Pub Date : 2025-04-12DOI: 10.1007/s00294-025-01314-z
Andrea L Gallegos, María E Nashmias, Juan Pablo Zubimendi, Martín A Hernández, Verónica Acosta, Gonzalo A Torres Tejerizo, Juan I Quelas, Roxana A Silva, Héctor M Alvarez
The wide ecological distribution of actinobacteria suggests that they have developed efficient mechanisms to adapt to extremely nutritionally deficient (oligotrophic) conditions. The impact of nutrient limitation typically observed in oligotrophic areas on bacteria remains to be assessed for many species. The non-model Rhodococcus aetherivorans L13can grow under oligotrophic conditions, even without an added carbon source. Oligotrophic cells of L13 undergo physiological and morphological changes compared to glucose-grown cells, including forming short-fragmenting cells, producing an extracellular polymeric substance, and a 26-fold decrease in respiratory activity. We conducted genome sequencing of L13 and assembled the entire genome, subsequently comparing the abundance of gene transcripts in oligotrophic cells to those of glucose-grown cells, to explore the oligotrophy-responsive mechanisms at the genetic level. The genome comprises 6,543,485 base pairs, distributed across a single chromosome and six extrachromosomal plasmids (one linear and five circular). RNA-Seq analysis revealed the significant dysregulation of 2,665 genes (44% of the total genes detected). Results suggested a profound reorganization of its carbon and energy metabolism, including the activation of (i) mechanisms for utilizing air components; (ii) various dehydrogenases involved in aldehyde and alcohol metabolism, (iii) several enzymes involved in C2 metabolism, glyoxylate shunt, and TCA bypass routes, and downregulation of several genes that encode CO2 releasing-decarboxylase enzymes. Our results suggested that the adaptation strategy of L13 to oligotrophic conditions is supported by a combination of metabolic events, including low metabolic activity, the activation of C2 and ketoacids metabolism, and the display of a carbon conservative metabolic program.
{"title":"Adaptive responses of Rhodococcus aetherivorans L13 to oligotrophy: genome and transcriptomic analysis.","authors":"Andrea L Gallegos, María E Nashmias, Juan Pablo Zubimendi, Martín A Hernández, Verónica Acosta, Gonzalo A Torres Tejerizo, Juan I Quelas, Roxana A Silva, Héctor M Alvarez","doi":"10.1007/s00294-025-01314-z","DOIUrl":"10.1007/s00294-025-01314-z","url":null,"abstract":"<p><p>The wide ecological distribution of actinobacteria suggests that they have developed efficient mechanisms to adapt to extremely nutritionally deficient (oligotrophic) conditions. The impact of nutrient limitation typically observed in oligotrophic areas on bacteria remains to be assessed for many species. The non-model Rhodococcus aetherivorans L13can grow under oligotrophic conditions, even without an added carbon source. Oligotrophic cells of L13 undergo physiological and morphological changes compared to glucose-grown cells, including forming short-fragmenting cells, producing an extracellular polymeric substance, and a 26-fold decrease in respiratory activity. We conducted genome sequencing of L13 and assembled the entire genome, subsequently comparing the abundance of gene transcripts in oligotrophic cells to those of glucose-grown cells, to explore the oligotrophy-responsive mechanisms at the genetic level. The genome comprises 6,543,485 base pairs, distributed across a single chromosome and six extrachromosomal plasmids (one linear and five circular). RNA-Seq analysis revealed the significant dysregulation of 2,665 genes (44% of the total genes detected). Results suggested a profound reorganization of its carbon and energy metabolism, including the activation of (i) mechanisms for utilizing air components; (ii) various dehydrogenases involved in aldehyde and alcohol metabolism, (iii) several enzymes involved in C2 metabolism, glyoxylate shunt, and TCA bypass routes, and downregulation of several genes that encode CO<sub>2</sub> releasing-decarboxylase enzymes. Our results suggested that the adaptation strategy of L13 to oligotrophic conditions is supported by a combination of metabolic events, including low metabolic activity, the activation of C2 and ketoacids metabolism, and the display of a carbon conservative metabolic program.</p>","PeriodicalId":10918,"journal":{"name":"Current Genetics","volume":"71 1","pages":"10"},"PeriodicalIF":1.6,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143978702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-29DOI: 10.1007/s00294-025-01312-1
Pravukalyan Mohanty, G Rajadurai, S Mohankumar, N Balakrishnan, R Raghu, V Balasubramani, U Sivakumar
Bacillus thuringiensis is a prominent, eco-friendly entomopathogenic bacterium used as a plant-incorporated toxin in genetically modified crops and as a stomach poison for insects in the form of spore formulations. Upon entering the alkaline environment of the insect gut, the toxin undergoes proteolytic breakdown, converting the protoxin into its activated form. The activated toxin then binds to receptors, forming pores that disrupt the ionic balance within the cell, ultimately leading to the insect's death. Alongside the four major receptors (Cadherin, ABCC, APN, and ALP), several other notable receptors are present on the Brush Border Membrane Vesicle of insects. Binding to these receptors plays a crucial role, and any mutations in these receptors can result in improper binding, leading to the development of resistant insect strains. This review explores the major receptors of insecticidal Cry toxins, the intricate interactions between toxins and receptors, receptor mutations, and strategies to overcome the resistance.
