首页 > 最新文献

Day 1 Tue, February 05, 2019最新文献

英文 中文
Cracking Canisp: Deep void evolution during ancient earthquakes 裂缝裂缝:古代地震期间的深空演化
Pub Date : 2019-02-01 DOI: 10.1144/geosci2019-003
{"title":"Cracking Canisp: Deep void evolution during ancient earthquakes","authors":"","doi":"10.1144/geosci2019-003","DOIUrl":"https://doi.org/10.1144/geosci2019-003","url":null,"abstract":"","PeriodicalId":10957,"journal":{"name":"Day 1 Tue, February 05, 2019","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86898669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Finding Earth 发现地球
Pub Date : 2019-02-01 DOI: 10.1144/geosci2019-004
{"title":"Finding Earth","authors":"","doi":"10.1144/geosci2019-004","DOIUrl":"https://doi.org/10.1144/geosci2019-004","url":null,"abstract":"","PeriodicalId":10957,"journal":{"name":"Day 1 Tue, February 05, 2019","volume":"81 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83880005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Carbon underworld 碳黑社会
Pub Date : 2019-02-01 DOI: 10.1144/geosci2019-001
{"title":"Carbon underworld","authors":"","doi":"10.1144/geosci2019-001","DOIUrl":"https://doi.org/10.1144/geosci2019-001","url":null,"abstract":"","PeriodicalId":10957,"journal":{"name":"Day 1 Tue, February 05, 2019","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80910990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eruptions and ships 火山喷发和船只
Pub Date : 2019-02-01 DOI: 10.1144/geosci2019-002
{"title":"Eruptions and ships","authors":"","doi":"10.1144/geosci2019-002","DOIUrl":"https://doi.org/10.1144/geosci2019-002","url":null,"abstract":"","PeriodicalId":10957,"journal":{"name":"Day 1 Tue, February 05, 2019","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88694339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distant Thunder: Romance of the Fossiles 遥远的雷声:化石的浪漫
Pub Date : 2019-02-01 DOI: 10.1144/geosci2019-006
{"title":"Distant Thunder: Romance of the Fossiles","authors":"","doi":"10.1144/geosci2019-006","DOIUrl":"https://doi.org/10.1144/geosci2019-006","url":null,"abstract":"","PeriodicalId":10957,"journal":{"name":"Day 1 Tue, February 05, 2019","volume":"632 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73319560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Southwest Britain inspires through the ages 英国西南部鼓舞了许多人
Pub Date : 2019-02-01 DOI: 10.1144/geosci2019-005
{"title":"Southwest Britain inspires through the ages","authors":"","doi":"10.1144/geosci2019-005","DOIUrl":"https://doi.org/10.1144/geosci2019-005","url":null,"abstract":"","PeriodicalId":10957,"journal":{"name":"Day 1 Tue, February 05, 2019","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81170923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulation and Analysis of Fracture Swarms Observed in the Eagle Ford Field Experiment Eagle Ford油田试验观测裂缝群的模拟与分析
Pub Date : 2019-01-29 DOI: 10.2118/194328-MS
V. Sesetty, A. Ghassemi
Coring adjacent to a hydraulically fractured horizontal well in Eagle Ford shale by Conoco-Phillips has revealed several closely spaced parallel hydraulic fractures (separated only by few inches) propagating in the direction perpendicular to the wellbore axis. The number of observed hydraulic fractures greatly exceed the number of clusters according to the recent paper titled "Sampling a Stimulated Rock Volume: An Eagle Ford Example". The observed behavior is contrary to the conventional practice of hydraulic fracture modeling where often a single fracture from each perforation cluster. This assumption stems from a simplified concept of the stress shadow that inhibit the growth of multiple parallel fractures under very tight spacing. In this study we show that correct modeling can in fact capture the field observed fracture clusters or swarms of closely-spaced fractures. Numerical model based on displacement discontinuity method is used to simulate non-planar hydraulic fracture propagation. Fracture deformation, fluid flow and perforation friction are fully coupled. Fracture propagation from a single cluster consisting of 20 perforations under 1800 phasing spanning 5 ft is considered. The effect of controlling parameters such as far-field stress contrast, perforation properties, and fracture toughness on multiple hydraulic fracture growth from a cluster of perforations is studied. The results show that closely spaced fracture clusters or swarms can occur for a certain range of conditions and operational parameters. The in-situ stress contrast, perforations conditions, and injection rates exert a significant influence. Under the right conditions, closely-spaced fractures can extend to distances exceeding tens of feet from the wellbore. Early termination and/or coalescence of closely spaced fractures can also occur. To our knowledge, our modeling results are the only ones that can explain the data from the Conoco-Phillips field observations regarding the occurrence of fracture swarms. The resuts show that the assumption of a single fracture per cluster does not hold true under all conditions. Moreover, such assumption would significantly underestimate stimulated rock volume near the wellbore. Finally, our results capture the injection pressure data which can be used as a diagnostic tool to infer the perforation effectiveness (i.e., the number of perforations that are in contact with fluid flow).
