Pub Date : 2005-01-01DOI: 10.2174/1568011053352631
Qianbin Li, Wenfang Xu
Cancer is a serious disease with a complex pathogenesis, which threats human life greatly. Currently, great efforts have been put to the identification of novel anticancer targets and the discovery of anticancer drugs following the progress of chemogenomics, which will be reviewed briefly in this article. Furthermore, during the past 5 years, the global effort of sequencing human genome has provided us with an enormous number of potential targets associated with cancer therapy. As a result, the New Drug Discovery (NDD) is undergoing a transition "from gene to drug". Accordingly, the targets for anticancer drugs studies now are focused on some biological macromolecular targets associated with cancer and several interactive mechanisms involved in the growth and metastasis of cancer cells as well as tumor angiogenesis, such as Matrix Metalloproteinases (MMPs), Aminopeptidase N (APN), Tyrosine Kinase (TK), Farnesyltransferase (FTase) and cell Signal Transduction Pathway and so forth. Among these targets the MMP-2, -9 and APN are the most extensively studied enzymes in our laboratory. The peptidomimetics Matrix Metalloproteinase Inhibitors (MMPIs) and APN inhibitors (APNIs) with the molecular scaffold of pyrrolidine, 3-amino-2-hydroxy-4-phenyl butyric acid (AHPA) and glutamylide, which have been designed and synthesized in our laboratory, will be described in the review, among which the pyrrolidine scaffold is patented with the IC(50) ranging from 1 nM to 300 nM against MMP-2, and MMP-9.
{"title":"Novel anticancer targets and drug discovery in post genomic age.","authors":"Qianbin Li, Wenfang Xu","doi":"10.2174/1568011053352631","DOIUrl":"https://doi.org/10.2174/1568011053352631","url":null,"abstract":"<p><p>Cancer is a serious disease with a complex pathogenesis, which threats human life greatly. Currently, great efforts have been put to the identification of novel anticancer targets and the discovery of anticancer drugs following the progress of chemogenomics, which will be reviewed briefly in this article. Furthermore, during the past 5 years, the global effort of sequencing human genome has provided us with an enormous number of potential targets associated with cancer therapy. As a result, the New Drug Discovery (NDD) is undergoing a transition \"from gene to drug\". Accordingly, the targets for anticancer drugs studies now are focused on some biological macromolecular targets associated with cancer and several interactive mechanisms involved in the growth and metastasis of cancer cells as well as tumor angiogenesis, such as Matrix Metalloproteinases (MMPs), Aminopeptidase N (APN), Tyrosine Kinase (TK), Farnesyltransferase (FTase) and cell Signal Transduction Pathway and so forth. Among these targets the MMP-2, -9 and APN are the most extensively studied enzymes in our laboratory. The peptidomimetics Matrix Metalloproteinase Inhibitors (MMPIs) and APN inhibitors (APNIs) with the molecular scaffold of pyrrolidine, 3-amino-2-hydroxy-4-phenyl butyric acid (AHPA) and glutamylide, which have been designed and synthesized in our laboratory, will be described in the review, among which the pyrrolidine scaffold is patented with the IC(50) ranging from 1 nM to 300 nM against MMP-2, and MMP-9.</p>","PeriodicalId":10914,"journal":{"name":"Current medicinal chemistry. Anti-cancer agents","volume":"5 1","pages":"53-63"},"PeriodicalIF":0.0,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1568011053352631","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25133621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2005-01-01DOI: 10.2174/1568011053352550
Irena Kostova
Coumarins, an old class of compounds, are naturally occurring benzopyrene derivatives. A lot of coumarins have been identified from natural sources, especially green plants. The pharmacological and biochemical properties and therapeutic applications of simple coumarins depend upon the pattern of substitution. Coumarins have attracted intense interest in recent years because of their diverse pharmacological properties. Among these properties, their cytotoxic effects were most extensively examined. In this review, their broad range of effects on the tumors as shown by various in vitro and in vivo experiments and clinical studies are discussed. Hence, these cytotoxic coumarins represent an exploitable source of new anticancer agents, which might also help addressing side-toxicity and resistance phenomena. These natural compounds have served as valuable leads for further design and synthesis of more active analogues. In this review, plant derived coumarins and their synthetic analogues were systematically evaluated based on their plant origin, structure-activity relationship and anticancer efficacy. Owing the their diverse effects and inconclusive results from different in vitro studies, the mechanism of their action is not yet fully understood and correlation of effects with chemical structures is not conclusive at the moment. It is the objective of this review to summarize experimental data for different coumarins, used as cytotoxic agents, because promising data have been reported for a series of these agents. Yet, the results from different coumarins with various tumor lines are contradictory in part. We therefore conclude that there is still a long way to go until we know which cytotoxic agent will clinically be suitable for what tumor entity for treatment. Their ability to bind metal ions represents an additional means of modulating their pharmacological responses.
