The Aux/IAA class of genes are rapidly induced by exogenous auxins and have been characterized extensively from many dicot species like Arabidopsis, Glycine max and Pisum sativum. We report here the isolation and characterization of rice (Oryza sativa L. subsp. Indica) OsIAA1 cDNA as a monocot member of the Aux/IAA gene family. The predicted amino acid sequence of OsIAA1 corresponds to a protein of ca. 26 kDa, which harbors all four characteristic domains known to be conserved in Aux/IAA proteins. The conservation of these Aux/IAA genes indicates that auxins have essentially a similar mode of action in monocots and dicots. Northern blot analysis revealed that the OsIAA1 transcript levels decrease in the excised coleoptile segments on auxin starvation, and the level is restored when auxin is supplemented; the increase in OsIAA1 transcript level was apparent within 15 to 30 min of auxin application. Auxin-induced OsIAA1 expression appears to be correlated with the elongation of excised coleoptile segments. In light-grown rice seedlings, OsIAA1 is preferentially expressed in roots and basal segment of the seedling, whereas in the etiolated rice seedlings, the OsIAA1 transcripts are most abundant in the coleoptile. A comparative analysis in light- and dark-grown seedling tissues indicates that the OsIAA1 transcript levels decrease on illumination.
Aux/IAA类基因是由外源生长素快速诱导产生的,已在拟南芥、甘氨酸和油菜等多种双科植物中广泛发现。本文报道了水稻(Oryza sativa L. subsp.)的分离和鉴定。作为Aux/IAA基因家族单子叶成员的OsIAA1 cDNA。预测的OsIAA1氨基酸序列对应于一个约26 kDa的蛋白,该蛋白包含已知在Aux/IAA蛋白中保守的所有四个特征结构域。这些Aux/IAA基因的保存表明生长素在单子叶和双子叶中具有本质上相似的作用模式。Northern blot分析显示,在生长素缺乏的情况下,切除的胚芽组织片段的OsIAA1转录水平下降,而在补充生长素后,水平恢复;在施用生长素后15 ~ 30 min内,OsIAA1转录物水平明显升高。生长素诱导的OsIAA1表达似乎与切除的胚芽鞘片段的伸长有关。在光照下的水稻幼苗中,OsIAA1优先在根系和基部表达,而在黄化的水稻幼苗中,OsIAA1转录本在胚芽鞘中表达最多。在光照和暗生的幼苗组织中进行的比较分析表明,在光照条件下,OsIAA1转录本水平降低。
{"title":"OsIAA1, an Aux/IAA cDNA from rice, and changes in its expression as influenced by auxin and light.","authors":"J. Thakur, A. Tyagi, J. Khurana","doi":"10.1093/DNARES/8.5.193","DOIUrl":"https://doi.org/10.1093/DNARES/8.5.193","url":null,"abstract":"The Aux/IAA class of genes are rapidly induced by exogenous auxins and have been characterized extensively from many dicot species like Arabidopsis, Glycine max and Pisum sativum. We report here the isolation and characterization of rice (Oryza sativa L. subsp. Indica) OsIAA1 cDNA as a monocot member of the Aux/IAA gene family. The predicted amino acid sequence of OsIAA1 corresponds to a protein of ca. 26 kDa, which harbors all four characteristic domains known to be conserved in Aux/IAA proteins. The conservation of these Aux/IAA genes indicates that auxins have essentially a similar mode of action in monocots and dicots. Northern blot analysis revealed that the OsIAA1 transcript levels decrease in the excised coleoptile segments on auxin starvation, and the level is restored when auxin is supplemented; the increase in OsIAA1 transcript level was apparent within 15 to 30 min of auxin application. Auxin-induced OsIAA1 expression appears to be correlated with the elongation of excised coleoptile segments. In light-grown rice seedlings, OsIAA1 is preferentially expressed in roots and basal segment of the seedling, whereas in the etiolated rice seedlings, the OsIAA1 transcripts are most abundant in the coleoptile. A comparative analysis in light- and dark-grown seedling tissues indicates that the OsIAA1 transcript levels decrease on illumination.","PeriodicalId":11212,"journal":{"name":"DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes","volume":"IA-13 1","pages":"193-203"},"PeriodicalIF":0.0,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84591224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Nagase, Manabu Nakayama, D. Nakajima, R. Kikuno, Osamu Ohara
To accumulate information on the coding sequences of unidentified genes, we have carried out a sequencing project of human cDNA clones which encode large proteins. We herein present the entire sequences of 100 cDNA clones of unidentified human genes, named KIAA1776 and KIAA1780-KIAA1878, from size-fractionated cDNA libraries derived from human fetal brain, adult whole brain, hippocampus and amygdala. Most of the cDNA clones to be entirely sequenced were selected as cDNAs which were shown to have coding potentiality by in vitro transcription/translation experiments, and some clones were chosen by using computer-assisted analysis of terminal sequences of cDNAs. Three of these clones (fibrillin2/KIAA1776, MEGF10/KIAA1780 and MEGF11/KIAA1781) were isolated as genes encoding proteins with multiple EGF-like domains by motif-trap screening. The average sizes of the inserts and corresponding open reading frames of eDNA clones analyzed here reached 4.7 kb and 2.4 kb (785 amino acid residues), respectively. From the results of homology and motif searches against the public databases, the functional categories of the predicted gene products of 54 genes were determined; 93% of these predicted gene products (50 gene products) were classified as proteins related to cell signaling/communication, nucleic acid management, or cell structure/motility. To collect additional information on these genes, their expression profiles were also studied in 10 human tissues, 8 brain regions, spinal cord, fetal brain and fetal liver by reverse transcription-coupled polymerase chain reaction, products of which were quantified by enzyme-linked immunosorbent assay.
{"title":"Prediction of the coding sequences of unidentified human genes. XX. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro.","authors":"T. Nagase, Manabu Nakayama, D. Nakajima, R. Kikuno, Osamu Ohara","doi":"10.1093/DNARES/8.2.85","DOIUrl":"https://doi.org/10.1093/DNARES/8.2.85","url":null,"abstract":"To accumulate information on the coding sequences of unidentified genes, we have carried out a sequencing project of human cDNA clones which encode large proteins. We herein present the entire sequences of 100 cDNA clones of unidentified human genes, named KIAA1776 and KIAA1780-KIAA1878, from size-fractionated cDNA libraries derived from human fetal brain, adult whole brain, hippocampus and amygdala. Most of the cDNA clones to be entirely sequenced were selected as cDNAs which were shown to have coding potentiality by in vitro transcription/translation experiments, and some clones were chosen by using computer-assisted analysis of terminal sequences of cDNAs. Three of these clones (fibrillin2/KIAA1776, MEGF10/KIAA1780 and MEGF11/KIAA1781) were isolated as genes encoding proteins with multiple EGF-like domains by motif-trap screening. The average sizes of the inserts and corresponding open reading frames of eDNA clones analyzed here reached 4.7 kb and 2.4 kb (785 amino acid residues), respectively. From the results of homology and motif searches against the public databases, the functional categories of the predicted gene products of 54 genes were determined; 93% of these predicted gene products (50 gene products) were classified as proteins related to cell signaling/communication, nucleic acid management, or cell structure/motility. To collect additional information on these genes, their expression profiles were also studied in 10 human tissues, 8 brain regions, spinal cord, fetal brain and fetal liver by reverse transcription-coupled polymerase chain reaction, products of which were quantified by enzyme-linked immunosorbent assay.","PeriodicalId":11212,"journal":{"name":"DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes","volume":"7 1","pages":"85-95"},"PeriodicalIF":0.0,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84516483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Landsberg erecta x Columbia F8 recombinant inbred lines of Arabidopsis thaliana, arrayed BAC clones covering most of the genome, and databank sequence information were used to map the positions of 69 genes in the genome of A. thaliana. These genes encode all known constituents of the photosynthetic thylakoid membrane, some regulatory factors involved in its biogenesis, and the RNA polymerases of nuclear origin that operate in chloroplasts and mitochondria. Designations of novel genes are proposed. The data of these three approaches are generally consistent, although ambiguities have been noted for some genome segments and with gene duplications. For thylakoid multi-subunit structures, no positional clustering of genes has been found, not even for genes encoding different subunits of the same membrane complex. The genes of the lhc superfamily encoding antenna apoproteins and their relatives are a particularly intriguing example. The lack of positional clustering is consistent with phylogenetically independent gene translocations from the plastid (endosymbiont) to the nucleus. This raises the basic question of how independently translocated genes which acquired different promoter sequences and transit peptides were functionally integrated into common signal transduction chains.
