Pub Date : 2024-03-25DOI: 10.1007/s10616-024-00623-4
Abstract
Schizandrin A (Sch A) exert anticancer and multidrug resistance-reversing effects in a variety of tumors, but its effect on 5-fluorouracil (5-Fu) in gastric cancer (GC) cells remains unclear. The aim of the present study was to examine the resistance-reversing effect of Schizandrin A and assess its mechanisms in 5-Fu-resistant GC cells.5-Fu-sensitive GC cells were treated with 5-Fu and 5-Fu-resistant GC cells AGS/5-Fu and SGC7901/5-Fu were were established. These cells were stimulated with Schizandrin A alone or co-treated with 5-Fu and their effect on tumor cell growth, proliferation, migration, invasion and ferroptosis-related metabolism were investigated both in vitro and in vivo. A number of additional experiments were conducted in an attempt to elucidate the molecular mechanism of increased ferroptosis. The results of our study suggest that Schizandrin A in combination with 5-Fu might be useful in treating GC by reverse drug resistance. It was shown that Schizandrin A coadministration suppressed metastasis and chemotherapy resistance in 5-Fu-resistant GC cells through facilitating the onset of ferroptosis, which is an iron-dependent form of cell death, which was further demonstrated in a xenograft nude mouse model. Mechanistically, Schizandrin A co-administration synergistically increased the expression of transferin receptor, thus iron accumulates within cells, leading to lipid peroxidation, which ultimately results in 5-Fu-resistant GC cells death. The results of this study have provided a novel strategy for increasing GC chemosensitivity, indicating Schizandrin A as a novel ferroptosis regulator. Mechanistically, ferroptosis is induced by Schizandrin A coadministration via increasing transferrin receptor expression.
摘要 五味子甲素(Sch A)在多种肿瘤中具有抗癌和多药耐药性逆转作用,但其对胃癌(GC)细胞中5-氟尿嘧啶(5-Fu)的作用仍不清楚。本研究的目的是研究五味子甲素的耐药性逆转作用,并评估其在对5-Fu耐药的胃癌细胞中的作用机制。这些细胞单独或与 5-Fu 联合处理后都会受到五味子素 A 的刺激,并在体外和体内研究了它们对肿瘤细胞生长、增殖、迁移、侵袭和铁蛋白相关代谢的影响。我们还进行了其他一些实验,试图阐明铁突变增加的分子机制。我们的研究结果表明,五味子素 A 与 5-Fu 联用可能有助于通过逆转耐药性来治疗 GC。在异种移植裸鼠模型中,研究进一步证实了五味子异黄酮 A 通过促进铁素沉着(一种铁依赖性细胞死亡形式)的发生,抑制了对 5-Fu 耐药的 GC 细胞的转移和化疗耐药性。从机理上讲,同时服用五味子异黄酮 A 可协同增加转移素受体的表达,从而使铁在细胞内蓄积,导致脂质过氧化,最终导致耐 5-Fu 的 GC 细胞死亡。这项研究的结果提供了一种提高 GC 化疗敏感性的新策略,表明五味子异黄酮 A 是一种新型的铁突变调节剂。从机理上讲,五味子异黄酮 A 可通过增加转铁蛋白受体的表达来诱导铁变态反应。
{"title":"Schizandrin A enhances the sensitivity of gastric cancer cells to 5-FU by promoting ferroptosis","authors":"","doi":"10.1007/s10616-024-00623-4","DOIUrl":"https://doi.org/10.1007/s10616-024-00623-4","url":null,"abstract":"<h3>Abstract</h3> <p>Schizandrin A (Sch A) exert anticancer and multidrug resistance-reversing effects in a variety of tumors, but its effect on 5-fluorouracil (5-Fu) in gastric cancer (GC) cells remains unclear. The aim of the present study was to examine the resistance-reversing effect of Schizandrin A and assess its mechanisms in 5-Fu-resistant GC cells.5-Fu-sensitive GC cells were treated with 5-Fu and 5-Fu-resistant GC cells AGS/5-Fu and SGC7901/5-Fu were were established. These cells were stimulated with Schizandrin A alone or co-treated with 5-Fu and their effect on tumor cell growth, proliferation, migration, invasion and ferroptosis-related metabolism were investigated both in vitro and in vivo. A number of additional experiments were conducted in an attempt to elucidate the molecular mechanism of increased ferroptosis. The results of our study suggest that Schizandrin A in combination with 5-Fu might be useful in treating GC by reverse drug resistance. It was shown that Schizandrin A coadministration suppressed metastasis and chemotherapy resistance in 5-Fu-resistant GC cells through facilitating the onset of ferroptosis, which is an iron-dependent form of cell death, which was further demonstrated in a xenograft nude mouse model. Mechanistically, Schizandrin A co-administration synergistically increased the expression of transferin receptor, thus iron accumulates within cells, leading to lipid peroxidation, which ultimately results in 5-Fu-resistant GC cells death. The results of this study have provided a novel strategy for increasing GC chemosensitivity, indicating Schizandrin A as a novel ferroptosis regulator. Mechanistically, ferroptosis is induced by Schizandrin A coadministration via increasing transferrin receptor expression.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"97 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140302189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-21DOI: 10.1007/s10616-024-00618-1