{"title":"Synthetic and natural coumarins as cytotoxic agents.","authors":"Irena Kostova","doi":"10.2174/1568011053352550","DOIUrl":"https://doi.org/10.2174/1568011053352550","url":null,"abstract":"<p><p>Coumarins, an old class of compounds, are naturally occurring benzopyrene derivatives. A lot of coumarins have been identified from natural sources, especially green plants. The pharmacological and biochemical properties and therapeutic applications of simple coumarins depend upon the pattern of substitution. Coumarins have attracted intense interest in recent years because of their diverse pharmacological properties. Among these properties, their cytotoxic effects were most extensively examined. In this review, their broad range of effects on the tumors as shown by various in vitro and in vivo experiments and clinical studies are discussed. Hence, these cytotoxic coumarins represent an exploitable source of new anticancer agents, which might also help addressing side-toxicity and resistance phenomena. These natural compounds have served as valuable leads for further design and synthesis of more active analogues. In this review, plant derived coumarins and their synthetic analogues were systematically evaluated based on their plant origin, structure-activity relationship and anticancer efficacy. Owing the their diverse effects and inconclusive results from different in vitro studies, the mechanism of their action is not yet fully understood and correlation of effects with chemical structures is not conclusive at the moment. It is the objective of this review to summarize experimental data for different coumarins, used as cytotoxic agents, because promising data have been reported for a series of these agents. Yet, the results from different coumarins with various tumor lines are contradictory in part. We therefore conclude that there is still a long way to go until we know which cytotoxic agent will clinically be suitable for what tumor entity for treatment. Their ability to bind metal ions represents an additional means of modulating their pharmacological responses.</p>","PeriodicalId":10914,"journal":{"name":"Current medicinal chemistry. Anti-cancer agents","volume":"5 1","pages":"29-46"},"PeriodicalIF":0.0,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1568011053352550","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25133619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2005-01-01DOI: 10.2174/1568011053352596
David J Adams
The genomic era has shifted anticancer drug development from its traditional mode concentrated on natural product cytotoxic agents to mechanism-based drug design focused on signal transduction pathways. Yet traditional cytotoxic chemotherapies continue to have an important role in the armamentarium. This is particularly true when one considers that important elements of solid tumor physiology - acidosis and hypoxia - have rarely been incorporated into algorithms for anticancer drug development. It is now well established that a majority of solid tumors exist in an acidic and hypoxic microenvironment that promotes resistance to radiation and chemotherapies apart from any drug-induced target mutations or efflux protein pumps. The acidic extracellular environment leads to a pH gradient unique to tumor cells. This gradient will favor uptake and retention of small molecule drugs that are weak acids. The converse is true for weak bases. The camptothecin class of topoisomerase I inhibitors is one example of a natural product cytotoxic that can exploit the tumor pH gradient. Screening of compounds based on selective activity at acidic pH (pH modulation), rather than potency, reveals analogs that are over ten times more active under the acidic conditions prevalent in vivo. Thus, knowledge of the tumor metabolic phenotype gained at the beginning of the 20(th) century can lead to more effective anticancer drugs in the new millennium.