利用拟南芥(Arabidopsis thaliana) Landsberg erecta x Columbia F8重组自交系、覆盖大部分基因组的排列BAC克隆和数据库序列信息,定位拟南芥基因组中69个基因的位置。这些基因编码光合作用类囊体膜的所有已知成分,参与其生物发生的一些调节因子,以及在叶绿体和线粒体中起作用的核源RNA聚合酶。提出了新基因的命名。这三种方法的数据总体上是一致的,尽管有些基因组片段和基因重复存在歧义。对于类囊体多亚基结构,没有发现基因的位置聚类,即使是编码同一膜复合体不同亚基的基因也没有发现。lhc超家族中编码天线载脂蛋白及其亲属的基因就是一个特别有趣的例子。位置聚类的缺乏与从质体(内共生体)到细胞核的系统发育独立的基因易位是一致的。这就提出了一个基本问题,即获得不同启动子序列和传递肽的独立易位基因如何在功能上整合到共同的信号转导链中。
{"title":"Map positions of 69 Arabidopsis thaliana genes of all known nuclear encoded constituent polypeptides and various regulatory factors of the photosynthetic membrane: a case study.","authors":"J. Legen, S. Miséra, R. Herrmann, J. Meurer","doi":"10.1093/DNARES/8.2.53","DOIUrl":"https://doi.org/10.1093/DNARES/8.2.53","url":null,"abstract":"Landsberg erecta x Columbia F8 recombinant inbred lines of Arabidopsis thaliana, arrayed BAC clones covering most of the genome, and databank sequence information were used to map the positions of 69 genes in the genome of A. thaliana. These genes encode all known constituents of the photosynthetic thylakoid membrane, some regulatory factors involved in its biogenesis, and the RNA polymerases of nuclear origin that operate in chloroplasts and mitochondria. Designations of novel genes are proposed. The data of these three approaches are generally consistent, although ambiguities have been noted for some genome segments and with gene duplications. For thylakoid multi-subunit structures, no positional clustering of genes has been found, not even for genes encoding different subunits of the same membrane complex. The genes of the lhc superfamily encoding antenna apoproteins and their relatives are a particularly intriguing example. The lack of positional clustering is consistent with phylogenetically independent gene translocations from the plastid (endosymbiont) to the nucleus. This raises the basic question of how independently translocated genes which acquired different promoter sequences and transit peptides were functionally integrated into common signal transduction chains.","PeriodicalId":11212,"journal":{"name":"DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes","volume":"13 1","pages":"53-60"},"PeriodicalIF":0.0,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81687416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1) gene has been identified earlier from dicot species namely Arabidopsis, tomato and pea. The protein encoded by this gene acts as a molecular switch that negatively regulates the transition from the skotomorphogenic to the photomorphogenic mode of plant development. We have isolated and characterized the COP1 homolog from a monocot species, i.e. rice (var. Pusa Basmati 1). All the functional domains (Zn-binding RING finger motif, coiled-coil region, WD-40 repeats, cytoplasmic/nuclear localization sequences and protein-protein interaction domains) that are known in the COP1 proteins from dicots are conserved in COP1 from rice as well. The transcript levels of COP1 vary in various tissues of the rice plant. These variations were found to be development-dependent and do not solely depend on the light conditions.
