Background: We are exposed to natural ionizing radiation and other genomic stressors throughout life and radiophobia has caused much harm to society. The main basis for radiophobia is the invalid linear no-threshold (LNT) hypothesis for cancer induction, which the System of Radiological Protection (SRP) is linked to. Largely unknown to the public, evolution-associated genomic stress adaptation (gensadaptation) over many previous generations now provides protection to all lifeforms from low radiation doses. Objective: To help bring about an improved SRP not linked to the invalid LNT hypothesis for radiation-caused health detriment and to promote low-dose radiation therapy for different diseases. Methods: All-solid-cancer mortality risk dose-response relationships for A-bomb survivors were generated based on published LNT-modeling-related results. Dose-response relationships for lung cancer prevention by low-dose radiation were generated by linear interpolation based on published data from a study using > 15,000 mice. Uncertainty characterization was based on Monte Carlo calculations for binomial and Poisson distributions. New dose characterization tools were used for threshold dose-response relationships for radiation-caused cancer mortality. Results: The all-solid-cancer mortality risk for A-bomb survivors transitioned from LNT to threshold-linear when adjusted for key missing uncertainty at low doses. The prevention of lung cancer in mice by low radiation doses depends on the radiation absorbed dose and type. Conclusions: The SRP should be linked to population dose thresholds rather than the invalid LNT hypothesis and small likely harmless radiation doses could possibly be used in treating different diseases.
扫码关注我们
求助内容:
应助结果提醒方式:
