首页 > 最新文献

Developmental Neurobiology最新文献

英文 中文
Impact of food additives on neurodevelopmental processes in zebrafish (Danio rerio): Exploring circadian clock genes and dopamine system 食品添加剂对斑马鱼(Danio rerio)神经发育过程的影响:探索昼夜节律时钟基因和多巴胺系统
IF 2.7 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-06-03 DOI: 10.1002/dneu.22947
L. Divya Christy, K. Vignesh, Jayshree Nellore, Jayakrishna Tippabathani

Assessing the impact of food additives on neurodevelopmental processes extends beyond traditional acute toxicity evaluations to address subtler, long-term effects. This study investigates the impact of common food additives (tartrazine, sunset yellow, sodium benzoate, and aspartame) on neurodevelopment in zebrafish embryos, observed from 18 hours postfertilization (hpf) to 91 days postfertilization (dpf). Results show reduced 96 hpf locomotor activity after aspartame exposure, with elevated additives correlating with decreased heart rates and induced neurodegenerative phenotypes, including bent tails and abnormal pigmentation. Although locomotor activity decreases at 7 days postexposure, a gradual recovery is observed. Transcriptome analysis indicates alterations in clock genes (Cry2 and Per2) and dopamine-related genes (NURR1 and tyrosine hydroxylase) in zebrafish larvae. Dietary additive exposure during embryonic development impacts clock genes, influencing dopamine activity and resulting in neurobehavioral changes. This study underscores potential risks associated with dietary additive exposure during critical developmental stages, warranting reconsideration of consumption guidelines, especially for expectant mothers. Observed neurodevelopmental toxicity, even below recommended levels, emphasizes the importance of safeguarding neurodevelopmental health in early life. Our findings contribute to understanding the neurotoxic effects of dietary additives, emphasizing the necessity of protecting neurodevelopment during vulnerable periods. This study is the first to demonstrate a direct correlation between food additives and the dysregulation of key circadian rhythm and dopaminergic genes in zebrafish, providing new insights into the neurodevelopmental impacts of dietary additives. These findings pave the way for further research into the molecular mechanisms and potential implications for human health.

评估食品添加剂对神经发育过程的影响已超越了传统的急性毒性评估,而涉及到更微妙的长期影响。本研究调查了常见食品添加剂(酒石酸、日落黄、苯甲酸钠和阿斯巴甜)对斑马鱼胚胎神经发育的影响,观察时间从受精后 18 小时(hpf)到受精后 91 天(dpf)。结果显示,暴露于阿斯巴甜后,96 hpf 运动活动减少,添加剂升高与心率下降和诱发神经退行性表型(包括尾巴弯曲和色素异常)相关。虽然在暴露后 7 天运动活性会下降,但随后会逐渐恢复。转录组分析表明,斑马鱼幼体中的时钟基因(Cry2 和 Per2)和多巴胺相关基因(NURR1 和酪氨酸羟化酶)发生了改变。在胚胎发育过程中接触膳食添加剂会影响时钟基因,从而影响多巴胺活性,导致神经行为变化。这项研究强调了在关键发育阶段暴露于膳食添加剂的潜在风险,因此需要重新考虑食用指南,尤其是准妈妈的食用指南。观察到的神经发育毒性,即使低于推荐水平,也强调了保障生命早期神经发育健康的重要性。我们的研究结果有助于了解膳食添加剂的神经毒性作用,强调了在脆弱时期保护神经发育的必要性。这项研究首次证明了食品添加剂与斑马鱼关键昼夜节律和多巴胺能基因失调之间的直接相关性,为人们了解食品添加剂对神经发育的影响提供了新的视角。这些发现为进一步研究分子机制和对人类健康的潜在影响铺平了道路。
{"title":"Impact of food additives on neurodevelopmental processes in zebrafish (Danio rerio): Exploring circadian clock genes and dopamine system","authors":"L. Divya Christy,&nbsp;K. Vignesh,&nbsp;Jayshree Nellore,&nbsp;Jayakrishna Tippabathani","doi":"10.1002/dneu.22947","DOIUrl":"10.1002/dneu.22947","url":null,"abstract":"<p>Assessing the impact of food additives on neurodevelopmental processes extends beyond traditional acute toxicity evaluations to address subtler, long-term effects. This study investigates the impact of common food additives (tartrazine, sunset yellow, sodium benzoate, and aspartame) on neurodevelopment in zebrafish embryos, observed from 18 hours postfertilization (hpf) to 91 days postfertilization (dpf). Results show reduced 96 hpf locomotor activity after aspartame exposure, with elevated additives correlating with decreased heart rates and induced neurodegenerative phenotypes, including bent tails and abnormal pigmentation. Although locomotor activity decreases at 7 days postexposure, a gradual recovery is observed. Transcriptome analysis indicates alterations in clock genes (Cry2 and Per2) and dopamine-related genes (NURR1 and tyrosine hydroxylase) in zebrafish larvae. Dietary additive exposure during embryonic development impacts clock genes, influencing dopamine activity and resulting in neurobehavioral changes. This study underscores potential risks associated with dietary additive exposure during critical developmental stages, warranting reconsideration of consumption guidelines, especially for expectant mothers. Observed neurodevelopmental toxicity, even below recommended levels, emphasizes the importance of safeguarding neurodevelopmental health in early life. Our findings contribute to understanding the neurotoxic effects of dietary additives, emphasizing the necessity of protecting neurodevelopment during vulnerable periods. This study is the first to demonstrate a direct correlation between food additives and the dysregulation of key circadian rhythm and dopaminergic genes in zebrafish, providing new insights into the neurodevelopmental impacts of dietary additives. These findings pave the way for further research into the molecular mechanisms and potential implications for human health.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"84 3","pages":"191-202"},"PeriodicalIF":2.7,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141236241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forebrain commissure formation in zebrafish embryo requires the binding of KLC1 to CRMP2 斑马鱼胚胎前脑神经节的形成需要 KLC1 与 CRMP2 结合。
IF 2.7 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-06-03 DOI: 10.1002/dneu.22948
Simo Li, Youjia Guo, Miyuki Takahashi, Hisato Suzuki, Kenjiro Kosaki, Toshio Ohshima