{"title":"Interactions between insecticidal cry toxins and their receptors.","authors":"Pravukalyan Mohanty, G Rajadurai, S Mohankumar, N Balakrishnan, R Raghu, V Balasubramani, U Sivakumar","doi":"10.1007/s00294-025-01312-1","DOIUrl":"10.1007/s00294-025-01312-1","url":null,"abstract":"<p><p>Bacillus thuringiensis is a prominent, eco-friendly entomopathogenic bacterium used as a plant-incorporated toxin in genetically modified crops and as a stomach poison for insects in the form of spore formulations. Upon entering the alkaline environment of the insect gut, the toxin undergoes proteolytic breakdown, converting the protoxin into its activated form. The activated toxin then binds to receptors, forming pores that disrupt the ionic balance within the cell, ultimately leading to the insect's death. Alongside the four major receptors (Cadherin, ABCC, APN, and ALP), several other notable receptors are present on the Brush Border Membrane Vesicle of insects. Binding to these receptors plays a crucial role, and any mutations in these receptors can result in improper binding, leading to the development of resistant insect strains. This review explores the major receptors of insecticidal Cry toxins, the intricate interactions between toxins and receptors, receptor mutations, and strategies to overcome the resistance.</p>","PeriodicalId":10918,"journal":{"name":"Current Genetics","volume":"71 1","pages":"9"},"PeriodicalIF":1.6,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143742447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-29DOI: 10.1007/s00294-025-01313-0
Chih-Yen King
It was reported that yeast proteins Ssz1 and Upf1 can cure certain [PSI+] variants in wild-type cells and there is a special class of variants whose propagation requires the triple mutation of ssz1∆ upf1∆ Hsp104T160M. Attempts to isolate variants with the exact properties from the 74-D694 strain (and tested there) are not yet successful. The effort nevertheless leads to an alternative analysis about how ssz1∆ and upf1∆ mutations can help prion propagation. The cellular propagation of the yeast prion [PSI+] requires appropriate activities of the Hsp104 disaggregase. Many [PSI+] variants isolated in wild-type strains cannot propagate in cells expressing Hsp104T160M, which has weaker activities. Yet another group of [PSI+] variants shows the opposite, propagating well with Hsp104T160M but is eliminated by the wild-type protein. Deletion of SSZ1 and UPF1 genes in Hsp104T160M cells generates a just-right environment that supports the propagation of both types of [PSI+] variants. The pro-prion effect is not due to the removal of active curing by Ssz1 or Upf1-such curing activity is not observed for the variants. Rather, the double deletion causes a cellular response, which enables more efficient fragmentation of prion fibers, thus remedying the weak activity of Hsp104T160M. The "Goldilocks" conditioning seems also applicable to other yeast prions. Two [PIN+] variants that propagate well with wild-type Hsp104 but poorly with Hsp104∆N, lacking residues (2-147), can however thrive with the latter if Ssz1 and Upf1 are also deleted from the cell. In this case, the double deletion results in higher Hsp104∆N expression, leading to improved generation of prion seeds for robust propagation.