{"title":"Isolation and molecular characterization of the COP1 gene homolog from rice, Oryza sativa L. subsp. Indica var. Pusa Basmati 1.","authors":"S. Raghuvanshi, A. Kelkar, J. Khurana, A. Tyagi","doi":"10.1093/DNARES/8.2.73","DOIUrl":"https://doi.org/10.1093/DNARES/8.2.73","url":null,"abstract":"The COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1) gene has been identified earlier from dicot species namely Arabidopsis, tomato and pea. The protein encoded by this gene acts as a molecular switch that negatively regulates the transition from the skotomorphogenic to the photomorphogenic mode of plant development. We have isolated and characterized the COP1 homolog from a monocot species, i.e. rice (var. Pusa Basmati 1). All the functional domains (Zn-binding RING finger motif, coiled-coil region, WD-40 repeats, cytoplasmic/nuclear localization sequences and protein-protein interaction domains) that are known in the COP1 proteins from dicots are conserved in COP1 from rice as well. The transcript levels of COP1 vary in various tissues of the rice plant. These variations were found to be development-dependent and do not solely depend on the light conditions.","PeriodicalId":11212,"journal":{"name":"DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes","volume":"56 1","pages":"73-9"},"PeriodicalIF":0.0,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82298278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As an extension of human cDNA projects for accumulating sequence information on the coding sequences of unidentified genes, we herein present the entire sequences of 50 cDNA clones, named KIAA1939-KIAA1988. cDNA clones to be entirely sequenced were selected by two approaches based on their protein-coding potentialities prior to sequencing: 10 cDNA clones were chosen because their encoding proteins had a molecular mass larger than 50 kDa in an in vitro transcription/translation system; the remaining 40 cDNA clones were selected because their putative proteins-as determined by analysis of the genomic sequences flanked by both the terminal sequences of cDNAs using the GENSCAN gene prediction program-were larger than 400 amino acid residues. According to the sequence data, the average sizes of the inserts and corresponding open reading frames of cDNA clones analyzed here were 4.6 kb and 1.9 kb (643 amino acid residues), respectively. From the results of homology and motif searches against the public databases, the functional categories of the 31 predicted gene products could be assigned; 25 of these predicted gene products (81%) were classified into proteins relating to cell signaling/communication, nucleic acid management, and cell structure/motility. The expression profiles of the genes were also studied in 10 human tissues, 8 brain regions, spinal cord, fetal brain and fetal liver by reverse transcription-coupled polymerase chain reaction, the products of which were quantified by enzyme-linked immunosorbent assay.
