Y. Bashir, A. H. A. Latif, Shiba Rezaei, M. Mahgoub, Syed Yaser Moussavi Alashloo, M. Hermana, D. Ghosh, C. Sum
Seismic Imaging for the small-scale feature in complex subsurface geology such as Carbonate is not easy to capture because of propagated wave affected by heterogeneous properties of objects in the subsurface. The principal goal of anisotropic seismic diffraction & reflection imaging is to get a subsurface image of structural features with the greatest sharpness or resolution. In this paper, we have presented a new approach for anisotropic diffraction preservation using offset and angle domain data during the initial data processing. Which leads to the better preservation of diffractions amplitude in laterally varying velocity condition. The plane-wave destruction filter is used with a modified approximation for Diffraction separation as the conventional filtering techniques mixed the diffraction amplitudes when there are a series of diffraction hyperbola. Further, the implementation of the proposed method has proven on carbonate field data from Sarawak Basin for steeply dipping Carbonate Build-up.
{"title":"Seismic Diffraction Imaging in Laterally Varying Velocity Media for Frequency Bandwidth Expansion - Application in Carbonate Field Sarawak, Malaysia","authors":"Y. Bashir, A. H. A. Latif, Shiba Rezaei, M. Mahgoub, Syed Yaser Moussavi Alashloo, M. Hermana, D. Ghosh, C. Sum","doi":"10.2118/197656-ms","DOIUrl":"https://doi.org/10.2118/197656-ms","url":null,"abstract":"\u0000 Seismic Imaging for the small-scale feature in complex subsurface geology such as Carbonate is not easy to capture because of propagated wave affected by heterogeneous properties of objects in the subsurface. The principal goal of anisotropic seismic diffraction & reflection imaging is to get a subsurface image of structural features with the greatest sharpness or resolution. In this paper, we have presented a new approach for anisotropic diffraction preservation using offset and angle domain data during the initial data processing. Which leads to the better preservation of diffractions amplitude in laterally varying velocity condition. The plane-wave destruction filter is used with a modified approximation for Diffraction separation as the conventional filtering techniques mixed the diffraction amplitudes when there are a series of diffraction hyperbola. Further, the implementation of the proposed method has proven on carbonate field data from Sarawak Basin for steeply dipping Carbonate Build-up.","PeriodicalId":11061,"journal":{"name":"Day 1 Mon, November 11, 2019","volume":"53 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76154032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zainah Salem Al Agbari, M. Chatterjee, P. Hewitt, I. Mohamed, M. Sudarev, E. Latypov, Ahmed Mohamed Al Bairaq, Ammar Al Amri
Using a tracer as a monitoring technique to measure the migration of the injected fluid in the reservoir is relatively inexpensive method, and it applied in numerous fields throughout the world. The application of tracer can assess the volumetric sweep to quantify the amount of fluid flowing from injectors to producers. It gives an indication of offending injectors. Tracer helps in addressing the communication between different reservoir units. Another objective is delineation of flow barriers to identify the geological features that dominate the flow directionality (i.e. high permeability streaks, faults, fractures, etc) to determine directional permeability trends. The information obtained from tracer can reduce the model uncertainty and provide better tuning for future prediction. The tracer data is used to generate not only qualitative information but also a substantial amount of quantitative data. Primarily, chemical tracers should be tested against a number of reservoir formation rocks and found not to adsorb or retard. Tracers are injected in the injectors and the samples are collected from nearby producers. Analysis of tracer concentration versus time curves from individual producing wells enables interwell flow characteristics to be determined so that improvements can be made to optimize sweep effectiveness of the hydrocarbon reserve. A record of base line sampling and analyses from all producers should be conducted. A frequent sampling and analysis are performed to understand the reservoir characteristics and performance. After the application of tracer technique, the following results were observed: The first breakthrough was detected after about one year; due to the short distance between the injector and the producer. The second breakthrough was detected after about three years; due to the reservoir characteristic in the producers. An identical patterns of tracer response was seen, indicates almost homogenous reservoir in the tracer injected. This points out towards a similar depositional pattern across the reservoir. Most of tracers are observed downward towards the flank area. Tracer direction was to the least pressure area (flank) due to high offtake. No breakthrough was observed in the attic wells due to high pressure area. Tracer technology is inexpensive method used to provide inflow directional information, and it has no impact on the completion design and effectively prove the reservoir characterizations and well performance.