{"title":"Total propagation of yeast prion conformers in ssz1∆ upf1∆ Hsp104<sup>T160M</sup> triple mutants.","authors":"Chih-Yen King","doi":"10.1007/s00294-025-01313-0","DOIUrl":"10.1007/s00294-025-01313-0","url":null,"abstract":"<p><p>It was reported that yeast proteins Ssz1 and Upf1 can cure certain [PSI<sup>+</sup>] variants in wild-type cells and there is a special class of variants whose propagation requires the triple mutation of ssz1∆ upf1∆ Hsp104<sup>T160M</sup>. Attempts to isolate variants with the exact properties from the 74-D694 strain (and tested there) are not yet successful. The effort nevertheless leads to an alternative analysis about how ssz1∆ and upf1∆ mutations can help prion propagation. The cellular propagation of the yeast prion [PSI<sup>+</sup>] requires appropriate activities of the Hsp104 disaggregase. Many [PSI<sup>+</sup>] variants isolated in wild-type strains cannot propagate in cells expressing Hsp104<sup>T160M</sup>, which has weaker activities. Yet another group of [PSI<sup>+</sup>] variants shows the opposite, propagating well with Hsp104<sup>T160M</sup> but is eliminated by the wild-type protein. Deletion of SSZ1 and UPF1 genes in Hsp104<sup>T160M</sup> cells generates a just-right environment that supports the propagation of both types of [PSI<sup>+</sup>] variants. The pro-prion effect is not due to the removal of active curing by Ssz1 or Upf1-such curing activity is not observed for the variants. Rather, the double deletion causes a cellular response, which enables more efficient fragmentation of prion fibers, thus remedying the weak activity of Hsp104<sup>T160M</sup>. The \"Goldilocks\" conditioning seems also applicable to other yeast prions. Two [PIN<sup>+</sup>] variants that propagate well with wild-type Hsp104 but poorly with Hsp104<sup>∆N</sup>, lacking residues (2-147), can however thrive with the latter if Ssz1 and Upf1 are also deleted from the cell. In this case, the double deletion results in higher Hsp104<sup>∆N</sup> expression, leading to improved generation of prion seeds for robust propagation.</p>","PeriodicalId":10918,"journal":{"name":"Current Genetics","volume":"71 1","pages":"8"},"PeriodicalIF":1.6,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954717/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143742457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-19DOI: 10.1007/s00294-025-01311-2
Anna Probst, Doreen Knochenhauer, Justus Niemeyer, Laura Fischer, Michael Schroda
There is great interest in establishing microalgae as new platforms for the sustainable production of high-value products such as recombinant proteins. Many human therapeutic proteins must be glycosylated, which requires their passage through the secretory pathway into the culture medium. While the low complexity of proteins in the culture medium should facilitate affinity purification of secreted recombinant proteins, this has proven challenging for proteins secreted by the unicellular green alga Chlamydomonas reinhardtii. In Leishmania tarentulae, we observed that C-terminally exposed affinity tags are frequently truncated, presumably due to proteolytic activity. We wondered whether this might also occur in Chlamydomonas and contribute to the difficulties in affinity purification of secreted proteins in this alga. Using the methionine-rich 2S albumin from Bertholletia excelsa and the ectodomain of the SARS-CoV-2 spike protein produced and secreted in Chlamydomonas, we demonstrate that they can be efficiently affinity-purified from the culture medium by Ni-NTA chromatography when the 8xHis affinity tag is internalized. This finding represents an important step towards further development of Chlamydomonas as a host for the sustainable production of high-value recombinant proteins.
{"title":"Internalization of affinity tags enables the purification of secreted Chlamydomonas proteins.","authors":"Anna Probst, Doreen Knochenhauer, Justus Niemeyer, Laura Fischer, Michael Schroda","doi":"10.1007/s00294-025-01311-2","DOIUrl":"10.1007/s00294-025-01311-2","url":null,"abstract":"<p><p>There is great interest in establishing microalgae as new platforms for the sustainable production of high-value products such as recombinant proteins. Many human therapeutic proteins must be glycosylated, which requires their passage through the secretory pathway into the culture medium. While the low complexity of proteins in the culture medium should facilitate affinity purification of secreted recombinant proteins, this has proven challenging for proteins secreted by the unicellular green alga Chlamydomonas reinhardtii. In Leishmania tarentulae, we observed that C-terminally exposed affinity tags are frequently truncated, presumably due to proteolytic activity. We wondered whether this might also occur in Chlamydomonas and contribute to the difficulties in affinity purification of secreted proteins in this alga. Using the methionine-rich 2S albumin from Bertholletia excelsa and the ectodomain of the SARS-CoV-2 spike protein produced and secreted in Chlamydomonas, we demonstrate that they can be efficiently affinity-purified from the culture medium by Ni-NTA chromatography when the 8xHis affinity tag is internalized. This finding represents an important step towards further development of Chlamydomonas as a host for the sustainable production of high-value recombinant proteins.</p>","PeriodicalId":10918,"journal":{"name":"Current Genetics","volume":"71 1","pages":"7"},"PeriodicalIF":1.6,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11923035/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143662813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The bacterial strain HT11 isolated from broad bean (Vicia faba L.) exhibited strong antifungal activity against Botrytis fabiopsis, the causative agent of red spot disease in broad bean. To gain insights into the secondary metabolites produced by HT11,its entire genome was sequenced and subjected to comprehensive analysis. The genome comprised a single circular chromosome of 6,335,588 base pairs (bp) in length. Comparative analysis of the 16 S rRNA gene and the average nucleotide identity (ANI) confirmed the HT11 strain as a new Pseudomonas strain. The complete genome encoded 5,366 predicted open reading frames (ORFs), 66 tRNA genes and 16 rRNA genes. The total length of the annotated genes accounted for 82.93% (5,254,103/6,335,588 bp) of the complete genome. Functional categorization of the predicted ORFs revealed 24 Clusters of Orthologous Groups of proteins (COG). Fourteen gene clusters were identified with in the genome, associated with the biosynthesis of pyochelin, pyocyanin, viscosin, and tolaasin I/tolaasin F. Additionally, three gene clusters were implicated in the biosynthesis of unknown metabolites. These findings establish a foundational basis for further investigations into the interactions between Pseudomonas sp. HT11 and the pathogenic fungus Botrytis fabiopsis.