{"title":"Prediction of the coding sequences of unidentified human genes. XXII. The complete sequences of 50 new cDNA clones which code for large proteins.","authors":"T. Nagase, R. Kikuno, O. Ohara","doi":"10.1093/DNARES/8.6.319","DOIUrl":"https://doi.org/10.1093/DNARES/8.6.319","url":null,"abstract":"As an extension of human cDNA projects for accumulating sequence information on the coding sequences of unidentified genes, we herein present the entire sequences of 50 cDNA clones, named KIAA1939-KIAA1988. cDNA clones to be entirely sequenced were selected by two approaches based on their protein-coding potentialities prior to sequencing: 10 cDNA clones were chosen because their encoding proteins had a molecular mass larger than 50 kDa in an in vitro transcription/translation system; the remaining 40 cDNA clones were selected because their putative proteins-as determined by analysis of the genomic sequences flanked by both the terminal sequences of cDNAs using the GENSCAN gene prediction program-were larger than 400 amino acid residues. According to the sequence data, the average sizes of the inserts and corresponding open reading frames of cDNA clones analyzed here were 4.6 kb and 1.9 kb (643 amino acid residues), respectively. From the results of homology and motif searches against the public databases, the functional categories of the 31 predicted gene products could be assigned; 25 of these predicted gene products (81%) were classified into proteins relating to cell signaling/communication, nucleic acid management, and cell structure/motility. The expression profiles of the genes were also studied in 10 human tissues, 8 brain regions, spinal cord, fetal brain and fetal liver by reverse transcription-coupled polymerase chain reaction, the products of which were quantified by enzyme-linked immunosorbent assay.","PeriodicalId":11212,"journal":{"name":"DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes","volume":"103 1","pages":"319-27"},"PeriodicalIF":0.0,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81552316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The beta-glucosidase gene (bglxA) was cloned from the genomic DNA of Acetobacter xylinum ATCC 23769 and its nucleotide sequence (2200 bp) was determined. This bglxA gene was present downstream of the cellulose synthase operon and coded for a polypeptide of molecular mass 79 kDa. The overexpression of the beta-glucosidase in A. xylinum caused a tenfold increase in activity compared to the wild-type strain. In addition, the action pattern of the enzyme was identified as G3ase activity. The deduced amino acid sequence of the bglxA gene showed 72.3%, 49.6%, and 45.1% identity with the beta-glucosidases from A. xylinum subsp. sucrofermentans, Cellvibrio gilvus, and Mycobacterium tuberculosis, respectively. Based on amino acid sequence similarities, the beta-glucosidase (BglxA) was assigned to family 3 of the glycosyl hydrolases.
{"title":"Cloning and sequencing of the beta-glucosidase gene from Acetobacter xylinum ATCC 23769.","authors":"Kenji Tajima, Katsutoshi Nakajima, Hitomi Yamashita, Toshikazu Shiba, M. Munekata, Mitsuo Takai","doi":"10.1093/DNARES/8.6.263","DOIUrl":"https://doi.org/10.1093/DNARES/8.6.263","url":null,"abstract":"The beta-glucosidase gene (bglxA) was cloned from the genomic DNA of Acetobacter xylinum ATCC 23769 and its nucleotide sequence (2200 bp) was determined. This bglxA gene was present downstream of the cellulose synthase operon and coded for a polypeptide of molecular mass 79 kDa. The overexpression of the beta-glucosidase in A. xylinum caused a tenfold increase in activity compared to the wild-type strain. In addition, the action pattern of the enzyme was identified as G3ase activity. The deduced amino acid sequence of the bglxA gene showed 72.3%, 49.6%, and 45.1% identity with the beta-glucosidases from A. xylinum subsp. sucrofermentans, Cellvibrio gilvus, and Mycobacterium tuberculosis, respectively. Based on amino acid sequence similarities, the beta-glucosidase (BglxA) was assigned to family 3 of the glycosyl hydrolases.","PeriodicalId":11212,"journal":{"name":"DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes","volume":"8 6 1","pages":"263-9"},"PeriodicalIF":0.0,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79604546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tetsuya Hayashi, K. Makino, M. Ohnishi, K. Kurokawa, K. Ishii, K. Yokoyama, Chang-Gyun Han, E. Ohtsubo, K. Nakayama, T. Murata, Masashi Tanaka, T. Tobe, T. Iida, H. Takami, T. Honda, C. Sasakawa, N. Ogasawara, T. Yasunaga, S. Kuhara, T. Shiba, M. Hattori, H. Shinagawa
Escherichia coli O157:H7 is a major food-borne infectious pathogen that causes diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome. Here we report the complete chromosome sequence of an O157:H7 strain isolated from the Sakai outbreak, and the results of genomic comparison with a benign laboratory strain, K-12 MG1655. The chromosome is 5.5 Mb in size, 859 Kb larger than that of K-12. We identified a 4.1-Mb sequence highly conserved between the two strains, which may represent the fundamental backbone of the E. coli chromosome. The remaining 1.4-Mb sequence comprises of O157:H7-specific sequences, most of which are horizontally transferred foreign DNAs. The predominant roles of bacteriophages in the emergence of O157:H7 is evident by the presence of 24 prophages and prophage-like elements that occupy more than half of the O157:H7-specific sequences. The O157:H7 chromosome encodes 1632 proteins and 20 tRNAs that are not present in K-12. Among these, at least 131 proteins are assumed to have virulence-related functions. Genome-wide codon usage analysis suggested that the O157:H7-specific tRNAs are involved in the efficient expression of the strain-specific genes. A complete set of the genes specific to O157:H7 presented here sheds new insight into the pathogenicity and the physiology of O157:H7, and will open a way to fully understand the molecular mechanisms underlying the O157:H7 infection.