{"title":"The impact of tumor physiology on camptothecin-based drug development.","authors":"David J Adams","doi":"10.2174/1568011053352596","DOIUrl":"https://doi.org/10.2174/1568011053352596","url":null,"abstract":"<p><p>The genomic era has shifted anticancer drug development from its traditional mode concentrated on natural product cytotoxic agents to mechanism-based drug design focused on signal transduction pathways. Yet traditional cytotoxic chemotherapies continue to have an important role in the armamentarium. This is particularly true when one considers that important elements of solid tumor physiology - acidosis and hypoxia - have rarely been incorporated into algorithms for anticancer drug development. It is now well established that a majority of solid tumors exist in an acidic and hypoxic microenvironment that promotes resistance to radiation and chemotherapies apart from any drug-induced target mutations or efflux protein pumps. The acidic extracellular environment leads to a pH gradient unique to tumor cells. This gradient will favor uptake and retention of small molecule drugs that are weak acids. The converse is true for weak bases. The camptothecin class of topoisomerase I inhibitors is one example of a natural product cytotoxic that can exploit the tumor pH gradient. Screening of compounds based on selective activity at acidic pH (pH modulation), rather than potency, reveals analogs that are over ten times more active under the acidic conditions prevalent in vivo. Thus, knowledge of the tumor metabolic phenotype gained at the beginning of the 20(th) century can lead to more effective anticancer drugs in the new millennium.</p>","PeriodicalId":10914,"journal":{"name":"Current medicinal chemistry. Anti-cancer agents","volume":"5 1","pages":"1-13"},"PeriodicalIF":0.0,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1568011053352596","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25133617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2005-01-01DOI: 10.2174/1568011053352622
Toshihiro Okamoto, Tadashi Kobayashi, Shinichi Yoshida
The normalization of plasma alanine aminotransferase (ALT) has been proved to be a strategy for preventing the development of hepatocellular carcinoma (HCC) in hepatitis C virus (HCV)-infection. Glycyrrhizin, a plant medicine, normalizes plasma ALT and prevents HCC. However, glycyrrhizin is administered intravenously and thereby chemical which is effective on oral administration is required. Coumarin compounds are active components of herbs used for the treatment of various diseases. The ability of coumarin compounds to lower plasma ALT were examined using mice concanavalin A-induced hepatitis and mice anti-Fas antibody-induced hepatitis. Furanocoumarins pd-Ia, pd-II and pd-III lower plasma ALT, but they are large molecules that are hardly absorbed on oral administration. Furocoumarin effectively lowers plasma ALT, but the safety range between the effective and toxic dosages is narrow. In contrast, osthole, a simple coumarin, causes strong reduction of plasma ALT and also inhibits caspase-3 activation. Furthermore, this chemical is quite safe upon large dose administration. In the structure of osthole, the methoxy group at position-7 and the 3-methyl-2-butenyl group at position-8 were elucidated to be essential for the beneficial effect of this chemical. We conclude that osthole will become a leading chemical for synthesizing a compound which prevents HCC on oral administration.
{"title":"Chemical aspects of coumarin compounds for the prevention of hepatocellular carcinomas.","authors":"Toshihiro Okamoto, Tadashi Kobayashi, Shinichi Yoshida","doi":"10.2174/1568011053352622","DOIUrl":"https://doi.org/10.2174/1568011053352622","url":null,"abstract":"<p><p>The normalization of plasma alanine aminotransferase (ALT) has been proved to be a strategy for preventing the development of hepatocellular carcinoma (HCC) in hepatitis C virus (HCV)-infection. Glycyrrhizin, a plant medicine, normalizes plasma ALT and prevents HCC. However, glycyrrhizin is administered intravenously and thereby chemical which is effective on oral administration is required. Coumarin compounds are active components of herbs used for the treatment of various diseases. The ability of coumarin compounds to lower plasma ALT were examined using mice concanavalin A-induced hepatitis and mice anti-Fas antibody-induced hepatitis. Furanocoumarins pd-Ia, pd-II and pd-III lower plasma ALT, but they are large molecules that are hardly absorbed on oral administration. Furocoumarin effectively lowers plasma ALT, but the safety range between the effective and toxic dosages is narrow. In contrast, osthole, a simple coumarin, causes strong reduction of plasma ALT and also inhibits caspase-3 activation. Furthermore, this chemical is quite safe upon large dose administration. In the structure of osthole, the methoxy group at position-7 and the 3-methyl-2-butenyl group at position-8 were elucidated to be essential for the beneficial effect of this chemical. We conclude that osthole will become a leading chemical for synthesizing a compound which prevents HCC on oral administration.</p>","PeriodicalId":10914,"journal":{"name":"Current medicinal chemistry. Anti-cancer agents","volume":"5 1","pages":"47-51"},"PeriodicalIF":0.0,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1568011053352622","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25133620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2005-01-01DOI: 10.2174/1568011053352569