{"title":"Complete genome sequence of Pseudomonas sp. HT11 isolated from broad bean (Vicia faba L.).","authors":"Hui Zhang, Lian-Jie Ma, Dun-Xiu Liao, Rong-Li Tang, Xiao-Ning Hang, Wen-Cai Lu","doi":"10.1007/s00294-025-01310-3","DOIUrl":"10.1007/s00294-025-01310-3","url":null,"abstract":"<p><p>The bacterial strain HT11 isolated from broad bean (Vicia faba L.) exhibited strong antifungal activity against Botrytis fabiopsis, the causative agent of red spot disease in broad bean. To gain insights into the secondary metabolites produced by HT11,its entire genome was sequenced and subjected to comprehensive analysis. The genome comprised a single circular chromosome of 6,335,588 base pairs (bp) in length. Comparative analysis of the 16 S rRNA gene and the average nucleotide identity (ANI) confirmed the HT11 strain as a new Pseudomonas strain. The complete genome encoded 5,366 predicted open reading frames (ORFs), 66 tRNA genes and 16 rRNA genes. The total length of the annotated genes accounted for 82.93% (5,254,103/6,335,588 bp) of the complete genome. Functional categorization of the predicted ORFs revealed 24 Clusters of Orthologous Groups of proteins (COG). Fourteen gene clusters were identified with in the genome, associated with the biosynthesis of pyochelin, pyocyanin, viscosin, and tolaasin I/tolaasin F. Additionally, three gene clusters were implicated in the biosynthesis of unknown metabolites. These findings establish a foundational basis for further investigations into the interactions between Pseudomonas sp. HT11 and the pathogenic fungus Botrytis fabiopsis.</p>","PeriodicalId":10918,"journal":{"name":"Current Genetics","volume":"71 1","pages":"6"},"PeriodicalIF":1.6,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143398433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Staphylococcus genus, composed of Gram-positive bacteria, includes several pathogenic species such as Staphylococcus aureus, S. epidermidis, S. haemolyticus, and S. saprophyticus, each implicated in a range of infections. This study investigates the codon usage patterns in key virulence genes, including Autolysin (alt), Elastin Binding protein (EbpS), Lipase, Thermonuclease, Intercellular Adhesion Protein (IcaR), and V8 Protease, across four Staphylococcus species. Using metrics such as the Effective Number of Codons (ENc), Relative Synonymous Codon Usage (RSCU), Codon Adaptation Index (CAI), alongside neutrality and parity plots, we explored the codon preferences and nucleotide composition biases. Our findings revealed a pronounced AT-rich codon preference, with AT-rich genomes likely aiding in energy-efficient translation and bacterial survival in host environments. These insights provide a deeper understanding of the evolutionary adaptations and translational efficiency mechanisms that contribute to the pathogenicity of Staphylococcus species. This knowledge could pave the way for novel therapeutic interventions targeting codon usage to disrupt virulence gene expression.