康菲公司在Eagle Ford页岩的一口水力压裂水平井附近取心,发现了几条紧密间隔的平行水力裂缝(相距仅几英寸),沿垂直于井筒轴线的方向延伸。根据最近一篇题为《对受刺激岩石体积取样:以Eagle Ford为例》的论文,观察到的水力裂缝数量大大超过了裂缝簇的数量。观察到的行为与传统水力压裂建模的做法相反,通常每个射孔簇中只有一条裂缝。这一假设源于一个简化的应力阴影概念,即在非常紧的间距下,应力阴影会抑制多条平行裂缝的生长。在这项研究中,我们表明,正确的建模实际上可以捕获现场观察到的裂缝簇或紧密间隔的裂缝群。采用基于位移不连续法的数值模型模拟非平面水力裂缝的扩展。裂缝变形、流体流动和射孔摩擦是完全耦合的。考虑了由20个射孔组成的单个簇在1800相位下跨越5英尺的裂缝扩展。研究了远场应力对比、射孔性能和断裂韧性等控制参数对射孔簇水力裂缝扩展的影响。结果表明,在一定的条件和操作参数范围内,可以产生紧密间隔的裂缝簇或裂缝群。地应力对比、射孔条件和注入速度是影响射孔效果的重要因素。在适当的条件下,紧密间隔的裂缝可以延伸到距井筒超过数十英尺的距离。紧密间隔骨折的早期终止和/或合并也可能发生。据我们所知,我们的建模结果是唯一可以解释康菲石油公司现场观察到的有关裂缝群发生的数据。结果表明,并非在所有条件下,每个簇只形成一条裂缝的假设都成立。此外,这种假设将大大低估井筒附近的受激岩石体积。最后,我们的结果捕获了注入压力数据,该数据可作为诊断工具来推断射孔有效性(即与流体接触的射孔数量)。
{"title":"Simulation and Analysis of Fracture Swarms Observed in the Eagle Ford Field Experiment","authors":"V. Sesetty, A. Ghassemi","doi":"10.2118/194328-MS","DOIUrl":"https://doi.org/10.2118/194328-MS","url":null,"abstract":"\u0000 Coring adjacent to a hydraulically fractured horizontal well in Eagle Ford shale by Conoco-Phillips has revealed several closely spaced parallel hydraulic fractures (separated only by few inches) propagating in the direction perpendicular to the wellbore axis. The number of observed hydraulic fractures greatly exceed the number of clusters according to the recent paper titled \"Sampling a Stimulated Rock Volume: An Eagle Ford Example\". The observed behavior is contrary to the conventional practice of hydraulic fracture modeling where often a single fracture from each perforation cluster. This assumption stems from a simplified concept of the stress shadow that inhibit the growth of multiple parallel fractures under very tight spacing. In this study we show that correct modeling can in fact capture the field observed fracture clusters or swarms of closely-spaced fractures.\u0000 Numerical model based on displacement discontinuity method is used to simulate non-planar hydraulic fracture propagation. Fracture deformation, fluid flow and perforation friction are fully coupled. Fracture propagation from a single cluster consisting of 20 perforations under 1800 phasing spanning 5 ft is considered. The effect of controlling parameters such as far-field stress contrast, perforation properties, and fracture toughness on multiple hydraulic fracture growth from a cluster of perforations is studied.\u0000 The results show that closely spaced fracture clusters or swarms can occur for a certain range of conditions and operational parameters. The in-situ stress contrast, perforations conditions, and injection rates exert a significant influence. Under the right conditions, closely-spaced fractures can extend to distances exceeding tens of feet from the wellbore. Early termination and/or coalescence of closely spaced fractures can also occur.\u0000 To our knowledge, our modeling results are the only ones that can explain the data from the Conoco-Phillips field observations regarding the occurrence of fracture swarms. The resuts show that the assumption of a single fracture per cluster does not hold true under all conditions. Moreover, such assumption would significantly underestimate stimulated rock volume near the wellbore. Finally, our results capture the injection pressure data which can be used as a diagnostic tool to infer the perforation effectiveness (i.e., the number of perforations that are in contact with fluid flow).","PeriodicalId":10957,"journal":{"name":"Day 1 Tue, February 05, 2019","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75179242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Case Study of a Landing Location Optimization within a Depleted Stacked Reservoir in the Midland Basin Midland盆地枯竭叠层油藏着陆点优化案例研究
Pub Date : 2019-01-29 DOI: 10.2118/194353-ms
Cyrille Defeu, Ryan Williams, Dan Shan, Joel Martin, D. Cannon, Kyle Clifton, Chad Lollar