{"title":"Use Of Tracer Technology to Improve Reservoir Understanding","authors":"Zainah Salem Al Agbari, M. Chatterjee, P. Hewitt, I. Mohamed, M. Sudarev, E. Latypov, Ahmed Mohamed Al Bairaq, Ammar Al Amri","doi":"10.2118/197364-ms","DOIUrl":"https://doi.org/10.2118/197364-ms","url":null,"abstract":"\u0000 Using a tracer as a monitoring technique to measure the migration of the injected fluid in the reservoir is relatively inexpensive method, and it applied in numerous fields throughout the world. The application of tracer can assess the volumetric sweep to quantify the amount of fluid flowing from injectors to producers. It gives an indication of offending injectors. Tracer helps in addressing the communication between different reservoir units. Another objective is delineation of flow barriers to identify the geological features that dominate the flow directionality (i.e. high permeability streaks, faults, fractures, etc) to determine directional permeability trends. The information obtained from tracer can reduce the model uncertainty and provide better tuning for future prediction.\u0000 The tracer data is used to generate not only qualitative information but also a substantial amount of quantitative data. Primarily, chemical tracers should be tested against a number of reservoir formation rocks and found not to adsorb or retard. Tracers are injected in the injectors and the samples are collected from nearby producers. Analysis of tracer concentration versus time curves from individual producing wells enables interwell flow characteristics to be determined so that improvements can be made to optimize sweep effectiveness of the hydrocarbon reserve. A record of base line sampling and analyses from all producers should be conducted. A frequent sampling and analysis are performed to understand the reservoir characteristics and performance.\u0000 After the application of tracer technique, the following results were observed: The first breakthrough was detected after about one year; due to the short distance between the injector and the producer. The second breakthrough was detected after about three years; due to the reservoir characteristic in the producers. An identical patterns of tracer response was seen, indicates almost homogenous reservoir in the tracer injected. This points out towards a similar depositional pattern across the reservoir. Most of tracers are observed downward towards the flank area. Tracer direction was to the least pressure area (flank) due to high offtake. No breakthrough was observed in the attic wells due to high pressure area.\u0000 Tracer technology is inexpensive method used to provide inflow directional information, and it has no impact on the completion design and effectively prove the reservoir characterizations and well performance.","PeriodicalId":11061,"journal":{"name":"Day 1 Mon, November 11, 2019","volume":"110 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79248864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cara Smith, P. Vasilyev, A. Glushchenko, D. Zarubov
Interest in quantitative interpretation (QI) of seismic data in the Abu Dhabi region continues to steadily increase, and the objective of creating inversion-ready seismic data is driving evolution of the surface seismic data processing workflows to focus on more detailed and thorough handling of the amplitude and phase throughout processing (pre-, during, and post-imaging). To achieve close well ties across the survey and to ensure the data is suitable for interpretation purposes, zero-phasing and wavelet stability (along with using well information during earth model building) are key stages in the depth imaging seismic processing workflow. Accurate amplitude with offset and azimuth handling is also required for inversion studies. In this paper, we propose a workflow where a geophysically and geologically credible, 3D variable Q-field is built into the earth model early in the processing flow, allowing a more complete approach to handling the Q-effects of the subsurface without increasing project turnaround time. This case study shows that a data-driven spatially variable Q-field combined with Kirchhoff Pre-Stack Depth migration compensates effectively for both amplitude and phase effects, providing a broadband image with improved event continuity and better handling of noise compared with applying a constant pre-migration Q-compensation (which was previously thought to be suitable for this low-relief region). By calibrating the variable Q-field to available well logs and near surface information, and ensuring that the different geophysical parameters in the earth model are all suitably coupled, an enhanced image is achieved which then requires minimal spectral shaping or residual phase corrections post migration. Ray-based Q-tomography workflows allow iterative 3D updates alongside coupled subsurface properties like anisotropy and velocity, within a high-resolution Earth model suitable for depth imaging. Reliable phase stability, higher resolution, broader useable bandwidth and improved amplitude preservation are key targets of this holistic approach.