{"title":"Codon usage analysis in selected virulence genes of Staphylococcal species.","authors":"Pinky Arora, Shubham Kumar, Chandra Shekhar Mukhopadhyay, Sandeep Kaur","doi":"10.1007/s00294-025-01308-x","DOIUrl":"10.1007/s00294-025-01308-x","url":null,"abstract":"<p><p>The Staphylococcus genus, composed of Gram-positive bacteria, includes several pathogenic species such as Staphylococcus aureus, S. epidermidis, S. haemolyticus, and S. saprophyticus, each implicated in a range of infections. This study investigates the codon usage patterns in key virulence genes, including Autolysin (alt), Elastin Binding protein (EbpS), Lipase, Thermonuclease, Intercellular Adhesion Protein (IcaR), and V8 Protease, across four Staphylococcus species. Using metrics such as the Effective Number of Codons (ENc), Relative Synonymous Codon Usage (RSCU), Codon Adaptation Index (CAI), alongside neutrality and parity plots, we explored the codon preferences and nucleotide composition biases. Our findings revealed a pronounced AT-rich codon preference, with AT-rich genomes likely aiding in energy-efficient translation and bacterial survival in host environments. These insights provide a deeper understanding of the evolutionary adaptations and translational efficiency mechanisms that contribute to the pathogenicity of Staphylococcus species. This knowledge could pave the way for novel therapeutic interventions targeting codon usage to disrupt virulence gene expression.</p>","PeriodicalId":10918,"journal":{"name":"Current Genetics","volume":"71 1","pages":"5"},"PeriodicalIF":1.6,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dental plaque biofilms are the primary etiologic factor for various chronic oral infectious diseases. In recent years, dental plaque shows enormous potential to know about an individual microbiota. Various microbiome studies of oral cavity from different geographical locations reveals abundance of microbial species. Although, the representation of Indian population in this respect is limited, which make us curious to undergo this study. This study investigates the dental plaque microbiota of North Indian individuals based on their age, gender, and dietary patterns; specifically, food preference and availability of water source using 16 S rRNA metagenomics analysis. The findings from this study revealed that Streptococcus levels are high across genders, age groups, and water source, highlighting its role as a predominant dental caries associated species like Streptococcus mutans, Streptococcus pyogenes, Streptococcus sobrinus and Streptococcus oralis in the studied population groups. Additionally, the abundance of Actinomyces is observed higher in young individuals and females whereas Fusobacterium and Leptotrichia were high in elderly individuals. Moreover, non-vegetarians have higher abundance of Streptococcus and Fusobacterium, whereas vegetarians show higher abundance of Prevotella and Leptotrichia. The study also highlights the influence of water type on bacterial composition of dental plaque in the studied population i.e., individuals consuming underground water has high abundance of Streptococcus, whereas individuals consuming RO water exhibit elevated Prevotella and Leptotrichia. Insights emerged from the analysis illuminates the complex dynamics of microbiota in dental plaque among North Indians. This study also highlight that this variation of microbiome is influenced by age, gender, and dietary habits (vegetarian or non-vegetarian lifestyle). These results will fill a significant knowledge gap regarding the Indian dental plaque microbiome but also offer a foundation to conduct metagenome studies and potential therapeutic implications for future personalized oral health interventions.
{"title":"Metagenomic profiling of plaque microbiota in Indian subjects: identified hidden ecological tapestry.","authors":"Sangram Sandhu, Sachin Kumar, Paurabhi Singh, Balendra Pratap Singh, Sunit Kumar Jurel, Nand Lal, Mohit, Varun Sharma, Niraj Rai, Pooran Chand","doi":"10.1007/s00294-024-01306-5","DOIUrl":"10.1007/s00294-024-01306-5","url":null,"abstract":"<p><p>Dental plaque biofilms are the primary etiologic factor for various chronic oral infectious diseases. In recent years, dental plaque shows enormous potential to know about an individual microbiota. Various microbiome studies of oral cavity from different geographical locations reveals abundance of microbial species. Although, the representation of Indian population in this respect is limited, which make us curious to undergo this study. This study investigates the dental plaque microbiota of North Indian individuals based on their age, gender, and