Jun Zhou, Paraskevi Giannakakou
Chemical compounds that interfere with microtubules such as the vinca alkaloids and taxanes are important chemotherapeutic agents for the treatment of cancer. As our knowledge of microtubule-targeting drugs increases, we realize that the mechanism underlying the anti-cancer activity of these agents may mainly lie in their inhibitory effects on spindle microtubule dynamics, rather than in their effects on microtubule polymer mass. There is increasing evidence showing that even minor alteration of microtubule dynamics can engage the spindle checkpoint, arresting cell cycle progression at mitosis and eventually leading to apoptotic cell death. The effectiveness of microtubule-targeting drugs for cancer therapy has been impaired by various side effects, notably neurological and hematological toxicities. Drug resistance is another notorious factor that thwarts the effectiveness of these agents, as with many other cancer chemotherapeutics. Several new microtubule-targeting agents have shown potent activity against the proliferation of various cancer cells, including cells that display resistance to the existing microtubule-targeting drugs. Continued investigation of the mechanisms of action of microtubule-targeting drugs, development and discovery of new drugs, and exploring new treatment strategies that reduce side effects and circumvent drug resistance may provide more effective therapeutic options for cancer patients.
{"title":"Targeting microtubules for cancer chemotherapy.","authors":"Jun Zhou, Paraskevi Giannakakou","doi":"10.2174/1568011053352569","DOIUrl":"https://doi.org/10.2174/1568011053352569","url":null,"abstract":"<p><p>Chemical compounds that interfere with microtubules such as the vinca alkaloids and taxanes are important chemotherapeutic agents for the treatment of cancer. As our knowledge of microtubule-targeting drugs increases, we realize that the mechanism underlying the anti-cancer activity of these agents may mainly lie in their inhibitory effects on spindle microtubule dynamics, rather than in their effects on microtubule polymer mass. There is increasing evidence showing that even minor alteration of microtubule dynamics can engage the spindle checkpoint, arresting cell cycle progression at mitosis and eventually leading to apoptotic cell death. The effectiveness of microtubule-targeting drugs for cancer therapy has been impaired by various side effects, notably neurological and hematological toxicities. Drug resistance is another notorious factor that thwarts the effectiveness of these agents, as with many other cancer chemotherapeutics. Several new microtubule-targeting agents have shown potent activity against the proliferation of various cancer cells, including cells that display resistance to the existing microtubule-targeting drugs. Continued investigation of the mechanisms of action of microtubule-targeting drugs, development and discovery of new drugs, and exploring new treatment strategies that reduce side effects and circumvent drug resistance may provide more effective therapeutic options for cancer patients.</p>","PeriodicalId":10914,"journal":{"name":"Current medicinal chemistry. Anti-cancer agents","volume":"5 1","pages":"65-71"},"PeriodicalIF":0.0,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1568011053352569","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25133517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2005-01-01DOI: 10.2174/1568011053352604
Pascal Sève, Charles Dumontet
The treatment of advanced non-small-cell lung cancer (NSCLC is based on the combination of platin and one of the following agents: taxanes, gemcitabine, vinorelbine or irinotecan. There are no significant differences in efficacy among these combinations suggesting that the maximum efficacy has been reached. In this review, we will consider the mechanisms of chemoresistance of the five groups of cytotoxic drugs commonly used in the treatment of advanced NSCLC as well as the clinical studies which have assessed the value of chemoresistance markers. Breast Cancer Related Protein (BRCP) expression has been related to irinotecan and cisplatin (CDDP) resistance. DNA repair capacity influences response to CDDP and ERCC1 gene stands out as a predictive marker of CDDP sensitivity. Preliminary studies indicate that high tubulin III and stathmin mRNA levels correlate with response to paclitaxel and vinorelbine and that high expression of class III tubulin by tumor cells assessed immunohistochemically in patients receiving a taxane-based regimen is associated with a poor response to chemotherapy, and a shorter progression-free survival. High expression levels of ribonucleotide reductase has also been related to response to gemcitabine. Uridine diphosphate glucuronosyltransferase isoform 1A1 (UGT1A1) genotype has been reported to be associated with time to progression and survival in patients treated with irinotecan. These data suggest that pharmacogenomic strategies may be used for developing customized chemotherapy in prospective studies. Adjuvant chemotherapy which had recently shown its usefulness in limited lung cancer represents another area of investigation for pharmacogenomic studies.