{"title":"Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K-12.","authors":"Tetsuya Hayashi, K. Makino, M. Ohnishi, K. Kurokawa, K. Ishii, K. Yokoyama, Chang-Gyun Han, E. Ohtsubo, K. Nakayama, T. Murata, Masashi Tanaka, T. Tobe, T. Iida, H. Takami, T. Honda, C. Sasakawa, N. Ogasawara, T. Yasunaga, S. Kuhara, T. Shiba, M. Hattori, H. Shinagawa","doi":"10.1093/DNARES/8.1.11","DOIUrl":"https://doi.org/10.1093/DNARES/8.1.11","url":null,"abstract":"Escherichia coli O157:H7 is a major food-borne infectious pathogen that causes diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome. Here we report the complete chromosome sequence of an O157:H7 strain isolated from the Sakai outbreak, and the results of genomic comparison with a benign laboratory strain, K-12 MG1655. The chromosome is 5.5 Mb in size, 859 Kb larger than that of K-12. We identified a 4.1-Mb sequence highly conserved between the two strains, which may represent the fundamental backbone of the E. coli chromosome. The remaining 1.4-Mb sequence comprises of O157:H7-specific sequences, most of which are horizontally transferred foreign DNAs. The predominant roles of bacteriophages in the emergence of O157:H7 is evident by the presence of 24 prophages and prophage-like elements that occupy more than half of the O157:H7-specific sequences. The O157:H7 chromosome encodes 1632 proteins and 20 tRNAs that are not present in K-12. Among these, at least 131 proteins are assumed to have virulence-related functions. Genome-wide codon usage analysis suggested that the O157:H7-specific tRNAs are involved in the efficient expression of the strain-specific genes. A complete set of the genes specific to O157:H7 presented here sheds new insight into the pathogenicity and the physiology of O157:H7, and will open a way to fully understand the molecular mechanisms underlying the O157:H7 infection.","PeriodicalId":11212,"journal":{"name":"DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes","volume":"19 1","pages":"11-22"},"PeriodicalIF":0.0,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84520516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Loftus, D. Larson, D. Watkins-Chow, D. Church, W. Pavan
Avian leukosis type A virus-derived retroviral vectors have been used to introduce genes into cells expressing the corresponding avian receptor tv-a. This includes the use of Replication-Competent Avian sarcoma-leukosis virus (ASLV) long terminal repeat (LTR) with Splice acceptor (RCAS) vectors in the analysis of avian development, human and murine cell cultures, murine cell lineage studies and cancer biology. Previously, cloning of genes into this virus was difficult due to the large size of the vector and sparse cloning sites. To overcome some of the disadvantages of traditional cloning using the RCASBP-Y vector, we have modified the RCASBP-Y to incorporate "Gateway" site-specific recombination cloning of genes into the construct, either with or without HA epitope tags. We have found the repetitive "att" sequences, which are the targets for site-specific recombination, do not impair the production of infectious viral particles or the expression of the gene of interest. This is the first instance of site-specific recombination being used to generate retroviral gene constructs. These viral constructs will allow for the efficient transfer and expression of cDNAs needed for functional genomic analyses.