{"title":"Q-Compensation from Near Surface to Reservoir and Below: Case Study from Onshore Abu Dhabi","authors":"Cara Smith, P. Vasilyev, A. Glushchenko, D. Zarubov","doi":"10.2118/197443-ms","DOIUrl":"https://doi.org/10.2118/197443-ms","url":null,"abstract":"\u0000 Interest in quantitative interpretation (QI) of seismic data in the Abu Dhabi region continues to steadily increase, and the objective of creating inversion-ready seismic data is driving evolution of the surface seismic data processing workflows to focus on more detailed and thorough handling of the amplitude and phase throughout processing (pre-, during, and post-imaging). To achieve close well ties across the survey and to ensure the data is suitable for interpretation purposes, zero-phasing and wavelet stability (along with using well information during earth model building) are key stages in the depth imaging seismic processing workflow. Accurate amplitude with offset and azimuth handling is also required for inversion studies. In this paper, we propose a workflow where a geophysically and geologically credible, 3D variable Q-field is built into the earth model early in the processing flow, allowing a more complete approach to handling the Q-effects of the subsurface without increasing project turnaround time. This case study shows that a data-driven spatially variable Q-field combined with Kirchhoff Pre-Stack Depth migration compensates effectively for both amplitude and phase effects, providing a broadband image with improved event continuity and better handling of noise compared with applying a constant pre-migration Q-compensation (which was previously thought to be suitable for this low-relief region). By calibrating the variable Q-field to available well logs and near surface information, and ensuring that the different geophysical parameters in the earth model are all suitably coupled, an enhanced image is achieved which then requires minimal spectral shaping or residual phase corrections post migration. Ray-based Q-tomography workflows allow iterative 3D updates alongside coupled subsurface properties like anisotropy and velocity, within a high-resolution Earth model suitable for depth imaging. Reliable phase stability, higher resolution, broader useable bandwidth and improved amplitude preservation are key targets of this holistic approach.","PeriodicalId":11061,"journal":{"name":"Day 1 Mon, November 11, 2019","volume":"381 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74261234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. Ruffo, M. Piantanida, Floriana Bergero, P. Staar, C. Bekas
When dealing with new exploration areas, basin geologists face the challenge of collecting relevant information from all available sources. This include a number of structured commercial databases, but also large corpora of technical documents in which an invaluable amount of information is scattered across. Even if assisted by search tools to filter the documents of interest, extracting information requires a human effort in reading and understanding the documents. Eni and IBM developed a cognitive engine exploiting a deep learning approach to scan documents searching for basin geology concepts, extracting information about petroleum system elements (e.g. formation name, geological age and lithology of source rocks, reservoirs and seals) and enabling basin geologists to perform automated queries to collect all the information related to a basin of interest. The collected information is fully referenced to the original paragraphs, tables or pictures of the document in which it was discovered, therefore enabling to validate the robustness of the results. The cognitive engine has been integrated within an application which enables to build a graphical representation of the Petroleum System Event Charts of the basin, integrating the information extracted from commercial databases, the results from the cognitive engine and the manual input from the geologist. The quality of the results from the cognitive engine has been evaluated using a commercial database which provides both tabular data about basins and detailed pdf reports. The cognitive engine has been trained on the pdf reports alone, and the results have been compared with the tabular content of the database, representing the ground truth. The cognitive engine succeeded in identifying the right formations, lithologies and geological ages of the petroleum systems with an accuracy in the range 75% – 90%. The cognitive engine is built with highly innovative technologies, combining the data driven capabilities of deep neural networks with more traditional natural language processing methods based on ontologies. Documents are processed with a three-step approach. In the first step, convolutional neural networks (CNN) are used to recognize the structural elements within a technical paper (e.g. title, authors, paragraphs, figures, tables, references) and to convert a complex pdf structure into a clean sequence of text, which can be analyzed. In the second step, concepts are extracted from these processed documents using extractors, NLP annotators (based on recurrent neural networks) and aggregators. Finally, the joint use of the results from the deep learning tools and the provided ontologies are used to build a knowledge graph, which links together all the discovered entities and their relationships. A fit-for-purpose high efficient graph database has been developed so that the graph can be traversed with full flexibility, collecting all the concepts needed for basin geolo
{"title":"Application of Geocognitive Technologies to Basin & Petroleum System Analyses","authors":"P. Ruffo, M. Piantanida, Floriana Bergero, P. Staar, C. Bekas","doi":"10.2118/197610-ms","DOIUrl":"https://doi.org/10.2118/197610-ms","url":null,"abstract":"\u0000 \u0000 \u0000 When dealing with new exploration areas, basin geologists face the challenge of collecting relevant information from all available sources. This include a number of structured commercial databases, but also large corpora of technical documents in which an invaluable amount of information is scattered across. Even if assisted by search tools to filter the documents of interest, extracting information requires a human effort in reading and understanding the documents.\u0000 \u0000 \u0000 \u0000 Eni and IBM developed a cognitive engine exploiting a deep learning approach to scan documents searching for basin geology concepts, extracting information about petroleum system elements (e.g. formation name, geological age and lithology of source rocks, reservoirs and seals) and enabling basin geologists to perform automated queries to collect all the information related to a basin of interest. The collected information is fully referenced to the original paragraphs, tables or pictures of the document in which it was discovered, therefore enabling to validate the robustness of the results.