dietary patterns; specifically, food preference and availability of water source using 16 S rRNA metagenomics analysis. The findings from this study revealed that Streptococcus levels are high across genders, age groups, and water source, highlighting its role as a predominant dental caries associated species like Streptococcus mutans, Streptococcus pyogenes, Streptococcus sobrinus and Streptococcus oralis in the studied population groups. Additionally, the abundance of Actinomyces is observed higher in young individuals and females whereas Fusobacterium and Leptotrichia were high in elderly individuals. Moreover, non-vegetarians have higher abundance of Streptococcus and Fusobacterium, whereas vegetarians show higher abundance of Prevotella and Leptotrichia. The study also highlights the influence of water type on bacterial composition of dental plaque in the studied population i.e., individuals consuming underground water has high abundance of Streptococcus, whereas individuals consuming RO water exhibit elevated Prevotella and Leptotrichia. Insights emerged from the analysis illuminates the complex dynamics of microbiota in dental plaque among North Indians. This study also highlight that this variation of microbiome is influenced by age, gender, and dietary habits (vegetarian or non-vegetarian lifestyle). These results will fill a significant knowledge gap regarding the Indian dental plaque microbiome but also offer a foundation to conduct metagenome studies and potential therapeutic implications for future personalized oral health interventions.</p>","PeriodicalId":10918,"journal":{"name":"Current Genetics","volume":"71 1","pages":"3"},"PeriodicalIF":1.6,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-24DOI: 10.1007/s00294-024-01307-4
Kiran Fatima, Syed Zeeshan Haider Naqvi, Hazrat Ali, Noor Hassan, Farheen Ansari, Sidrah Saleem, Shah Jahan, Mushtaq Ahmad, Aniqa Nawaz, Anam Saqib
Carbapenem-resistant Acinetobacter baumannii (CRAB) is an emerging threat to healthcare settings in many countries, principally in South Asia. The current study was aimed to identify, evaluate whole-genome and characterize the prophages in genome of CRAB strain, recovered from patients of Lahore General Hospital, Lahore. More than 200 samples were collected and identified by morphological and biochemical tests. These strains were also subjected to a comprehensive antimicrobial susceptibility evaluation using Kirby-Bauer method and further confirmed as CRAB strains by exploring blaOXA-51. In addition, the whole-genome evaluation of a Acinetobacter baumannii UOL-KIMZ-24-2 was carried out using various Bioinformatics tools. A total of 150 strains of A. baumannii were recovered and identified in the current study. Among them, 49% strains were found resistant to carbapenem. The blaOXA-51 was found prevalent in the genome of A. baumannii recovered from medical ICU (38%). In addition, the UOL-KIMZ-24-2 genome analysis based on multilocus sequence typing (MLST) highlighted that UOL-KIMZ-24-2 belonged to ST2 (Pasteur scheme) sequence type. A total of 29 antimicrobial resistance (AMR) genes were present, importantly, blaOXA-66, blaOXA-23 and blaOXA-25. The mobile genetic elements (MGEs) were identified as transposases and belonged to four classes e.g. IS15d1, ISAba24, ISEc29, and ISEc35. A total of 14 virulence factors encoded by 58 different genes were detected in UOL-KIMZ-24-2. In addition, the phage sequences were identified in genome of UOL-KIMZ-24-2, divided into 3 regions. In conclusion, UOL-KIMZ-24-2 contained a mixture of AMR genes, MGEs. prophages sequences and virulence genes.
耐碳青霉烯鲍曼不动杆菌(CRAB)是许多国家(主要是南亚国家)卫生保健机构面临的新威胁。本研究旨在对拉合尔拉合尔总医院(Lahore General Hospital)患者的螃蟹(CRAB)菌株进行全基因组鉴定和鉴定,并对其基因组前噬菌体进行鉴定。收集了200多个样品,并通过形态学和生化试验进行了鉴定。采用Kirby-Bauer法对这些菌株进行综合药敏评价,并通过对blaOXA-51的探索进一步确认为CRAB菌株。此外,利用各种生物信息学工具对鲍曼不动杆菌UOL-KIMZ-24-2进行了全基因组评估。本研究共检出150株鲍曼不动杆菌。其中49%的菌株对碳青霉烯类耐药。医学ICU康复鲍曼不动杆菌基因组中普遍存在blaOXA-51(38%)。此外,基于多位点序列分型(MLST)的UOL-KIMZ-24-2基因组分析表明,UOL-KIMZ-24-2属于ST2 (Pasteur scheme)序列型。共检测到29个耐药基因,主要为blaOXA-66、blaOXA-23和blaOXA-25。这些移动遗传元件(MGEs)被鉴定为转座酶,分别属于IS15d1、ISAba24、ISEc29和ISEc35四个类别。在UOL-KIMZ-24-2中共检测到58个不同基因编码的14个毒力因子。此外,在UOL-KIMZ-24-2基因组中鉴定出噬菌体序列,并将其划分为3个区域。结果表明,UOL-KIMZ-24-2含有AMR基因、MGEs基因和MGEs基因。噬菌体序列与毒力基因。