{"title":"Generation of RCAS vectors useful for functional genomic analyses.","authors":"S. Loftus, D. Larson, D. Watkins-Chow, D. Church, W. Pavan","doi":"10.1093/DNARES/8.5.221","DOIUrl":"https://doi.org/10.1093/DNARES/8.5.221","url":null,"abstract":"Avian leukosis type A virus-derived retroviral vectors have been used to introduce genes into cells expressing the corresponding avian receptor tv-a. This includes the use of Replication-Competent Avian sarcoma-leukosis virus (ASLV) long terminal repeat (LTR) with Splice acceptor (RCAS) vectors in the analysis of avian development, human and murine cell cultures, murine cell lineage studies and cancer biology. Previously, cloning of genes into this virus was difficult due to the large size of the vector and sparse cloning sites. To overcome some of the disadvantages of traditional cloning using the RCASBP-Y vector, we have modified the RCASBP-Y to incorporate \"Gateway\" site-specific recombination cloning of genes into the construct, either with or without HA epitope tags. We have found the repetitive \"att\" sequences, which are the targets for site-specific recombination, do not impair the production of infectious viral particles or the expression of the gene of interest. This is the first instance of site-specific recombination being used to generate retroviral gene constructs. These viral constructs will allow for the efficient transfer and expression of cDNAs needed for functional genomic analyses.","PeriodicalId":11212,"journal":{"name":"DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes","volume":"32 1","pages":"221-6"},"PeriodicalIF":0.0,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79957679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Takada, A. Ito, C. Ninomiya, T. Kakizaki, Y. Takahata, G. Suzuki, K. Hatakeyama, K. Hinata, H. Shiba, S. Takayama, A. Isogai, M. Watanabe
Self-incompatibility in Brassica species is regulated by a set of S-locus genes: SLG, SRK, and SP11/SCR. In the vicinity of the S-locus genes, several expressed genes, SLL2 and SP2/ClpP, etc., were identified in B. campestris. Arabidopsis thaliana is a self-compatible Brassica relative, and its complete genome has been sequenced. From comparison of the genomic sequences between B. campestris and A. thaliana, microsynteny between gene clusters of Arabidopsis and Brassica SLL2 regions was observed, though the S-locus genes, SLG, SRK, and SP11/SCR were not found in the region of Arabidopsis. Almost all genes predicted in this region of Arabidopsis were expressed in both vegetative and reproductive organs, suggesting that the genes in the SLL2 region might not be related to self-incompatibility. Considering the recent speculation that the S-locus genes were translocated as a single unit between Arabidopsis and Brassica, the translocation might have occurred in the region between the SLL2 and SP7 genes.
{"title":"Characterization of expressed genes in the SLL2 region of self-compatible Arabidopsis thaliana.","authors":"Y. Takada, A. Ito, C. Ninomiya, T. Kakizaki, Y. Takahata, G. Suzuki, K. Hatakeyama, K. Hinata, H. Shiba, S. Takayama, A. Isogai, M. Watanabe","doi":"10.1093/DNARES/8.5.215","DOIUrl":"https://doi.org/10.1093/DNARES/8.5.215","url":null,"abstract":"Self-incompatibility in Brassica species is regulated by a set of S-locus genes: SLG, SRK, and SP11/SCR. In the vicinity of the S-locus genes, several expressed genes, SLL2 and SP2/ClpP, etc., were identified in B. campestris. Arabidopsis thaliana is a self-compatible Brassica relative, and its complete genome has been sequenced. From comparison of the genomic sequences between B. campestris and A. thaliana, microsynteny between gene clusters of Arabidopsis and Brassica SLL2 regions was observed, though the S-locus genes, SLG, SRK, and SP11/SCR were not found in the region of Arabidopsis. Almost all genes predicted in this region of Arabidopsis were expressed in both vegetative and reproductive organs, suggesting that the genes in the SLL2 region might not be related to self-incompatibility. Considering the recent speculation that the S-locus genes were translocated as a single