{"title":"Chemoresistance in non-small cell lung cancer.","authors":"Pascal Sève, Charles Dumontet","doi":"10.2174/1568011053352604","DOIUrl":"https://doi.org/10.2174/1568011053352604","url":null,"abstract":"<p><p>The treatment of advanced non-small-cell lung cancer (NSCLC is based on the combination of platin and one of the following agents: taxanes, gemcitabine, vinorelbine or irinotecan. There are no significant differences in efficacy among these combinations suggesting that the maximum efficacy has been reached. In this review, we will consider the mechanisms of chemoresistance of the five groups of cytotoxic drugs commonly used in the treatment of advanced NSCLC as well as the clinical studies which have assessed the value of chemoresistance markers. Breast Cancer Related Protein (BRCP) expression has been related to irinotecan and cisplatin (CDDP) resistance. DNA repair capacity influences response to CDDP and ERCC1 gene stands out as a predictive marker of CDDP sensitivity. Preliminary studies indicate that high tubulin III and stathmin mRNA levels correlate with response to paclitaxel and vinorelbine and that high expression of class III tubulin by tumor cells assessed immunohistochemically in patients receiving a taxane-based regimen is associated with a poor response to chemotherapy, and a shorter progression-free survival. High expression levels of ribonucleotide reductase has also been related to response to gemcitabine. Uridine diphosphate glucuronosyltransferase isoform 1A1 (UGT1A1) genotype has been reported to be associated with time to progression and survival in patients treated with irinotecan. These data suggest that pharmacogenomic strategies may be used for developing customized chemotherapy in prospective studies. Adjuvant chemotherapy which had recently shown its usefulness in limited lung cancer represents another area of investigation for pharmacogenomic studies.</p>","PeriodicalId":10914,"journal":{"name":"Current medicinal chemistry. Anti-cancer agents","volume":"5 1","pages":"73-88"},"PeriodicalIF":0.0,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1568011053352604","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25133518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cisplatin is one of the most potent and widely used anti-cancer agents in the treatment of various solid tumors. However, the development of resistance to cisplatin is a major obstacle in clinical treatment. Several mechanisms are thought to be involved in cisplatin resistance, including decreased intracellular drug accumulation, increased levels of cellular thiols, increased nucleotide excision-repair activity and decreased mismatch-repair activity. In general, the molecules responsible for each mechanism are upregulated in cisplatin-resistant cells; this indicates that the transcription factors activated in response to cisplatin might play crucial roles in drug resistance. It is known that the tumor-suppressor proteins p53 and p73, and the oncoprotein c-Myc, which function as transcription factors, influence cellular sensitivity to cisplatin. So far, we have identified several transcription factors involved in cisplatin resistance, including Y-box binding protein-1 (YB-1), CCAAT-binding transcription factor 2 (CTF2), activating transcription factor 4 (ATF4), zinc-finger factor 143 (ZNF143) and mitochondrial transcription factor A (mtTFA). Two of these-YB-1 and ZNF143-lack the high-mobility group (HMG) domain and can bind preferentially to cisplatin-modified DNA in addition to HMG domain proteins or DNA repair proteins, indicating that these transcription factors may also participate in DNA repair. In this review, we summarize the mechanisms of cisplatin resistance and focus on transcription factors involved in the genomic response to cisplatin.
