative, type 2 diabetes, and obesity. The current work aims to provide an updated overview on the nature and occurrence of polyphenols, quantification methods, bioaccessibility and bioavailability, and impact on human health, namely through interactions with the gut microbiota.
{"title":"Polyphenols in Health and Disease: Gut Microbiota, Bioaccessibility, and Bioavailability","authors":"Joaquim Bié, B. Sepodes, Pedro C. B. Fernandes, M. Ribeiro","doi":"10.3390/compounds3010005","DOIUrl":"https://doi.org/10.3390/compounds3010005","url":null,"abstract":"Polyphenolic compounds (PC) are among the most abundant secondary metabolites in nature. They are widely distributed in the world and can be found in fruits, cereals, tea, coffee, and beverages. Due to their structural diversity, polyphenols have many different properties and biological effects. They are resistant to the acid of the gastric tract, and very few are hydrolysed or absorbed in the stomach. Significant portions of ingested polyphenols reach the large intestine and interact with the local bacteria, the so-called gut microbiota. Epidemiological studies confirm that moderate and prolonged intake of foods rich in polyphenols could prevent the development of cancer and chronic diseases, such as cardiovascular, neurodegenerative, type 2 diabetes, and obesity. The current work aims to provide an updated overview on the nature and occurrence of polyphenols, quantification methods, bioaccessibility and bioavailability, and impact on human health, namely through interactions with the gut microbiota.","PeriodicalId":10621,"journal":{"name":"Compounds","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75720736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-03DOI: 10.3390/compounds3010004
J. Mejuto
The present year marked the third year of Compounds (ISSN 2673-6918), which was born in 2021 with the aim of providing a platform for the communication of scientific achievements in the field of the synthesis, characterization, and properties of chemical compounds from both a theoretical point of view as experimental [...]
{"title":"Two Years of Life for a New Journal: Compounds","authors":"J. Mejuto","doi":"10.3390/compounds3010004","DOIUrl":"https://doi.org/10.3390/compounds3010004","url":null,"abstract":"The present year marked the third year of Compounds (ISSN 2673-6918), which was born in 2021 with the aim of providing a platform for the communication of scientific achievements in the field of the synthesis, characterization, and properties of chemical compounds from both a theoretical point of view as experimental [...]","PeriodicalId":10621,"journal":{"name":"Compounds","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86968043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-30DOI: 10.3390/compounds3010003
A. Novikov
Despite the fact that first polyhalides and halometalates have been discovered decades ago, this subject of chemical science has been progressing, and many supramolecular associates with these compounds exhibiting promising properties were reported. In this mini-review, I would like to highlight recent progress in theoretical studies of noncovalent interactions in supramolecular complexes with polyhalides and halometalates from our research group.
{"title":"Recent Progress in the Theoretical Studies of the Noncovalent Interactions of Supramolecular Complexes with Polyhalides and Halometalates","authors":"A. Novikov","doi":"10.3390/compounds3010003","DOIUrl":"https://doi.org/10.3390/compounds3010003","url":null,"abstract":"Despite the fact that first polyhalides and halometalates have been discovered decades ago, this subject of chemical science has been progressing, and many supramolecular associates with these compounds exhibiting promising properties were reported. In this mini-review, I would like to highlight recent progress in theoretical studies of noncovalent interactions in supramolecular complexes with polyhalides and halometalates from our research group.","PeriodicalId":10621,"journal":{"name":"Compounds","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90776226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-28DOI: 10.3390/compounds3010002
Daniel D. Ta, Jeanne M. Favret, S. Dzyuba
One-step reactions between squaric acid and pyrroles, such as 3-ethyl-2,4-dimethyl-pyrrole and 1,2,5-trimethylpyrrole, in water provide the corresponding pyrrol-2-yl- and pyrrol-3-yl-containing semisquaraines in high yields. These semisquaraines serve as useful precursors for the synthesis of various non-symmetric pyrrole-containing squaraine dyes.