{"title":"Whole-genome evaluation and prophages characterization associated with genome of carbapenem-resistant Acinetobacter baumannii UOL-KIMZ-24-2.","authors":"Kiran Fatima, Syed Zeeshan Haider Naqvi, Hazrat Ali, Noor Hassan, Farheen Ansari, Sidrah Saleem, Shah Jahan, Mushtaq Ahmad, Aniqa Nawaz, Anam Saqib","doi":"10.1007/s00294-024-01307-4","DOIUrl":"10.1007/s00294-024-01307-4","url":null,"abstract":"<p><p>Carbapenem-resistant Acinetobacter baumannii (CRAB) is an emerging threat to healthcare settings in many countries, principally in South Asia. The current study was aimed to identify, evaluate whole-genome and characterize the prophages in genome of CRAB strain, recovered from patients of Lahore General Hospital, Lahore. More than 200 samples were collected and identified by morphological and biochemical tests. These strains were also subjected to a comprehensive antimicrobial susceptibility evaluation using Kirby-Bauer method and further confirmed as CRAB strains by exploring bla<sub>OXA-51</sub>. In addition, the whole-genome evaluation of a Acinetobacter baumannii UOL-KIMZ-24-2 was carried out using various Bioinformatics tools. A total of 150 strains of A. baumannii were recovered and identified in the current study. Among them, 49% strains were found resistant to carbapenem. The bla<sub>OXA-51</sub> was found prevalent in the genome of A. baumannii recovered from medical ICU (38%). In addition, the UOL-KIMZ-24-2 genome analysis based on multilocus sequence typing (MLST) highlighted that UOL-KIMZ-24-2 belonged to ST2 (Pasteur scheme) sequence type. A total of 29 antimicrobial resistance (AMR) genes were present, importantly, bla<sub>OXA-66</sub>, bla<sub>OXA-23</sub> and bla<sub>OXA-25</sub>. The mobile genetic elements (MGEs) were identified as transposases and belonged to four classes e.g. IS15d1, ISAba24, ISEc29, and ISEc35. A total of 14 virulence factors encoded by 58 different genes were detected in UOL-KIMZ-24-2. In addition, the phage sequences were identified in genome of UOL-KIMZ-24-2, divided into 3 regions. In conclusion, UOL-KIMZ-24-2 contained a mixture of AMR genes, MGEs. prophages sequences and virulence genes.</p>","PeriodicalId":10918,"journal":{"name":"Current Genetics","volume":"71 1","pages":"4"},"PeriodicalIF":1.6,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-16DOI: 10.1007/s00294-025-01309-w
Eva-Carina Wendegatz, Julia Lettow, Wiktoria Wierzbicka, Hans-Joachim Schüller
Basic helix-loop-helix domains in yeast regulatory proteins Ino2 and Ino4 mediate formation of a heterodimer which binds to and activates expression of phospholipid biosynthetic genes. The human proto-oncoprotein c-Myc (Myc) and its binding partner Max activate genes important for cellular proliferation and contain functional domains structure and position of which strongly resembles Ino2 and Ino4. Since Ino2-Myc and Ino4-Max may be considered as orthologs we performed functional comparisons in yeast. We demonstrate that Myc and Max could be stably synthesized in S. cerevisiae and together significantly activated a target gene of Ino2/Ino4 but nevertheless were unable to functionally complement an ino2 ino4 double mutant. We also map two efficient transcriptional activation domains in the N-terminus of Myc (TAD1: aa 1-41 and TAD2: aa 91-140), corresponding to TAD positions in Ino2. We finally show that coactivators such as TFIID subunits Taf1, Taf4, Taf6, Taf10 and Taf12 as well as ATPase subunits of chromatin remodelling complexes Swi2, Sth1 and Ino80 previously shown to interact with TADs of Ino2 were also able to bind TADs of Myc, supporting the view that heterodimers Ino2/Ino4 and Myc/Max are evolutionary related but have undergone transcriptional rewiring of target genes.
酵母调节蛋白Ino2和Ino4中的基本螺旋-环-螺旋结构域介导异二聚体的形成,该异二聚体结合并激活磷脂生物合成基因的表达。人原癌蛋白c-Myc (Myc)及其结合伙伴Max激活细胞增殖的重要基因,其功能域的结构和位置与Ino2和Ino4非常相似。由于Ino2-Myc和Ino4-Max可能被认为是同源物,我们在酵母中进行了功能比较。我们发现Myc和Max可以稳定地在酿酒酵母中合成,并能同时显著激活Ino2/Ino4靶基因,但不能在功能上补充Ino2/Ino4双突变体。我们还在Myc的n端绘制了两个有效的转录激活域(TAD1: aa 1-41和TAD2: aa 91-140),对应于Ino2中的TAD位置。我们最后发现,TFIID亚基Taf1、Taf4、Taf6、Taf10和Taf12以及染色质重塑复合体Swi2、Sth1和Ino80的atp酶亚基等共激活因子也能够结合Myc的TADs,这支持了异源二聚体Ino2/Ino4和Myc/Max是进化相关的,但经历了靶基因的转录重连接。
{"title":"Transcriptional activation and coactivator binding by yeast Ino2 and human proto-oncoprotein c-Myc.","authors":"Eva-Carina Wendegatz, Julia Lettow, Wiktoria Wierzbicka, Hans-Joachim Schüller","doi":"10.1007/s00294-025-01309-w","DOIUrl":"10.1007/s00294-025-01309-w","url":null,"abstract":"<p><p>Basic helix-loop-helix domains in yeast regulatory proteins Ino2 and Ino4 mediate formation of a heterodimer which binds to and activates expression of phospholipid biosynthetic genes. The human proto-oncoprotein c-Myc (Myc) and its binding partner Max activate genes important for cellular proliferation and contain functional domains structure and position of which strongly resembles Ino2 and Ino4. Since Ino2-Myc and Ino4-Max may be considered as orthologs we performed functional comparisons in yeast. We demonstrate that Myc and Max could be stably synthesized in S. cerevisiae