Unconventional plays across the US are often made of stacked pays, typically ranging from a few hundred to thousands of feet thick. These stacked pay intervals are generally segregated into different formations as dictated by differences in geology, mineralogy, rock fabric, and fluid type. This proves to be a challenge because many stacked/staggered horizontal wells are required to provide effective coverage of the reservoir. Selecting the right landing location can become even more challenging in an environment with existing producing wells in adjacent formations because pressure depletion and its associated effects on fracture propagation necessitate consideration of vertical spacing and time. In this study, we outline an integrated approach that addresses a four-dimensional horizontal well placement challenge in the Midland basin's Wolfcamp A formation using advanced hydraulic fracture modeling to calibrate hydraulic fracture geometries and history match five producing wells in both Lower Spraberry and Wolfcamp B. The optimal landing location within the Wolfcamp A was determined based on an assessment of reservoir quality, rock mechanics, unique structural features, and depletion effects. These data were then combined to form a 4D geomodel that enabled a completion optimization study via modeling of the resulting complex hydraulic fracture geometry and subsequent hydrocarbon production. This integrated workflow, using a wide array of high-quality datasets and the input of experts from multiple disciplines, yielded a comprehensive assessment and clear recommendations for this challenging partially depleted stacked pay interval. Although this study is specific to the Midland basin's Lower Spraberry and Wolfcamp A and B formations, many sections of the workflow apply to other basins and their unique strata.
美国的非常规油气藏通常由叠层油气藏组成,通常厚度从几百英尺到几千英尺不等。根据地质、矿物学、岩石结构和流体类型的不同,这些层叠产层通常被划分成不同的地层。事实证明,这是一个挑战,因为需要许多堆叠/交错的水平井来提供有效的储层覆盖。在邻近地层现有生产井的情况下,选择正确的着陆位置变得更加具有挑战性,因为压力耗尽及其对裂缝扩展的相关影响需要考虑垂直间距和时间。在这项研究中,我们概述了一种综合方法,解决了Midland盆地Wolfcamp a地层的四维水平井布置挑战,使用先进的水力裂缝建模来校准水力裂缝几何形状,并将Lower Spraberry和Wolfcamp b的五口生产井进行历史匹配。损耗效应。然后,将这些数据结合起来形成一个四维地质模型,通过对所得到的复杂水力裂缝几何形状和随后的油气产量建模,进行完井优化研究。该综合工作流程使用了大量高质量的数据集和来自多个学科的专家的意见,为这一具有挑战性的部分枯竭的叠层产层提供了全面的评估和明确的建议。虽然这项研究只针对Midland盆地的Lower Spraberry和Wolfcamp A和B组,但工作流程的许多部分也适用于其他盆地及其独特的地层。
{"title":"Case Study of a Landing Location Optimization within a Depleted Stacked Reservoir in the Midland Basin","authors":"Cyrille Defeu, Ryan Williams, Dan Shan, Joel Martin, D. Cannon, Kyle Clifton, Chad Lollar","doi":"10.2118/194353-ms","DOIUrl":"https://doi.org/10.2118/194353-ms","url":null,"abstract":"\u0000 Unconventional plays across the US are often made of stacked pays, typically ranging from a few hundred to thousands of feet thick. These stacked pay intervals are generally segregated into different formations as dictated by differences in geology, mineralogy, rock fabric, and fluid type. This proves to be a challenge because many stacked/staggered horizontal wells are required to provide effective coverage of the reservoir. Selecting the right landing location can become even more challenging in an environment with existing producing wells in adjacent formations because pressure depletion and its associated effects on fracture propagation necessitate consideration of vertical spacing and time.\u0000 In this study, we outline an integrated approach that addresses a four-dimensional horizontal well placement challenge in the Midland basin's Wolfcamp A formation using advanced hydraulic fracture modeling to calibrate hydraulic fracture geometries and history match five producing wells in both Lower Spraberry and Wolfcamp B.\u0000 The optimal landing location within the Wolfcamp A was determined based on an assessment of reservoir quality, rock mechanics, unique structural features, and depletion effects. These data were then combined to form a 4D geomodel that enabled a completion optimization study via modeling of the resulting complex hydraulic fracture geometry and subsequent hydrocarbon production.\u0000 This integrated workflow, using a wide array of high-quality datasets and the input of experts from multiple disciplines, yielded a comprehensive assessment and clear recommendations for this challenging partially depleted stacked pay interval. Although this study is specific to the Midland basin's Lower Spraberry and Wolfcamp A and B formations, many sections of the workflow apply to other basins and their unique strata.","PeriodicalId":10957,"journal":{"name":"Day 1 Tue, February 05, 2019","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84849909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Bridging Geomechanical and Geophysical Numerical Modeling: Evaluation of Seismic Efficiency and Rupture Velocity with Application to Estimating the Fractured Network Generated by Hydraulic Fracturing 桥接地质力学和地球物理数值模拟:地震效率和破裂速度评价及其在水力压裂裂缝网估算中的应用