{"title":"Facile Synthesis of Pyrrolyl-Containing Semisquaraines in Water as Precursors for Non-Symmetric Squaraines","authors":"Daniel D. Ta, Jeanne M. Favret, S. Dzyuba","doi":"10.3390/compounds3010002","DOIUrl":"https://doi.org/10.3390/compounds3010002","url":null,"abstract":"One-step reactions between squaric acid and pyrroles, such as 3-ethyl-2,4-dimethyl-pyrrole and 1,2,5-trimethylpyrrole, in water provide the corresponding pyrrol-2-yl- and pyrrol-3-yl-containing semisquaraines in high yields. These semisquaraines serve as useful precursors for the synthesis of various non-symmetric pyrrole-containing squaraine dyes.","PeriodicalId":10621,"journal":{"name":"Compounds","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83833642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-27DOI: 10.3390/compounds3010001
A. L. Hernández-Orihuela, Karla V. Castro-Cerritos, Mercedes G. López, A. Martínez-Antonio
Human societies demand sustainable alternatives for goods and services. Plants are sustainable sources of important metabolites with beneficial impacts on human health. There are many reported methodologies and commercial suppliers for extract preparations from Mucuna sp. They usually claim the plant is enriched with L-dopa, its distinctive metabolite. However, many present poor characterizations of the extract’s components. Here, we present polar metabolites characterization of a Mucuna seed extract, emphasizing L-dopa identification and quantification. To obtain the extracts, we follow a green and sustainable extraction protocol. The lyophilized extract is subjected to liquid chromatography and mass spectrometry to identify its primary metabolites. Additionally, we follow thin-layer chromatography to identify carbohydrates in the sample. The resultant extract has 56% L-dopa. Other main components in the extract are arginine, stizolamine, and the fructooligosaccharides sucrose and nystose. The characterized Mucuna extract can be easily standardized using powder preparation and used in several biomedical applications.
{"title":"Compound Characterization of a Mucuna Seed Extract: L-Dopa, Arginine, Stizolamine, and Some Fructooligosaccharides","authors":"A. L. Hernández-Orihuela, Karla V. Castro-Cerritos, Mercedes G. López, A. Martínez-Antonio","doi":"10.3390/compounds3010001","DOIUrl":"https://doi.org/10.3390/compounds3010001","url":null,"abstract":"Human societies demand sustainable alternatives for goods and services. Plants are sustainable sources of important metabolites with beneficial impacts on human health. There are many reported methodologies and commercial suppliers for extract preparations from Mucuna sp. They usually claim the plant is enriched with L-dopa, its distinctive metabolite. However, many present poor characterizations of the extract’s components. Here, we present polar metabolites characterization of a Mucuna seed extract, emphasizing L-dopa identification and quantification. To obtain the extracts, we follow a green and sustainable extraction protocol. The lyophilized extract is subjected to liquid chromatography and mass spectrometry to identify its primary metabolites. Additionally, we follow thin-layer chromatography to identify carbohydrates in the sample. The resultant extract has 56% L-dopa. Other main components in the extract are arginine, stizolamine, and the fructooligosaccharides sucrose and nystose. The characterized Mucuna extract can be easily standardized using powder preparation and used in several biomedical applications.","PeriodicalId":10621,"journal":{"name":"Compounds","volume":"202 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78948284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-19DOI: 10.3390/compounds2040032
M. Bach, T. N. Minh, D. Anh, Hoang Ngoc Anh, Le Viet Anh, N. Q. Trung, Bui Quang Minh, T. Xuan
Cordyceps militaris is a valued medicinal fungus in folk medicine in East Asia. It contains two major nucleosides, cordycepin and adenosine, which have been reported to have potential antineoplastic, antioxidant, and anti-inflammatory activities. This paper aimed to study the effect of C. militaris extract on the reproductive function of a mouse model, evaluating possible toxicity, androgenic activity, and protective and rehabilitative effects against damages caused by sodium valproate (VPA). There was no death and abnormalities observed in mice. Androgen activity was also shown in young male rats by an improvement in several sexual organs. The protective effect of C. militaris extract was explained by the gain of sexual organs’ weight, testosterone concentration, and seminiferous tubule size as well as the enhancement of sperm density, alive sperm percentage, and the progressive forward movement of sperm. The pregnancy rate of female rats paired with VPA-administered male rats (500 mg/kg/day) increased proportionally with the higher dose of C. militaris extract. In the rehabilitation study, an incline in the weight of the Cowper’s gland and glans (0.112 g/kg/day) and testicle and prostate (0.336 g/kg/day) as well as an improvement of the sperm forward progressive movement was observed. The percentage of unprogressive sperm and immotile sperm has reduced. These results suggest that C. militaris is a potential supplement to reduce the negative effects of VPA and improve reproductive function, in which the two major constituents cordycepin and adenosine may play an active role.