\u0000 \u0000 \u0000 \u0000 The cognitive engine has been integrated within an application which enables to build a graphical representation of the Petroleum System Event Charts of the basin, integrating the information extracted from commercial databases, the results from the cognitive engine and the manual input from the geologist. The quality of the results from the cognitive engine has been evaluated using a commercial database which provides both tabular data about basins and detailed pdf reports. The cognitive engine has been trained on the pdf reports alone, and the results have been compared with the tabular content of the database, representing the ground truth. The cognitive engine succeeded in identifying the right formations, lithologies and geological ages of the petroleum systems with an accuracy in the range 75% – 90%.\u0000 \u0000 \u0000 \u0000 The cognitive engine is built with highly innovative technologies, combining the data driven capabilities of deep neural networks with more traditional natural language processing methods based on ontologies. Documents are processed with a three-step approach. In the first step, convolutional neural networks (CNN) are used to recognize the structural elements within a technical paper (e.g. title, authors, paragraphs, figures, tables, references) and to convert a complex pdf structure into a clean sequence of text, which can be analyzed. In the second step, concepts are extracted from these processed documents using extractors, NLP annotators (based on recurrent neural networks) and aggregators. Finally, the joint use of the results from the deep learning tools and the provided ontologies are used to build a knowledge graph, which links together all the discovered entities and their relationships. A fit-for-purpose high efficient graph database has been developed so that the graph can be traversed with full flexibility, collecting all the concepts needed for basin geolo","PeriodicalId":11061,"journal":{"name":"Day 1 Mon, November 11, 2019","volume":"46 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73700065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Munguia, Blanca Estela González Valtierra, Javier Trujillo Hernandez, S. Santos, Katya Campos Monroy
Acidizing and acid fracturing techniques are routinely used in two important formations in the marine regions of Mexico, the Jurassic and Cretaceous formations. These formations are naturally fractured carbonate and dolomite reservoirs having a permeability in the range of 0.19 to 22 mD, porosity from 2.8 to 6%, approximate bottomhole temperature (BHT) up to 177°C, pressure (BHP) of 10,374 psi, and a crude of 45° API. Using acid fracturing techniques helps improve the development of these assets. This paper shows the results of more than 40 acid fracturing operations performed in recent years. Depending on the productivity evaluation, wells belonging to these assets are stimulated as part of the completion stage. Because of their low permeability, a common approach is to perform an acid fracturing operation. As a first evaluation, a minifrac test is executed to obtain the necessary data to calibrate the acid fracturing simulation model. After this step is performed, the acid fracturing design is evaluated. Generally, a sustained production acidizing technique is used for conductivity enhancement and closed-fracture acidizing is also included as a tailored treatment with an all seawater-based acidizing system. For these operations, an average five-fold increase in oil production has been observed after treatment. In some cases wells in the completion stage, having no production before treatment, delivered up to 7000 BOPD after treatment. In these low-permeability assets, the post-fracturing response shows good results in general terms, increasing final conductivity in the near-wellbore area, and improving the production in these wells. The fracture gradient observed varies from 0.715 to 0.981 psi/ft with an average minimum stress of 13,670 psi. To perform the acid fracturing treatments, an average of 6400 hydraulic horsepower (HHP) must be available, with up to 13,400-psi surface pressure observed. As such, a stimulation vessel is necessary in all operations, applying a 26-bbl/min average pumping rate. Globally, acid fracturing treatments are a common stimulation technique. This study shows that stimulating proper candidates in Mexico using acid fracturing significantly helps increase production, which may be relevant for the exploitation of new areas where fracturing has not been implemented.
{"title":"Acid-Fracturing Techniques as a Good Alternative to Help Improve Field Development Assets","authors":"J. Munguia, Blanca Estela González Valtierra, Javier Trujillo Hernandez, S. Santos, Katya Campos Monroy","doi":"10.2118/197550-ms","DOIUrl":"https://doi.org/10.2118/197550-ms","url":null,"abstract":"\u0000 Acidizing and acid fracturing techniques are routinely used in two important formations in the marine regions of Mexico, the Jurassic and Cretaceous formations. These formations are naturally fractured carbonate and dolomite reservoirs having a permeability in the range of 0.19 to 22 mD, porosity from 2.8 to 6%, approximate bottomhole temperature (BHT) up to 177°C, pressure (BHP) of 10,374 psi, and a crude of 45° API. Using acid fracturing techniques helps improve the development of these assets. This paper shows the results of more than 40 acid fracturing operations performed in recent years.\u0000 Depending on the productivity evaluation, wells belonging to these assets are stimulated as part of the completion stage. Because of their low permeability, a common approach is to perform an acid fracturing operation. As a first evaluation, a minifrac test is executed to obtain the necessary data to calibrate the acid fracturing simulation model. After this step is performed, the acid fracturing design is evaluated. Generally, a sustained production acidizing technique is used for conductivity enhancement and closed-fracture acidizing is also included as a tailored treatment with an all seawater-based acidizing system.\u0000 For these operations, an average five-fold increase in oil production has been observed after treatment. In some cases wells in the completion stage, having no production before treatment, delivered up to 7000 BOPD after treatment. In these low-permeability assets, the post-fracturing response shows good results in general terms, increasing final conductivity in the near-wellbore area, and improving the production in these wells. The fracture gradient observed varies from 0.715 to 0.981 psi/ft with an average minimum stress of 13,670 psi. To perform the acid fracturing treatments, an average of 6400 hydraulic horsepower (HHP) must be available, with up to 13,400-psi surface pressure observed. As such, a stimulation vessel is necessary in all operations, applying a 26-bbl/min average pumping rate.\u0000 Globally, acid fracturing treatments are a common stimulation technique. This study shows that stimulating proper candidates in Mexico using acid fracturing significantly helps increase production, which may be relevant for the exploitation of new areas where fracturing has not been implemented.","PeriodicalId":11061,"journal":{"name":"Day 1 Mon, November 11, 2019","volume":"124 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76263670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shahril Yang, M. H. M. Yusoff, Ismail Aslam Abdullah, M. I. M. Ros, L. Devadass, Azmi Othman, Thore Andre Stokkeland, P. Matthews, Abdul Karim Sainuddin
Perforate, Wash & Cement (PWC) is a method developed over the past decade to help increase efficiency in plugging & abandonment of wells. The method has helped operators world-wide to save time and cost in plugging and abandonment operations by cutting down time for setting full lateral barriers. This technique can also be used to set permanent lateral barriers for slot recovery operations, and perform well repairs on workovers where there is sustained casing pressure. The technology is used to set lateral barriers to cure the sustained casing pressure, and enable the operator to put the wells back into production. The integrity of the well is restored and significant value is generated. However the technology has previously been limited to setting one barrier at the time. The unique challenge for this well on the Platform Alpha, offshore Malaysia was that two zones had to be isolated in one run. The distance between the two zones was almost 100 meters. A significant challenge, with a significant upside. The execution was using Hydraulic Workover Unit (HWU) and overall 14 plugs completed (for 14 wells). The method has several critical success factors that need to be tailored to be able to produce a high quality result, especially with this unique challenge of plugging and abandoning two different zones in the same run. Optimization of the Tubing Conveyed Perforation (TCP) System to be able to balance hole size, geometry and density in order to create the ideal communication path into the external annulus was paramount to the success of the job. The TCP needed to also take into consideration casing size, weight and metallurgy to ensure that downhole conditions are simulated as accurate as possible, increasing the chance of successfully meeting the perforation criteria that has been optimized. Washing parameters needed to be optimized to be able to create high annular velocity for efficient hole cleaning and debris removal. This optimization takes into consideration the fluids density and rheology, ensuring that the mud system has the correct properties to suspend the debris for removal at surface. The compatibility and stability of the fluids and mud condition prior to cementing operation is also critical. The cementing operation on this well was a unique, tailor-fit engineering project, with the end goal and intention of being able to isolate two zones approximately 100 meters apart at the same time. The cement & spacer properties were important here due to possible gas, and high chance of losses into the formation after perforating, and during washing. The volumes, operational parameters and execution were critical to get the two zones efficiently plugged and abandoned in one run. This paper describes the extensive work that has been performed to plan and execute the successful plugging and abandonment of two independent zones using the Perforate, Wash and Cement technology; and in the process, saving several days of rig time,
{"title":"Plugging & Abandonment of Multiple Zones in One Run Using Perforate Wash and Cement on Hydraulic Workover Unit","authors":"Shahril Yang, M. H. M. Yusoff, Ismail Aslam Abdullah, M. I. M. Ros, L. Devadass, Azmi Othman, Thore Andre Stokkeland, P. Matthews, Abdul Karim Sainuddin","doi":"10.2118/197149-ms","DOIUrl":"https://doi.org/10.2118/197149-ms","url":null,"abstract":"\u0000 \u0000 \u0000 Perforate, Wash & Cement (PWC) is a method developed over the past decade to help increase efficiency in plugging & abandonment of wells. The method has helped operators world-wide to save time and cost in plugging and abandonment operations by cutting down time for setting full lateral barriers.\u0000 This technique can also be used to set permanent lateral barriers for slot recovery operations, and perform well repairs on workovers where there is sustained casing pressure. The technology is used to set lateral barriers to cure the sustained casing pressure, and enable the operator to put the wells back into production. The integrity of the well is restored and significant value is generated.\u0000 However the technology has previously been limited to setting one barrier at the time. The unique challenge for this well on the Platform Alpha, offshore Malaysia was that two zones had to be isolated in one run. The distance between the two zones was almost 100 meters. A significant challenge, with a significant upside. The execution was using Hydraulic Workover Unit (HWU) and overall 14 plugs completed (for 14 wells).\u0000 \u0000 \u0000 \u0000 The method has several critical success factors that need to be tailored to be able to produce a high quality result, especially with this unique challenge of plugging and abandoning two different zones in the same run.\u0000 Optimization of the Tubing Conveyed Perforation (TCP) System to be able to balance hole size, geometry and density in order to create the ideal communication path into the external annulus was paramount to the success of the job. The TCP needed to also take into consideration casing size, weight and metallurgy to ensure that downhole conditions are simulated as accurate as possible, increasing the chance of successfully meeting the perforation criteria that has been optimized.\u0000 Washing parameters needed to be optimized to be able to create high annular velocity for efficient hole cleaning and debris removal. This optimization takes into consideration the fluids density and rheology, ensuring that the mud system has the correct properties to suspend the debris for removal at surface. The compatibility and stability of the fluids and mud condition prior to cementing operation is also critical.\u0000 The cementing operation on this well was a unique, tailor-fit engineering project, with the end goal and intention of being able to isolate two zones approximately 100 meters apart at the same time. The cement & spacer properties were important here due to possible gas, and high chance of losses into the formation after perforating, and during washing. The volumes, operational parameters and execution were critical to get the two zones efficiently plugged and abandoned in one run.\u0000 This paper describes the extensive work that has been performed to plan and execute the successful plugging and abandonment of two independent zones using the Perforate, Wash and Cement technology; and in the process, saving several days of rig time,","PeriodicalId":11061,"journal":{"name":"Day 1 Mon, November 11, 2019","volume":"65 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89123932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Erismar Rubio, N. Reddicharla, Melike Dilsiz, Mohamed Ali Al-Attar, Apurv Raj, Sandeep Soni, S. Sabat, Jose Isambertt