Abhishek Kumar, Yogesh Rai, Anant Narayan Bhatt
The high-throughput metabolic viability-based colorimetric MTT test is commonly employed to screen the cytotoxicity of different chemotherapeutic drugs. The assay assumes a cell density-dependent linear correlation with the MTT spectral absorbance. Therefore, the present study aimed to compare the cytotoxicity assessment between the MTT assay and gold standard cell number enumeration. The cytotoxicity was induced by Cisplatin, Etoposide, and Doxorubicin in human lung epithelial adenocarcinoma cells (A549) and cervix carcinoma (HeLa) cell lines. The mitochondrial mass was estimated, and immunoblotting of succinate dehydrogenase (SDH-A) was performed following drug treatment in both cell lines. Student’s t-test paired analysis was employed to calculate the significance of the results, where the value p < 0.05 was considered statistically significant. The drug-induced cytotoxic response estimated by MTT absorbance did not show any significant difference with respect to control, and no correlation was observed with the enumerated cell number in both A549 and HeLa cells. Interestingly, per-cell metabolic viability was found to be increased by 1.18 to 3.26-fold (p < 0.05) following drug treatment. Further, mechanistic investigation revealed a drug concentration-dependent significant increase in mitochondrial mass (1.21 to 4.2-fold) and upregulation of SDH protein (50–70%) as well as enzymatic activity with respect to control in both A549 and Hela cells. The limitation of the MTT assay for drug-induced cytotoxicity assessment is due to increased mitochondrial mass and SDH upregulation in surviving cells, leading to enhanced formazan formation. This leads to a lack of correlation between cell number and MTT spectral absorbance, suggesting that the MTT assay may provide an erroneous conclusion for cytotoxicity assessment.
基于高通量代谢活力的比色 MTT 试验通常用于筛选不同化疗药物的细胞毒性。该试验假定细胞密度与 MTT 光谱吸光度呈线性相关。因此,本研究旨在比较 MTT 检测法和金标准细胞数计数法的细胞毒性评估。顺铂、依托泊苷和多柔比星诱导人肺上皮腺癌细胞(A549)和宫颈癌细胞(HeLa)产生细胞毒性。对两种细胞系的线粒体质量进行了估计,并在药物处理后对琥珀酸脱氢酶(SDH-A)进行了免疫印迹。计算结果的显著性采用了学生 t 检验配对分析,其中 p < 0.05 被认为具有统计学意义。通过 MTT 吸光度估算的药物诱导细胞毒性反应与对照组相比没有明显差异,而且在 A549 和 HeLa 细胞中也没有观察到与细胞计数相关的结果。有趣的是,经药物处理后,发现每细胞的代谢活力增加了 1.18 至 3.26 倍(p < 0.05)。此外,机理研究还发现,与对照组相比,A549 和 Hela 细胞的线粒体质量显著增加(1.21 至 4.2 倍),SDH 蛋白和酶活性上调(50%-70%),这与药物浓度有关。MTT 试验在评估药物诱导细胞毒性方面的局限性在于,存活细胞中线粒体质量增加和 SDH 上调会导致形成更多的石榴苷。这导致细胞数量与 MTT 光谱吸光度之间缺乏相关性,表明 MTT 试验可能会为细胞毒性评估提供错误的结论。
{"title":"Anti-cancer drug-mediated increase in mitochondrial mass limits the application of metabolic viability-based MTT assay in cytotoxicity screening","authors":"Abhishek Kumar, Yogesh Rai, Anant Narayan Bhatt","doi":"10.1007/s10616-024-00618-1","DOIUrl":"https://doi.org/10.1007/s10616-024-00618-1","url":null,"abstract":"<p>The high-throughput metabolic viability-based colorimetric MTT test is commonly employed to screen the cytotoxicity of different chemotherapeutic drugs. The assay assumes a cell density-dependent linear correlation with the MTT spectral absorbance. Therefore, the present study aimed to compare the cytotoxicity assessment between the MTT assay and gold standard cell number enumeration. The cytotoxicity was induced by Cisplatin, Etoposide, and Doxorubicin in human lung epithelial adenocarcinoma cells (A549) and cervix carcinoma (HeLa) cell lines. The mitochondrial mass was estimated, and immunoblotting of succinate dehydrogenase (SDH-A) was performed following drug treatment in both cell lines. Student’s t-test paired analysis was employed to calculate the significance of the results, where the value <i>p</i> < 0.05 was considered statistically significant. The drug-induced cytotoxic response estimated by MTT absorbance did not show any significant difference with respect to control, and no correlation was observed with the enumerated cell number in both A549 and HeLa cells. Interestingly, per-cell metabolic viability was found to be increased by 1.18 to 3.26-fold (<i>p</i> < 0.05) following drug treatment. Further, mechanistic investigation revealed a drug concentration-dependent significant increase in mitochondrial mass (1.21 to 4.2-fold) and upregulation of SDH protein (50–70%) as well as enzymatic activity with respect to control in both A549 and Hela cells. The limitation of the MTT assay for drug-induced cytotoxicity assessment is due to increased mitochondrial mass and SDH upregulation in surviving cells, leading to enhanced formazan formation. This leads to a lack of correlation between cell number and MTT spectral absorbance, suggesting that the MTT assay may provide an erroneous conclusion for cytotoxicity assessment.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"21 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140205647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-27DOI: 10.1007/s10616-024-00615-4