{"title":"Protection and Rehabilitation Effects of Cordyceps militaris Fruit Body Extract and Possible Roles of Cordycepin and Adenosine","authors":"M. Bach, T. N. Minh, D. Anh, Hoang Ngoc Anh, Le Viet Anh, N. Q. Trung, Bui Quang Minh, T. Xuan","doi":"10.3390/compounds2040032","DOIUrl":"https://doi.org/10.3390/compounds2040032","url":null,"abstract":"Cordyceps militaris is a valued medicinal fungus in folk medicine in East Asia. It contains two major nucleosides, cordycepin and adenosine, which have been reported to have potential antineoplastic, antioxidant, and anti-inflammatory activities. This paper aimed to study the effect of C. militaris extract on the reproductive function of a mouse model, evaluating possible toxicity, androgenic activity, and protective and rehabilitative effects against damages caused by sodium valproate (VPA). There was no death and abnormalities observed in mice. Androgen activity was also shown in young male rats by an improvement in several sexual organs. The protective effect of C. militaris extract was explained by the gain of sexual organs’ weight, testosterone concentration, and seminiferous tubule size as well as the enhancement of sperm density, alive sperm percentage, and the progressive forward movement of sperm. The pregnancy rate of female rats paired with VPA-administered male rats (500 mg/kg/day) increased proportionally with the higher dose of C. militaris extract. In the rehabilitation study, an incline in the weight of the Cowper’s gland and glans (0.112 g/kg/day) and testicle and prostate (0.336 g/kg/day) as well as an improvement of the sperm forward progressive movement was observed. The percentage of unprogressive sperm and immotile sperm has reduced. These results suggest that C. militaris is a potential supplement to reduce the negative effects of VPA and improve reproductive function, in which the two major constituents cordycepin and adenosine may play an active role.","PeriodicalId":10621,"journal":{"name":"Compounds","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75975747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-14DOI: 10.3390/compounds2040031
F. Schrenk, L. Lindenthal, Gernot Pacholik, Tina Navratil, Tobias Maximilian Berger, H. Drexler, R. Rameshan, T. Ruh, K. Föttinger, C. Rameshan
Six different perovskite-type oxides were investigated with respect to their ability for methanol synthesis via H2 and CO2: Fe-, Mn-, and Ti-based perovskites were prepared with and without Cu doping. For assessment, the catalysts were subjected to preliminary tests at atmospheric pressure to evaluate their ability to activate CO2. Additional catalytic tests with the doped versions of each catalyst type were carried out in a pressured reactor at 21 bar. After the measurements, the catalysts were characterized with X-ray diffraction (XRD) and scanning electron microscopy (SEM). All catalysts were able to produce methanol in the pressure tests. CO2 conversions between 14% and 23% were reached at 400 °C, with the highest methanol selectivity at the lower temperature of 250 °C. The combination of XRD and SEM revealed that the Fe-based and Ti-based perovskites were stable under reaction conditions and that catalytically highly active and stable nanoparticles had formed. The minor formation of CaCO3, which is a deactivating phase, was observed for one catalyst. These nanoparticles showed resistance to coking and sintering. However, the yield and selectivity for methanol need to be improved via the further tailoring of the perovskite composition.