This paper describes an efficient, accurate, and timesaving approach for setting well allowable using advanced and automated workflows in a digital oil field with more than 300 producing and injecting strings from multi-layered reservoirs having varied reservoir characteristics. This paper provides an insight on the usage of ADNOC shareholders guidelines, well characteristics, surface facility constraints, and integrated asset models to compute the well allowable rate. An integrated asset operations model (IAOM) within a digital framework provides an automation of engineering approach where shareholder/reservoir management guidelines, in conjunction with a calibrated well and network models, are used to improve efficiency and accuracy of setting wells allowable. This process incorporates the interaction among various components, including wellbore dynamics (Inflow and outflow performance), surface network backpressure effect, and complex system constraints. "System Efficiency and Well Availability" factors as well as predicted well parameters such as GOR and watercut. This advance workflow computes the rate that can be delivered from each well corresponding to each guideline and constraint, thereby providing key inputs to various business objective scenarios for production efficiency improvement. This automated "Setting Well Allowable" workflow, using an IAOM solution in a digital framework, has enabled the asset to identify true potential of wells and overcoming potential challenges of computational time saving while identifying opportunities. This automated validation workflows ensured usage of updated and validated well models, allowing effective use of the well test information and real time data for further analysis and sensitivities. The use of the automated workflow has reduced the time to compute the well allowable rates and well technical rates by more than 50%. This workflow prevented engineers from performing tedious manual calculations on a well-by-well basis, therefore engineers focus on engineering and analytical problems rather than collecting data. Additionally, this robust engineering approach provides users with key information associated with a well's performance under various guideline index such as potential rates, well technical rate, minimum backpressure rate, rate to maintain drawdown/ minimum bottom hole pressure limit to ensure a homogenous reservoir withdraw to avoid pressure sink areas. This work process also highlights the wells with increased watercut (WC) and gas oil ratio (GOR), thus providing crucial information for deteriorating well performance. A short-term forecasting with diagnostic curve fitting and trend analysis enabled users to validate deliverability of allowable rates in a calibrated network model scenario, thereby incorporating potential surface constraints and facility bottlenecks. The robustness of advanced and automated setting of well allowable workflow enables the operator to establish well
{"title":"Unlocking Well Potential Using an Automated Well Allowable Analysis in a Digital IAOM Framework","authors":"Erismar Rubio, N. Reddicharla, Melike Dilsiz, Mohamed Ali Al-Attar, Apurv Raj, Sandeep Soni, S. Sabat, Jose Isambertt","doi":"10.2118/197877-ms","DOIUrl":"https://doi.org/10.2118/197877-ms","url":null,"abstract":"\u0000 This paper describes an efficient, accurate, and timesaving approach for setting well allowable using advanced and automated workflows in a digital oil field with more than 300 producing and injecting strings from multi-layered reservoirs having varied reservoir characteristics. This paper provides an insight on the usage of ADNOC shareholders guidelines, well characteristics, surface facility constraints, and integrated asset models to compute the well allowable rate.\u0000 An integrated asset operations model (IAOM) within a digital framework provides an automation of engineering approach where shareholder/reservoir management guidelines, in conjunction with a calibrated well and network models, are used to improve efficiency and accuracy of setting wells allowable. This process incorporates the interaction among various components, including wellbore dynamics (Inflow and outflow performance), surface network backpressure effect, and complex system constraints. \"System Efficiency and Well Availability\" factors as well as predicted well parameters such as GOR and watercut. This advance workflow computes the rate that can be delivered from each well corresponding to each guideline and constraint, thereby providing key inputs to various business objective scenarios for production efficiency improvement.\u0000 This automated \"Setting Well Allowable\" workflow, using an IAOM solution in a digital framework, has enabled the asset to identify true potential of wells and overcoming potential challenges of computational time saving while identifying opportunities. This automated validation workflows ensured usage of updated and validated well models, allowing effective use of the well test information and real time data for further analysis and sensitivities.\u0000 The use of the automated workflow has reduced the time to compute the well allowable rates and well technical rates by more than 50%. This workflow prevented engineers from performing tedious manual calculations on a well-by-well basis, therefore engineers focus on engineering and analytical problems rather than collecting data. Additionally, this robust engineering approach provides users with key information associated with a well's performance under various guideline index such as potential rates, well technical rate, minimum backpressure rate, rate to maintain drawdown/ minimum bottom hole pressure limit to ensure a homogenous reservoir withdraw to avoid pressure sink areas. This work process also highlights the wells with increased watercut (WC) and gas oil ratio (GOR), thus providing crucial information for deteriorating well performance. A short-term forecasting with diagnostic curve fitting and trend analysis enabled users to validate deliverability of allowable rates in a calibrated network model scenario, thereby incorporating potential surface constraints and facility bottlenecks.\u0000 The robustness of advanced and automated setting of well allowable workflow enables the operator to establish well ","PeriodicalId":11061,"journal":{"name":"Day 1 Mon, November 11, 2019","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83372226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The objective of this paper is to investigate and analyze energy saving and process optimization opportunities in upstream surface facilities, from downhole all the way to the gas-oil separation plants (GOSPs), using value Methodology. Function analysis was used to identify those functions that can be reduced, eliminated, or synergized, to minimize GOSP operating and maintenance cost. In this paper, various energy saving and process optimization opportunities in GOSPs were brainstormed, analyzed, shortlisted, simulated, and validated using actual plant data. Process simulation using Hysys was used to model and verify the feasibility of different process optimization opportunities in GOSPs. A 300 MBD production facility was used to benchmark the Hysys simulation model, and to verify the feasibility of these promising energy saving opportunities. All of the successful opportunities were selected, based on their minimum OPEX and CAPEX, using value engineering methodology.