{"title":"Cisplatin resistance and transcription factors.","authors":"Takayuki Torigoe, Hiroto Izumi, Hiroshi Ishiguchi, Yoichiro Yoshida, Mizuho Tanabe, Takeshi Yoshida, Tomonori Igarashi, Ichiro Niina, Tetsuro Wakasugi, Takuya Imaizumi, Yasutomo Momii, Michihiko Kuwano, Kimitoshi Kohno","doi":"10.2174/1568011053352587","DOIUrl":"https://doi.org/10.2174/1568011053352587","url":null,"abstract":"<p><p>Cisplatin is one of the most potent and widely used anti-cancer agents in the treatment of various solid tumors. However, the development of resistance to cisplatin is a major obstacle in clinical treatment. Several mechanisms are thought to be involved in cisplatin resistance, including decreased intracellular drug accumulation, increased levels of cellular thiols, increased nucleotide excision-repair activity and decreased mismatch-repair activity. In general, the molecules responsible for each mechanism are upregulated in cisplatin-resistant cells; this indicates that the transcription factors activated in response to cisplatin might play crucial roles in drug resistance. It is known that the tumor-suppressor proteins p53 and p73, and the oncoprotein c-Myc, which function as transcription factors, influence cellular sensitivity to cisplatin. So far, we have identified several transcription factors involved in cisplatin resistance, including Y-box binding protein-1 (YB-1), CCAAT-binding transcription factor 2 (CTF2), activating transcription factor 4 (ATF4), zinc-finger factor 143 (ZNF143) and mitochondrial transcription factor A (mtTFA). Two of these-YB-1 and ZNF143-lack the high-mobility group (HMG) domain and can bind preferentially to cisplatin-modified DNA in addition to HMG domain proteins or DNA repair proteins, indicating that these transcription factors may also participate in DNA repair. In this review, we summarize the mechanisms of cisplatin resistance and focus on transcription factors involved in the genomic response to cisplatin.</p>","PeriodicalId":10914,"journal":{"name":"Current medicinal chemistry. Anti-cancer agents","volume":"5 1","pages":"15-27"},"PeriodicalIF":0.0,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1568011053352587","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25133618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2004-11-01DOI: 10.2174/1568011043352678
M A K Rumi, S Ishihara, H Kazumori, Y Kadowaki, Y Kinoshita
The role of peroxisome-proliferator activated receptor (PPAR)gamma in tumor growth inhibition has been extensively studied during last seven years but still remains debated. Many in vitro and xenograft studies have demonstrated that PPARgamma ligands are anti-tumorigenic due to anti-proliferative, pro-differentiation and anti-angiogenic effects. In animal models, PPARgamma ligands have shown preventive effects against chemical carcinogenesis. On the other hand, evidences are accumulating against the possible use of this ligand activated nuclear receptor in molecular targeting for cancer therapy. The growth inhibitory effects of certain PPARgamma ligands have recently been shown to be independent of PPARgamma-activation. Studies have also come up with results indicating the growth promoting effects of PPARgamma-activation, particularly in certain animal models genetically predisposed to cancer development. Loss-of-function mutations of PPARgamma in tumors and increased susceptibility of PPARgamma heterozygote knockout mice to carcinogenesis suggested a tumor-suppressing role of PPARgamma. However, recent findings do not support PPARgamma as a tumor suppressor gene. Although initial clinical trials with PPARgamma ligand troglitazone reported promising results in liposarcoma and prostate cancers, recent studies failed to show the expected therapeutic values in advanced colorectal and breast cancers. In this review, we have addressed these controversies on potential use of PPARgamma ligands in cancer therapy.
{"title":"Can PPAR gamma ligands be used in cancer therapy?","authors":"M A K Rumi, S Ishihara, H Kazumori, Y Kadowaki, Y Kinoshita","doi":"10.2174/1568011043352678","DOIUrl":"https://doi.org/10.2174/1568011043352678","url":null,"abstract":"<p><p>The role of peroxisome-proliferator activated receptor (PPAR)gamma in tumor growth inhibition has been extensively studied during last seven years but still remains debated. Many in vitro and xenograft studies have demonstrated that PPARgamma ligands are anti-tumorigenic due to anti-proliferative, pro-differentiation and anti-angiogenic effects. In animal models, PPARgamma ligands have shown preventive effects against chemical carcinogenesis. On the other hand, evidences are accumulating against the possible use of this ligand activated nuclear receptor in molecular targeting for cancer therapy. The growth inhibitory effects of certain PPARgamma ligands have recently been shown to be independent of PPARgamma-activation. Studies have also come up with results indicating the growth promoting effects of PPARgamma-activation, particularly in certain animal models genetically predisposed to cancer development. Loss-of-function mutations of PPARgamma in tumors and increased susceptibility of PPARgamma heterozygote knockout mice to carcinogenesis suggested a tumor-suppressing role of PPARgamma. However, recent findings do not support PPARgamma as a tumor suppressor gene. Although initial clinical trials with PPARgamma ligand troglitazone reported promising results in liposarcoma and prostate cancers, recent studies failed to show the expected therapeutic values in advanced colorectal and breast cancers. In this review, we have addressed these controversies on potential use of PPARgamma ligands in cancer therapy.