and together significantly activated a target gene of Ino2/Ino4 but nevertheless were unable to functionally complement an ino2 ino4 double mutant. We also map two efficient transcriptional activation domains in the N-terminus of Myc (TAD1: aa 1-41 and TAD2: aa 91-140), corresponding to TAD positions in Ino2. We finally show that coactivators such as TFIID subunits Taf1, Taf4, Taf6, Taf10 and Taf12 as well as ATPase subunits of chromatin remodelling complexes Swi2, Sth1 and Ino80 previously shown to interact with TADs of Ino2 were also able to bind TADs of Myc, supporting the view that heterodimers Ino2/Ino4 and Myc/Max are evolutionary related but have undergone transcriptional rewiring of target genes.</p>","PeriodicalId":10918,"journal":{"name":"Current Genetics","volume":"71 1","pages":"2"},"PeriodicalIF":1.6,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739200/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143055755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-26DOI: 10.1007/s00294-024-01305-6
Umama Shahid, Suet Li Hooi, Shu Yong Lim, Alijah Mohd Aris, Bee Chin Khor, Qasim Ayub, Hock Siew Tan
Wastewater is a reservoir of pathogens and hotspots for disseminating antibiotic resistance genes across species. The metagenomic surveillance of wastewater provides insight into the native microbial community, antibiotic-resistance genes (ARGs) and mobile genetic elements. t. The COVID-19 pandemic has caused wider dissemination of ARGs and resistant bacteria in wastewater. Although immensely significant, no research has been performed on the Malaysian wastewater microbial community and ARGs or their correlation with COVID-19 infections. This study utilised a 16S metagenomics approach to characterise the microbial community in Malaysian wastewater during high and low-case phases of the pandemic. Bacteria belonging to Bacteriodales, Bacillales, Actinomycetales and opportunistic pathogens-Arcobacters, Flavobacteria, and Campylobacterales, Neisseriales, were enriched during higher COVID-19 pandemic (active cases). Additionally, copy number profiling of ARGs in water samples showed the prevalence of elements conferring resistance to antibiotics like sulphonamides, cephalosporins, and colistin. The high prevalence of intI1 and other ion-based transporters in samples highlights an extensive risk of horizontal gene transfer to previously susceptible species. Our study emphasises the importance of wastewater surveillance in understanding microbial community dynamics and ARG dissemination, particularly during public health crises like the COVID-19 pandemic.
{"title":"Metagenomic surveillance of microbial community and antibiotic resistant genes associated with Malaysian wastewater during the COVID-19 pandemic.","authors":"Umama Shahid, Suet Li Hooi, Shu Yong Lim, Alijah Mohd Aris, Bee Chin Khor, Qasim Ayub, Hock Siew Tan","doi":"10.1007/s00294-024-01305-6","DOIUrl":"10.1007/s00294-024-01305-6","url":null,"abstract":"<p><p>Wastewater is a reservoir of pathogens and hotspots for disseminating antibiotic resistance genes across species. The metagenomic surveillance of wastewater provides insight into the native microbial community, antibiotic-resistance genes (ARGs) and mobile genetic elements. t. The COVID-19 pandemic has caused wider dissemination of ARGs and resistant bacteria in wastewater. Although immensely significant, no research has been performed on the Malaysian wastewater microbial community and ARGs or their correlation with COVID-19 infections. This study utilised a 16S metagenomics approach to characterise the microbial community in Malaysian wastewater during high and low-case phases of the pandemic. Bacteria belonging to Bacteriodales, Bacillales, Actinomycetales and opportunistic pathogens-Arcobacters, Flavobacteria, and Campylobacterales, Neisseriales, were enriched during higher COVID-19 pandemic (active cases). Additionally, copy number profiling of ARGs in water samples showed the prevalence of elements conferring resistance to antibiotics like sulphonamides, cephalosporins, and colistin. The high prevalence of intI1 and other ion-based transporters in samples highlights an extensive risk of horizontal gene transfer to previously susceptible species. Our study emphasises the importance of wastewater surveillance in understanding microbial community dynamics and ARG dissemination, particularly during public health crises like the COVID-19 pandemic.</p>","PeriodicalId":10918,"journal":{"name":"Current Genetics","volume":"71 1","pages":"1"},"PeriodicalIF":1.6,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142892537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}