{"title":"Energy Saving Challenges and Opportunities in Upstream Operations using Value Methodology","authors":"M. Soliman","doi":"10.2118/197759-ms","DOIUrl":"https://doi.org/10.2118/197759-ms","url":null,"abstract":"\u0000 The objective of this paper is to investigate and analyze energy saving and process optimization opportunities in upstream surface facilities, from downhole all the way to the gas-oil separation plants (GOSPs), using value Methodology. Function analysis was used to identify those functions that can be reduced, eliminated, or synergized, to minimize GOSP operating and maintenance cost.\u0000 In this paper, various energy saving and process optimization opportunities in GOSPs were brainstormed, analyzed, shortlisted, simulated, and validated using actual plant data. Process simulation using Hysys was used to model and verify the feasibility of different process optimization opportunities in GOSPs. A 300 MBD production facility was used to benchmark the Hysys simulation model, and to verify the feasibility of these promising energy saving opportunities. All of the successful opportunities were selected, based on their minimum OPEX and CAPEX, using value engineering methodology.","PeriodicalId":11061,"journal":{"name":"Day 1 Mon, November 11, 2019","volume":"122 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72851466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Prasad B. Karadkar, Ayman Almohsin, M. Bataweel, Jin Huang
A nanosilica based fluid system was evaluated for forming in-situ glass-like material inside matrix for permanent gas shutoff. This novel method involves two steps; firstly, pumping low viscosity aqueous nanosilica mixture into the formation and allowing it to gel up. Secondly, gas production dehydrates nanosilica to form glass-like material inside the matrix. For this paper, a nanosilica-based fluid system was assessed for pumping strategy and performance evaluation. A nanosilica based fluid system consists of a mixture of colloidal silica and activators. It possesses low viscosity, which assists in deeper penetration during placement. With time and temperature, it can lead to in-situ gelation to form a rigid gel to block the pore space. Gas production can dehydrate nanosilica gel to form in-situ glass-like material inside formation porosity for permanent gas shutoff. The nanosilica based fluid system was optimized using gelation tests and core flooding tests to evaluate its performance under high-pressure, high-temperature conditions. Formation of in-situ glass-like material inside pores was analyzed using a scanning electron microscope (SEM). The gelation time can be tailored by varying the activator type and concentration to match the field operation requirements. Kinetics of colloidal silica gelation at elevated temperatures showed faster viscosity buildup. Before gelation, the viscosity for the nanosilica based fluid system was recorded less than 5 cp at a 10 1/s shear rate, whereas the viscosity was increased more than 500 cp at a 10 1/s shear rate. Using core flow tests, N2 gas permeability of the Berea sandstone core was completely plugged after pumping the 5-pore volume nanosilica based fluid system at 200°F. During nanosilica based fluid system injection through the core, differential pressure was increased to only 10 psi showing better injectivity. The SEM images showed the presence of glass like material filling the porosity, which showed in-situ generation of glass-like material inside pores. The nanosilica based fluid system has a low viscosity and can penetrate deeper into the formation matrix before transforming into a gel. Undesirable gas flow can dehydrate nanosilica gel to form in-situ glass-like material inside matrix for permanent sealing. This is environmentally friendly and can serve as an alternative to currently used conformance polymers for gas shutoff applications.