</p>","PeriodicalId":10914,"journal":{"name":"Current medicinal chemistry. Anti-cancer agents","volume":"4 6","pages":"465-77"},"PeriodicalIF":0.0,"publicationDate":"2004-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1568011043352678","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"24844682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2004-11-01DOI: 10.2174/1568011043352669
J Narashimamurthy, A Raghu Ram Rao, G Narahari Sastry
Microsomal cytochrome P450 (CYP 450) enzyme aromatase belongs to CYP 19 super family. It is involved in the conversion of androgens to estrogens. In postmenopausal women the main sites of aromatisation are skin, adipose tissue and breast. Aromatase localized in breast tumor produces sufficient estrogen for its proliferation. Hence it is an important target for the treatment of hormone dependent breast cancer in postmenopausal women. There are mainly two types of aromatase inhibitors, one is steroidal another is nonsteroidal type. The first and second generation aromatase inhibitors encounter the undesirable drug- drug interactions besides being not very specific and plagued with pharmacokinetic problems. Third generation aromatase inhibitors developed recently are more potent and specific with a greater capacity to annihilate circulating estrogen levels. These agents have satisfactory pharmacokinetic profiles and are devoid of major drug-drug interactions. Third generation aromatase inhibitors became drugs of choice for both first and second line treatment of advanced breast cancer. Aromatase inhibitors can also be used for neoadjuvant therapy of breast cancer in which they have achieved better therapeutic efficacy than tamoxifen. Early results of ATAC (Armidex Tamoxifen Alone or Combination) trial suggest that anastrozole is superior to tamoxifen in adjuvant setting for disease free survival, particularly in receptor positive patients, and in reducing the incidence of contralateral breast cancer. Therapeutic potential of aromatase inhibitors stretches beyond the postmenopausal breast cancer treatment as they also play a role in the treatment of estrogen dependent benign and malignant conditions such as gynaecomastia, prostate cancer, fibroadenomata and the induction of ovulation. By virtue of their ability to reduce estrogen levels they pose problems like demineralization of bone, hot flushes and anti-implantation effects.
{"title":"Aromatase inhibitors: a new paradigm in breast cancer treatment.","authors":"J Narashimamurthy, A Raghu Ram Rao, G Narahari Sastry","doi":"10.2174/1568011043352669","DOIUrl":"https://doi.org/10.2174/1568011043352669","url":null,"abstract":"<p><p>Microsomal cytochrome P450 (CYP 450) enzyme aromatase belongs to CYP 19 super family. It is involved in the conversion of androgens to estrogens. In postmenopausal women the main sites of aromatisation are skin, adipose tissue and breast. Aromatase localized in breast tumor produces sufficient estrogen for its proliferation. Hence it is an important target for the treatment of hormone dependent breast cancer in postmenopausal women. There are mainly two types of aromatase inhibitors, one is steroidal another is nonsteroidal type. The first and second generation aromatase inhibitors encounter the undesirable drug- drug interactions besides being not very specific and plagued with pharmacokinetic problems. Third generation aromatase inhibitors developed recently are more potent and specific with a greater capacity to annihilate circulating estrogen levels. These agents have satisfactory pharmacokinetic profiles and are devoid of major drug-drug interactions. Third generation aromatase inhibitors became drugs of choice for both first and second line treatment of advanced breast cancer. Aromatase inhibitors can also be used for neoadjuvant therapy of breast cancer in which they have achieved better therapeutic efficacy than tamoxifen. Early results of ATAC (Armidex Tamoxifen Alone or Combination) trial suggest that anastrozole is superior to tamoxifen in adjuvant setting for disease free survival, particularly in receptor positive patients, and in reducing the incidence of contralateral breast cancer. Therapeutic potential of aromatase inhibitors stretches beyond the postmenopausal breast cancer treatment as they also play a role in the treatment of estrogen dependent benign and malignant conditions such as gynaecomastia, prostate cancer, fibroadenomata and the induction of ovulation. By virtue of their ability to reduce estrogen levels they pose problems like demineralization of bone, hot flushes and anti-implantation effects.</p>","PeriodicalId":10914,"journal":{"name":"Current medicinal chemistry. Anti-cancer agents","volume":"4 6","pages":"523-34"},"PeriodicalIF":0.0,"publicationDate":"2004-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1568011043352669","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"24844686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2004-11-01DOI: 10.2174/1568011043352641