{"title":"Perovskite-Type Oxide Catalysts in CO2 Utilization: A Principal Study of Novel Cu-Doped Perovskites for Methanol Synthesis","authors":"F. Schrenk, L. Lindenthal, Gernot Pacholik, Tina Navratil, Tobias Maximilian Berger, H. Drexler, R. Rameshan, T. Ruh, K. Föttinger, C. Rameshan","doi":"10.3390/compounds2040031","DOIUrl":"https://doi.org/10.3390/compounds2040031","url":null,"abstract":"Six different perovskite-type oxides were investigated with respect to their ability for methanol synthesis via H2 and CO2: Fe-, Mn-, and Ti-based perovskites were prepared with and without Cu doping. For assessment, the catalysts were subjected to preliminary tests at atmospheric pressure to evaluate their ability to activate CO2. Additional catalytic tests with the doped versions of each catalyst type were carried out in a pressured reactor at 21 bar. After the measurements, the catalysts were characterized with X-ray diffraction (XRD) and scanning electron microscopy (SEM). All catalysts were able to produce methanol in the pressure tests. CO2 conversions between 14% and 23% were reached at 400 °C, with the highest methanol selectivity at the lower temperature of 250 °C. The combination of XRD and SEM revealed that the Fe-based and Ti-based perovskites were stable under reaction conditions and that catalytically highly active and stable nanoparticles had formed. The minor formation of CaCO3, which is a deactivating phase, was observed for one catalyst. These nanoparticles showed resistance to coking and sintering. However, the yield and selectivity for methanol need to be improved via the further tailoring of the perovskite composition.","PeriodicalId":10621,"journal":{"name":"Compounds","volume":"75 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88174140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.3390/compounds2040030
F. Scholkmann, A. Gatti
Unwanted substances can be effectively removed from the blood using double-filtration plasmapheresis (DFPP). In our case study, we used field emission scanning electron microscopy/energy-dispersive X-ray analysis (FE-SEM-EDX) to examine if the eluate obtained by a specific type of DFPP (INUSpheresis with a TKM58 filter) contains nano- and microparticles and what chemical composition these particles have. We identified micro- and nanoparticles of various sizes and chemical composition, including microparticles high in the concentration of calcium, iron, silicon, aluminium and titanium. Furthermore, thread-like objects were identified. We discuss the possible origin of the particles and objects, their pathophysiological relevance and the potential of FE-SEM-EDX analysis of the eluate in terms of diagnostics and therapy for environmental medicine applications on patients.
{"title":"Particles in the Eluate from Double Filtration Plasmapheresis—A Case Study Using Field Emission Scanning Electron Microscopy/Energy-Dispersive X-ray Spectroscopy (FE-SEM/EDX)","authors":"F. Scholkmann, A. Gatti","doi":"10.3390/compounds2040030","DOIUrl":"https://doi.org/10.3390/compounds2040030","url":null,"abstract":"Unwanted substances can be effectively removed from the blood using double-filtration plasmapheresis (DFPP). In our case study, we used field emission scanning electron microscopy/energy-dispersive X-ray analysis (FE-SEM-EDX) to examine if the eluate obtained by a specific type of DFPP (INUSpheresis with a TKM58 filter) contains nano- and microparticles and what chemical composition these particles have. We identified micro- and nanoparticles of various sizes and chemical composition, including microparticles high in the concentration of calcium, iron, silicon, aluminium and titanium. Furthermore, thread-like objects were identified. We discuss the possible origin of the particles and objects, their pathophysiological relevance and the potential of FE-SEM-EDX analysis of the eluate in terms of diagnostics and therapy for environmental medicine applications on patients.","PeriodicalId":10621,"journal":{"name":"Compounds","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80248009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this work, linear dextrins (LDs) with the fragment F-40 (DP = 31.44) were fabricated from waxy potato starch through pasteurization and enzymatic debranching by pullulanase and then separated and extracted by ethanol solutions with different concentrations. The LDs were used to encapsulate hydrophobic ligand curcumin to develop a controlled release system that would increase its flavor in food and functions in medicines. The physicochemical properties and the encapsulation mechanism of the inclusion complexes were investigated. It was found that the loading capability for curcumin, the encapsulation rate, and the yield of the complexes depended on the molecular weight of LD. The yield of the LD-Cur complex, its encapsulation rate, and loading of curcumin were 19.86%, 25.81%, and 29.52 μg/mg, respectively, while the yield of the F-40-Cur complex, its inclusion rate, and loading curcumin reached up to 75.98%, 29.97%, and 37.52 μg/mg, respectively. There were both hydrogen bonding and hydrophobic interactions between LD and curcumin, while hydrogen bonding interactions were predominant between F-40 and curcumin. Curcumin was presented in the complex in an amorphous form. The photothermal stability of curcumin increased after being complexed with LD and further enhanced significantly with F-40. The release of curcumin in the intestine was achieved much more effectively.