{"title":"In-situ Pore Plugging Using Nanosilica Based Fluid System for Gas Shutoff","authors":"Prasad B. Karadkar, Ayman Almohsin, M. Bataweel, Jin Huang","doi":"10.2118/197578-ms","DOIUrl":"https://doi.org/10.2118/197578-ms","url":null,"abstract":"\u0000 A nanosilica based fluid system was evaluated for forming in-situ glass-like material inside matrix for permanent gas shutoff. This novel method involves two steps; firstly, pumping low viscosity aqueous nanosilica mixture into the formation and allowing it to gel up. Secondly, gas production dehydrates nanosilica to form glass-like material inside the matrix. For this paper, a nanosilica-based fluid system was assessed for pumping strategy and performance evaluation.\u0000 A nanosilica based fluid system consists of a mixture of colloidal silica and activators. It possesses low viscosity, which assists in deeper penetration during placement. With time and temperature, it can lead to in-situ gelation to form a rigid gel to block the pore space. Gas production can dehydrate nanosilica gel to form in-situ glass-like material inside formation porosity for permanent gas shutoff. The nanosilica based fluid system was optimized using gelation tests and core flooding tests to evaluate its performance under high-pressure, high-temperature conditions. Formation of in-situ glass-like material inside pores was analyzed using a scanning electron microscope (SEM).\u0000 The gelation time can be tailored by varying the activator type and concentration to match the field operation requirements. Kinetics of colloidal silica gelation at elevated temperatures showed faster viscosity buildup. Before gelation, the viscosity for the nanosilica based fluid system was recorded less than 5 cp at a 10 1/s shear rate, whereas the viscosity was increased more than 500 cp at a 10 1/s shear rate. Using core flow tests, N2 gas permeability of the Berea sandstone core was completely plugged after pumping the 5-pore volume nanosilica based fluid system at 200°F. During nanosilica based fluid system injection through the core, differential pressure was increased to only 10 psi showing better injectivity. The SEM images showed the presence of glass like material filling the porosity, which showed in-situ generation of glass-like material inside pores.\u0000 The nanosilica based fluid system has a low viscosity and can penetrate deeper into the formation matrix before transforming into a gel. Undesirable gas flow can dehydrate nanosilica gel to form in-situ glass-like material inside matrix for permanent sealing. This is environmentally friendly and can serve as an alternative to currently used conformance polymers for gas shutoff applications.","PeriodicalId":11061,"journal":{"name":"Day 1 Mon, November 11, 2019","volume":"146 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76747447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A Saudi Aramco department operates 12 gas oil separation plants (GOSPs) that have water-oil separators (WOSEPs) for produced water deoiling. The water is then injected back into the reservoir to maintain pressure. This paper provides details of the operational best practices and technologies for ensuring that the produced water is within specification. A thorough analysis was conducted to determine the areas of improvement by adjusting process parameters, enhancing the upstream process controls and implementing modifications in the WOSEP. The impact of all changes was measured by monitoring the quality of produced water, particularly the oil in water concentration, through frequent sampling. Moreover, design deficiencies were observed, which led to the proposal of specific WOSEP internal upgrades and new technologies for enhancing the deoiling performance. All recommendations were combined into a single roadmap for the department. Significant improvements in produced water quality were observed. This includes an 80% reduction in off-spec samples and a lower average oil in water concentration. The roadmap also includes proposals for major upgrades to the existing WOSEP design. The WOSEP performance roadmap provides innovative yet simple best practices that can improve the deoiling efficiency. Moreover, it links WOSEP performance to process flow stability.
{"title":"Best Practices and Technologies for Enhancing Produced Water Quality","authors":"R. White, Abdullah H Alhamoud","doi":"10.2118/197155-ms","DOIUrl":"https://doi.org/10.2118/197155-ms","url":null,"abstract":"\u0000 \u0000 \u0000 A Saudi Aramco department operates 12 gas oil separation plants (GOSPs) that have water-oil separators (WOSEPs) for produced water deoiling. The water is then injected back into the reservoir to maintain pressure. This paper provides details of the operational best practices and technologies for ensuring that the produced water is within specification.\u0000 \u0000 \u0000 \u0000 A thorough analysis was conducted to determine the areas of improvement by adjusting process parameters, enhancing the upstream process controls and implementing modifications in the WOSEP. The impact of all changes was measured by monitoring the quality of produced water, particularly the oil in water concentration, through frequent sampling. Moreover, design deficiencies were observed, which led to the proposal of specific WOSEP internal upgrades and new technologies for enhancing the deoiling performance. All recommendations were combined into a single roadmap for the department.\u0000 \u0000 \u0000 \u0000 Significant improvements in produced water quality were observed. This includes an 80% reduction in off-spec samples and a lower average oil in water concentration. The roadmap also includes proposals for major upgrades to the existing WOSEP design.\u0000 \u0000 \u0000 \u0000 The WOSEP performance roadmap provides innovative yet simple best practices that can improve the deoiling efficiency. Moreover, it links WOSEP performance to process flow stability.\u0000","PeriodicalId":11061,"journal":{"name":"Day 1 Mon, November 11, 2019","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76978783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}