Pub Date : 2019-01-29 DOI: 10.2118/194307-MS
F. Sheibani, B. Hager
Microseismic monitoring is generally the most reliable method for estimating stimulated fractured volume. Receivers used in microseismic monitoring measure only seismic events. That limitation explains why only a small portion of the energy budget during hydraulic fracturing can be estimated by information obtained from microseismic monitoring. We performed a series of numerical experiments to investigate the effects of rock mechanical properties and fracture friction characteristics on seismic efficiency and rupture velocity. We conducted numerical experiments using acoustic emission for saw-cut samples under triaxial loads and applied slip-weakening constitutive modeling for natural fractures to study how the Young's modulus and slip-weakening distance affect seismic efficiency and rupture velocity. Perhaps surprisingly, our results show that rocks with higher values of the Young's modulus have lower seismic efficiency generated from sliding on pre-existing natural fractures, while lower rigidity leads to higher seismic efficiency. These results do not contradict general beliefs about the effect of rigidity on fracability. More rigid rocks are more favorable for hydraulic fracturing and generate larger fracture networks; however, compared with less rigid rocks, fewer events would be detected seismically. The results also give insight into how to connect geomechanical numerical modeling of hydraulic fractures in naturally fractured reservoirs with microseismic data from the field and actual subsurface-generated fractured networks.
微震监测通常是估计压裂裂缝体积最可靠的方法。微震监测中使用的接收器只能测量地震事件。这一限制解释了为什么在水力压裂过程中,只有一小部分能量预算可以通过微地震监测获得的信息来估计。我们进行了一系列数值实验来研究岩石力学特性和裂缝摩擦特性对地震效率和破裂速度的影响。我们对三轴载荷下的锯切样品进行了声发射数值实验,并对天然裂缝进行了滑移弱化本构模型,研究了杨氏模量和滑移弱化距离对地震效率和破裂速度的影响。也许令人惊讶的是,我们的研究结果表明,杨氏模量值较高的岩石,由于预先存在的天然裂缝滑动而产生的地震效率较低,而较低的刚度导致更高的地震效率。这些结果与一般关于刚性对脆性影响的看法并不矛盾。岩石越坚硬,越有利于水力压裂,裂缝网越大;然而,与刚性较低的岩石相比,地震探测到的事件较少。研究结果还为如何将天然裂缝性储层水力裂缝的地质力学数值模拟与现场微地震数据和实际的地下裂缝网络联系起来提供了见解。
{"title":"Bridging Geomechanical and Geophysical Numerical Modeling: Evaluation of Seismic Efficiency and Rupture Velocity with Application to Estimating the Fractured Network Generated by Hydraulic Fracturing","authors":"F. Sheibani, B. Hager","doi":"10.2118/194307-MS","DOIUrl":"https://doi.org/10.2118/194307-MS","url":null,"abstract":"\u0000 Microseismic monitoring is generally the most reliable method for estimating stimulated fractured volume. Receivers used in microseismic monitoring measure only seismic events. That limitation explains why only a small portion of the energy budget during hydraulic fracturing can be estimated by information obtained from microseismic monitoring.\u0000 We performed a series of numerical experiments to investigate the effects of rock mechanical properties and fracture friction characteristics on seismic efficiency and rupture velocity. We conducted numerical experiments using acoustic emission for saw-cut samples under triaxial loads and applied slip-weakening constitutive modeling for natural fractures to study how the Young's modulus and slip-weakening distance affect seismic efficiency and rupture velocity. Perhaps surprisingly, our results show that rocks with higher values of the Young's modulus have lower seismic efficiency generated from sliding on pre-existing natural fractures, while lower rigidity leads to higher seismic efficiency. These results do not contradict general beliefs about the effect of rigidity on fracability. More rigid rocks are more favorable for hydraulic fracturing and generate larger fracture networks; however, compared with less rigid rocks, fewer events would be detected seismically. The results also give insight into how to connect geomechanical numerical modeling of hydraulic fractures in naturally fractured reservoirs with microseismic data from the field and actual subsurface-generated fractured networks.","PeriodicalId":10957,"journal":{"name":"Day 1 Tue, February 05, 2019","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86930279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Barriers to Hydraulic Fracture Height Growth: A New Model for Sliding Interfaces 水力裂缝高度增长障碍:一种新的滑动界面模型