{"title":"Preparation and Characterizations of Curcumin Protection and Delivery System Using Linear Dextrin","authors":"Huifang Xie, Litao Ma, Yanan Li, Junqing Fu, Zhongxian Li, Xuejun Yu, Qunyu Gao","doi":"10.3390/compounds2040029","DOIUrl":"https://doi.org/10.3390/compounds2040029","url":null,"abstract":"In this work, linear dextrins (LDs) with the fragment F-40 (DP = 31.44) were fabricated from waxy potato starch through pasteurization and enzymatic debranching by pullulanase and then separated and extracted by ethanol solutions with different concentrations. The LDs were used to encapsulate hydrophobic ligand curcumin to develop a controlled release system that would increase its flavor in food and functions in medicines. The physicochemical properties and the encapsulation mechanism of the inclusion complexes were investigated. It was found that the loading capability for curcumin, the encapsulation rate, and the yield of the complexes depended on the molecular weight of LD. The yield of the LD-Cur complex, its encapsulation rate, and loading of curcumin were 19.86%, 25.81%, and 29.52 μg/mg, respectively, while the yield of the F-40-Cur complex, its inclusion rate, and loading curcumin reached up to 75.98%, 29.97%, and 37.52 μg/mg, respectively. There were both hydrogen bonding and hydrophobic interactions between LD and curcumin, while hydrogen bonding interactions were predominant between F-40 and curcumin. Curcumin was presented in the complex in an amorphous form. The photothermal stability of curcumin increased after being complexed with LD and further enhanced significantly with F-40. The release of curcumin in the intestine was achieved much more effectively.","PeriodicalId":10621,"journal":{"name":"Compounds","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91079924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-03DOI: 10.3390/compounds2040027
T. Shimanouchi, Y. Takahashi, Keita Hayashi, K. Yasuhara, Y. Kimura
A reduction reaction of 5-hydroxymethylfurfural to 2,5-dimethylfuran (2,5-DMF) has been previously performed in an organic solvent under high-temperature conditions. For the relaxation of such reaction conditions, conventional palladium on carbon (Pd/C) was combined with vesicles composed of phospholipids or surfactants. Pd/C combined with 1,2-dioleoyl-sn-glycero-3-phosphocholine indicated a yield (25%) at 60 °C compared with Pd/C (17%). Vesicles at the liquid crystalline phase were advantageous for the reduction reaction of HMF. The yield of 2,5-DMF catalyzed by Pd/C combined with the vesicles depended on the lipid composition of the vesicles. It was clarified that the yield of 2,5-DMF could be controlled by the hydration property of the vesicles. Compared with conventional 2,5-DMF synthesis in an organic solvent, the use of vesicles made it possible to reduce the burden of using organic solvents in high-temperature conditions, although limitedly.
{"title":"Possible Role of Vesicles on Metallocatalytic Reduction Reaction of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran","authors":"T. Shimanouchi, Y. Takahashi, Keita Hayashi, K. Yasuhara, Y. Kimura","doi":"10.3390/compounds2040027","DOIUrl":"https://doi.org/10.3390/compounds2040027","url":null,"abstract":"A reduction reaction of 5-hydroxymethylfurfural to 2,5-dimethylfuran (2,5-DMF) has been previously performed in an organic solvent under high-temperature conditions. For the relaxation of such reaction conditions, conventional palladium on carbon (Pd/C) was combined with vesicles composed of phospholipids or surfactants. Pd/C combined with 1,2-dioleoyl-sn-glycero-3-phosphocholine indicated a yield (25%) at 60 °C compared with Pd/C (17%). Vesicles at the liquid crystalline phase were advantageous for the reduction reaction of HMF. The yield of 2,5-DMF catalyzed by Pd/C combined with the vesicles depended on the lipid composition of the vesicles. It was clarified that the yield of 2,5-DMF could be controlled by the hydration property of the vesicles. Compared with conventional 2,5-DMF synthesis in an organic solvent, the use of vesicles made it possible to reduce the burden of using organic solvents in high-temperature conditions, although limitedly.","PeriodicalId":10621,"journal":{"name":"Compounds","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77462322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}