unit between Arabidopsis and Brassica, the translocation might have occurred in the region between the SLL2 and SP7 genes.","PeriodicalId":11212,"journal":{"name":"DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes","volume":"3 1","pages":"215-9"},"PeriodicalIF":0.0,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87270335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The phytopathogenic bacterium Agrobacterium tumefaciens is unique in that it possesses both linear and circular DNA chromosomes in addition to a plant-tumor-inducing (Ti) plasmid. We analyzed the two chromosomal DNA molecules in strain MAFF301001, whose Ti plasmid has already been sequenced completely. Physical maps of the chromosomal DNAs were constructed by Southern hybridization experiments using Pme I and Swa I fragments and short fragments bridging the Swa I fragments with special care to avoid any missing fragment. Hybridization with 16S rDNA probe showed one rDNA locus on the linear chromosome and two loci on the circular chromosome. For this bacterium to be pathogenic, not only Ti plasmid but also chromosomal genes are required. The chromosomal virulence (chv) genes (chvA, chvB, chvD, chvE, chvG, chvH, and chvI) and the chromosomal genes affecting the virulence [acvB, pgm(exoC), glgP, miaA, and ros] were successfully mapped onto 5 different regions in the chromosomal physical maps. These chv genes and the chromosomal genes affecting the virulence other than pgm and glgP were found on the circular chromosome, whereas the pgm and glgP genes were located on the linear chromosome. In contrast to the large terminal inverted repeats of Streptomyces linear chromosomal DNA, no hybridization signal was detected between left and right terminal fragments of the linear A. tumefaciens chromosome. Quantitative analysis of DNA fragments indicated that the copy numbers of the two chromosomal DNAs and the Ti plasmid are identical.
{"title":"Genome analysis of Agrobacterium tumefaciens: construction of physical maps for linear and circular chromosomal DNAs, determination of copy number ratio and mapping of chromosomal virulence genes.","authors":"Kattsunori Suzuki, K. Iwata, Kazuo Yoshida","doi":"10.1093/DNARES/8.4.141","DOIUrl":"https://doi.org/10.1093/DNARES/8.4.141","url":null,"abstract":"The phytopathogenic bacterium Agrobacterium tumefaciens is unique in that it possesses both linear and circular DNA chromosomes in addition to a plant-tumor-inducing (Ti) plasmid. We analyzed the two chromosomal DNA molecules in strain MAFF301001, whose Ti plasmid has already been sequenced completely. Physical maps of the chromosomal DNAs were constructed by Southern hybridization experiments using Pme I and Swa I fragments and short fragments bridging the Swa I fragments with special care to avoid any missing fragment. Hybridization with 16S rDNA probe showed one rDNA locus on the linear chromosome and two loci on the circular chromosome. For this bacterium to be pathogenic, not only Ti plasmid but also chromosomal genes are required. The chromosomal virulence (chv) genes (chvA, chvB, chvD, chvE, chvG, chvH, and chvI) and the chromosomal genes affecting the virulence [acvB, pgm(exoC), glgP, miaA, and ros] were successfully mapped onto 5 different regions in the chromosomal physical maps. These chv genes and the chromosomal genes affecting the virulence other than pgm and glgP were found on the circular chromosome, whereas the pgm and glgP genes were located on the linear chromosome. In contrast to the large terminal inverted repeats of Streptomyces linear chromosomal DNA, no hybridization signal was detected between left and right terminal fragments of the linear A. tumefaciens chromosome. Quantitative analysis of DNA fragments indicated that the copy numbers of the two chromosomal DNAs and the Ti plasmid are identical.","PeriodicalId":11212,"journal":{"name":"DNA Research: An International Journal for Rapid Publication of Reports on Genes and Genomes","volume":"37 1","pages":"141-52"},"PeriodicalIF":0.0,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81380757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}