Tomoko Furukawa, Chisako Yokono, Yoshihiro Nomura
Immature mandarin orange is thinned in order to maturation of orange. To use immature mandarin orange as a cosmetic functional material, we investigated the seasonal fluctuation changes in hesperidin and narirutin levels of immature mandarin oranges, and the effects on human skin cells. The contents of hesperidin from Aoshima, Otsu, and Shonan gold, is higher at about a month after flowering. Shonan gold has higher content of narirutin to compere that of Aoshima and Otsu. We found the addition of immature mandarin orange extracts to the human skin fibroblasts and keratinocytes, gene expression level of hyaluronic acid synthase and the hyaluronic acid contents in the medium are higher than that of the control. It was suggested that hesperidin in immature mandarin orange enhances the ability of skin cells to produce hyaluronic acid. Our findings indicate that the immature mandarin orange is a characteristic material on cosmetics and functional foods.
{"title":"Immature mandarin orange extract increases the amount of hyaluronic acid in human skin fibroblast and keratinocytes","authors":"Tomoko Furukawa, Chisako Yokono, Yoshihiro Nomura","doi":"10.1007/s10616-024-00615-4","DOIUrl":"https://doi.org/10.1007/s10616-024-00615-4","url":null,"abstract":"<p>Immature mandarin orange is thinned in order to maturation of orange. To use immature mandarin orange as a cosmetic functional material, we investigated the seasonal fluctuation changes in hesperidin and narirutin levels of immature mandarin oranges, and the effects on human skin cells. The contents of hesperidin from Aoshima, Otsu, and Shonan gold, is higher at about a month after flowering. Shonan gold has higher content of narirutin to compere that of Aoshima and Otsu. We found the addition of immature mandarin orange extracts to the human skin fibroblasts and keratinocytes, gene expression level of hyaluronic acid synthase and the hyaluronic acid contents in the medium are higher than that of the control. It was suggested that hesperidin in immature mandarin orange enhances the ability of skin cells to produce hyaluronic acid. Our findings indicate that the immature mandarin orange is a characteristic material on cosmetics and functional foods.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"1 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139978261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-20DOI: 10.1007/s10616-023-00614-x
Bo Guo, Shengzhe Yan, Lei Zhai, Yanzhen Cheng
LncRNA HOTAIR has been reported to be associated with metabolic diseases of the liver. However, the effect of HOTAIR on non-alcoholic fatty liver disease (NAFLD) inflammation and its potential mechanism have not been reported. Genes and proteins expression were detected by qRT-PCR and Western blot respectively. The level of inflammatory cytokines was assessed by ELISA. HepG2 cell viability was detected by MTT assay. TG level and lipid accumulation were measured by Assay Kit and Oil red O staining, respectively. Direct binding relationship between HOTAIR and Serine/arginine splicing factor 1 (SRSF1), SRSF1 and MLX interacting protein like (MLXIPL) were confirmed by RNA-pull down and RIP assay. HOTAIR was highly expressed in free fatty acids (FFA)-treated HepG2 cells. HOTAIR knockdown alleviated FFA-induced inflammation of HepG2 cells. Then further analysis showed that HOTAIR and SRSF1 had a mutual binding relationship, and HOTAIR maintained MLXIPL mRNA stability via recruiting SRSF1 in HepG2 cells. Moreover, the inhibitory effect of HOTAIR knockdown on FFA-induced inflammation in HepG2 cells was reversed by MLXIPL overexpression. HOTAIR accelerates inflammation of FFA-induced HepG2 cells by recruiting SRSF1 to stabilize MLXIPL mRNA, which will help to find new effective strategies for NAFLD therapy.
{"title":"LncRNA HOTAIR accelerates free fatty acid-induced inflammatory response in HepG2 cells by recruiting SRSF1 to stabilize MLXIPL mRNA","authors":"Bo Guo, Shengzhe Yan, Lei Zhai, Yanzhen Cheng","doi":"10.1007/s10616-023-00614-x","DOIUrl":"https://doi.org/10.1007/s10616-023-00614-x","url":null,"abstract":"<p>LncRNA HOTAIR has been reported to be associated with metabolic diseases of the liver. However, the effect of HOTAIR on non-alcoholic fatty liver disease (NAFLD) inflammation and its potential mechanism have not been reported. Genes and proteins expression were detected by qRT-PCR and Western blot respectively. The level of inflammatory cytokines was assessed by ELISA. HepG2 cell viability was detected by MTT assay. TG level and lipid accumulation were measured by Assay Kit and Oil red O staining, respectively. Direct binding relationship between HOTAIR and Serine/arginine splicing factor 1 (SRSF1), SRSF1 and MLX interacting protein like (MLXIPL) were confirmed by RNA-pull down and RIP assay. HOTAIR was highly expressed in free fatty acids (FFA)-treated HepG2 cells. HOTAIR knockdown alleviated FFA-induced inflammation of HepG2 cells. Then further analysis showed that HOTAIR and SRSF1 had a mutual binding relationship, and HOTAIR maintained MLXIPL mRNA stability via recruiting SRSF1 in HepG2 cells. Moreover, the inhibitory effect of HOTAIR knockdown on FFA-induced inflammation in HepG2 cells was reversed by MLXIPL overexpression. HOTAIR accelerates inflammation of FFA-induced HepG2 cells by recruiting SRSF1 to stabilize MLXIPL mRNA, which will help to find new effective strategies for NAFLD therapy.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"30 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139928339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Corneocytes and intercellular lipids form the stratum corneum. The content and composition of intercellular lipids in the stratum corneum significantly affect skin barrier function. The purpose of this study was to demonstrate the effect of Shotokuseki extract (SE) on intercellular lipid production and metabolism in human three-dimensional cultured human epidermis. SE or ion mixtures containing five common ions were applied to three-dimensional cultured human epidermis for 2–8 days for each assay. The mRNA expression levels of epidermal differentiation markers and lipid metabolism genes were quantified by real-time PCR. After extraction of lipids from the epidermis, ceramide, sphingosine, free fatty acids, and cholesterol were quantified by LC-MS/MS, GC-MS, or HPLC. The results showed that the application of SE increased the gene expression levels of epidermal differentiation markers keratin10 and transglutaminase. Elongation of very long-chain fatty acids protein 3, serine palmitoyl transferase, ceramide synthase 3, and acid ceramidase mRNA expression levels increased and fatty acid synthase mRNA expression decreased. The content of each lipid, [EOS] ceramide decreased and total sphingosine content increased on day 4. On day 8 of application, ceramide [NDS], [NP], and [EODS] increased and total free fatty acid content decreased. These results show that SE alters the lipid composition of the epidermis, increasing ceramides and decreasing free fatty acids in the epidermis. The composition of the ions in the SE may be responsible for the changes in lipid composition. These behaviors were different from those observed when the ion mixture was applied.