Pub Date : 2019-01-29 DOI: 10.2118/194327-MS
Wenyue Xu, R. Prioul, T. Bérard, X. Weng, O. Kresse
This work introduces a new set of energy-balance-based criteria for the vertical growth of a plain-strain planar hydraulic fracture across a horizontally laminated reservoir formation with heterogenous layer properties and multiple weak interfaces. Combined with Coulomb's friction law for mechanical balance along sliding interfaces, these criteria were built into a novel semi-analytical model of fractional fracture height growth. The model was then applied to investigate the growth of hydraulic fractures in an idealized symmetric three-layer rock formation, with the upper and lower layers acting as barriers to the growth. Preliminary modeling results show how the vertical growth of a hydraulic fracture is influenced by the various mechanical/energy barriers. Three primary types of barrier behaviors are identified. A stress barrier leads to gradually increasing fluid pressure when the barrier layer is crossed. A toughness/modulus barrier, on the other hand, results in an immediate sharp increase in fluid pressure followed by gradual decline in pressure. The effect of individual sliding interfaces is similar to that of a toughness/modulus barrier. The cumulative effect becomes more important when multiple closely spaced interfaces are present. A formation layer containing multiple closely spaced weak interfaces behaves collectively much like a stress barrier.
本文介绍了一套新的基于能量平衡的平应变平面水力裂缝垂直发育标准,该标准适用于具有非均质层性和多个弱界面的水平层状储层。结合沿滑动界面力学平衡的库仑摩擦定律,将这些准则构建为一种新型的裂缝分数高度增长半解析模型。然后将该模型应用于理想化对称三层岩层中水力裂缝的扩展,上层和下层作为裂缝扩展的屏障。初步的模拟结果显示了水力裂缝的垂直扩展是如何受到各种机械/能量障碍的影响的。确定了三种主要类型的障碍行为。当穿过应力屏障层时,会导致流体压力逐渐增加。另一方面,韧性/模量屏障导致流体压力立即急剧增加,随后压力逐渐下降。单个滑动界面的作用类似于韧性/模量屏障的作用。当存在多个紧密间隔的界面时,累积效应变得更加重要。含有多个紧密间隔的弱界面的地层层共同表现得很像一个应力屏障。
{"title":"Barriers to Hydraulic Fracture Height Growth: A New Model for Sliding Interfaces","authors":"Wenyue Xu, R. Prioul, T. Bérard, X. Weng, O. Kresse","doi":"10.2118/194327-MS","DOIUrl":"https://doi.org/10.2118/194327-MS","url":null,"abstract":"\u0000 This work introduces a new set of energy-balance-based criteria for the vertical growth of a plain-strain planar hydraulic fracture across a horizontally laminated reservoir formation with heterogenous layer properties and multiple weak interfaces. Combined with Coulomb's friction law for mechanical balance along sliding interfaces, these criteria were built into a novel semi-analytical model of fractional fracture height growth. The model was then applied to investigate the growth of hydraulic fractures in an idealized symmetric three-layer rock formation, with the upper and lower layers acting as barriers to the growth. Preliminary modeling results show how the vertical growth of a hydraulic fracture is influenced by the various mechanical/energy barriers. Three primary types of barrier behaviors are identified. A stress barrier leads to gradually increasing fluid pressure when the barrier layer is crossed. A toughness/modulus barrier, on the other hand, results in an immediate sharp increase in fluid pressure followed by gradual decline in pressure. The effect of individual sliding interfaces is similar to that of a toughness/modulus barrier. The cumulative effect becomes more important when multiple closely spaced interfaces are present. A formation layer containing multiple closely spaced weak interfaces behaves collectively much like a stress barrier.","PeriodicalId":10957,"journal":{"name":"Day 1 Tue, February 05, 2019","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80991735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
期刊
Day 1 Tue, February 05, 2019
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1