M Agulnik, L L Siu
Salivary gland cancers are a rare malignancy accounting for less than 1% of all cancers and 3-6% of cancers of the head and neck region. The classification of salivary gland tumors is traditionally based on morphology and the different subtypes exhibit various clinical behaviors. The low grade and biologically indolent cell types include the adenoid cystic, acinic cell and adenocarcinoma while the salivary duct, squamous and mucoepidermoid are more active and high grade. The initial management of salivary gland malignancies is to assess resectability and possible adjuvant radiation therapy. Those with locoregional recurrence or metastatic disease are treated with systemic therapy. Numerous studies with small sample sizes have assessed the activity of different cytotoxic agents. Both single agent and combination chemotherapy have been used for the treatment of this disease. For these agents, the response rates are generally modest with objective response rates ranging from 15-50%. Duration of response is typically cited in the range of 6-9 months. Clinicopathological data have demonstrated correlations between poor clinical outcomes and the expression of molecular markers such as mutated p53 protein and vascular endothelial growth factor (VEGF) in salivary gland cancers. Recent studies have also evaluated the epidermal growth factor receptor family including erbB1/EGFR and erbB2/HER2 as potential therapeutic targets. While the prognostic significance of EGFR overexpression has not been well defined, overexpression of the HER2 oncoprotein has been associated with biological aggressiveness and poor prognosis in most series. Given the suboptimal response rates, duration of response, and toxicity of conventional chemotherapy, a better understanding of the biology of salivary gland malignancies will lead to improved prognostication and treatment. With the emergence of molecular targeted therapy, these tumors become an optimal candidate for trials of investigational drugs and established drugs for new indications.
{"title":"An update on the systemic therapy of malignant salivary gland cancers: role of chemotherapy and molecular targeted agents.","authors":"M Agulnik, L L Siu","doi":"10.2174/1568011043352641","DOIUrl":"https://doi.org/10.2174/1568011043352641","url":null,"abstract":"<p><p>Salivary gland cancers are a rare malignancy accounting for less than 1% of all cancers and 3-6% of cancers of the head and neck region. The classification of salivary gland tumors is traditionally based on morphology and the different subtypes exhibit various clinical behaviors. The low grade and biologically indolent cell types include the adenoid cystic, acinic cell and adenocarcinoma while the salivary duct, squamous and mucoepidermoid are more active and high grade. The initial management of salivary gland malignancies is to assess resectability and possible adjuvant radiation therapy. Those with locoregional recurrence or metastatic disease are treated with systemic therapy. Numerous studies with small sample sizes have assessed the activity of different cytotoxic agents. Both single agent and combination chemotherapy have been used for the treatment of this disease. For these agents, the response rates are generally modest with objective response rates ranging from 15-50%. Duration of response is typically cited in the range of 6-9 months. Clinicopathological data have demonstrated correlations between poor clinical outcomes and the expression of molecular markers such as mutated p53 protein and vascular endothelial growth factor (VEGF) in salivary gland cancers. Recent studies have also evaluated the epidermal growth factor receptor family including erbB1/EGFR and erbB2/HER2 as potential therapeutic targets. While the prognostic significance of EGFR overexpression has not been well defined, overexpression of the HER2 oncoprotein has been associated with biological aggressiveness and poor prognosis in most series. Given the suboptimal response rates, duration of response, and toxicity of conventional chemotherapy, a better understanding of the biology of salivary gland malignancies will lead to improved prognostication and treatment. With the emergence of molecular targeted therapy, these tumors become an optimal candidate for trials of investigational drugs and established drugs for new indications.</p>","PeriodicalId":10914,"journal":{"name":"Current medicinal chemistry. Anti-cancer agents","volume":"4 6","pages":"543-51"},"PeriodicalIF":0.0,"publicationDate":"2004-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1568011043352641","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"24842898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}