Formation of the corpus callosum (CC), anterior commissure (AC), and postoptic commissure (POC), connecting the left and right cerebral hemispheres, is crucial for cerebral functioning. Collapsin response mediator protein 2 (CRMP2) has been suggested to be associated with the mechanisms governing this formation, based on knockout studies in mice and knockdown/knockout studies in zebrafish. Previously, we reported two cases of non-synonymous CRMP2 variants with S14R and R565C substitutions. Among the, the R565C substitution (p.R565C) was caused by the novel CRMP2 mutation c.1693C > T, and the patient presented with intellectual disability accompanied by CC hypoplasia. In this study, we demonstrate that crmp2 mRNA could rescue AC and POC formation in crmp2-knockdown zebrafish, whereas the mRNA with the R566C mutation could not. Zebrafish CRMP2 R566C corresponds to human CRMP2 R565C. Further experiments with transfected cultured cells indicated that CRMP2 with the R566C mutation could not bind to kinesin light chain 1 (KLC1). Knockdown of klc1a in zebrafish resulted in defective AC and POC formation, revealing a genetic interaction with crmp2. These findings suggest that the CRMP2 R566C mutant fails to bind to KLC1, preventing axonal elongation and leading to defective AC and POC formation in zebrafish and CC formation defects in humans. Our study highlights the importance of the interaction between CRMP2 and KLC1 in the formation of the forebrain commissures, revealing a novel mechanism associated with CRMP2 mutations underlying human neurodevelopmental abnormalities.

连接左右大脑半球的胼胝体(CC)、前裂(AC)和视后裂(POC)的形成对大脑功能至关重要。根据小鼠的基因敲除研究和斑马鱼的基因敲除/基因敲除研究,塌缩素反应介导蛋白 2(CRMP2)被认为与支配这种形成的机制有关。此前,我们报道了两例非同义CRMP2变体,分别为S14R和R565C置换。其中,R565C置换(p.R565C)是由新型CRMP2突变c.1693C > T引起的,患者表现为智力障碍并伴有CC发育不全。本研究证明,crmp2 mRNA能挽救crmp2-敲除斑马鱼的AC和POC形成,而R566C突变的mRNA则不能。斑马鱼 CRMP2 R566C 与人类 CRMP2 R565C 相对应。转染培养细胞的进一步实验表明,R566C 突变的 CRMP2 无法与驱动蛋白轻链 1(KLC1)结合。在斑马鱼体内敲除 klc1a 会导致 AC 和 POC 形成缺陷,从而揭示了 CRMP2 与 KLC1 的基因相互作用。这些发现表明,CRMP2 R566C突变体无法与KLC1结合,从而阻碍了轴突的伸长,导致斑马鱼AC和POC形成缺陷以及人类CC形成缺陷。我们的研究强调了CRMP2和KLC1之间的相互作用在前脑神经突起形成过程中的重要性,揭示了与CRMP2突变相关的人类神经发育异常的新机制。
{"title":"Forebrain commissure formation in zebrafish embryo requires the binding of KLC1 to CRMP2","authors":"Simo Li,&nbsp;Youjia Guo,&nbsp;Miyuki Takahashi,&nbsp;Hisato Suzuki,&nbsp;Kenjiro Kosaki,&nbsp;Toshio Ohshima","doi":"10.1002/dneu.22948","DOIUrl":"10.1002/dneu.22948","url":null,"abstract":"<p>Formation of the corpus callosum (CC), anterior commissure (AC), and postoptic commissure (POC), connecting the left and right cerebral hemispheres, is crucial for cerebral functioning. Collapsin response mediator protein 2 (CRMP2) has been suggested to be associated with the mechanisms governing this formation, based on knockout studies in mice and knockdown/knockout studies in zebrafish. Previously, we reported two cases of non-synonymous CRMP2 variants with S14R and R565C substitutions. Among the, the R565C substitution (p.R565C) was caused by the novel <i>CRMP2</i> mutation c.1693C &gt; T, and the patient presented with intellectual disability accompanied by CC hypoplasia. In this study, we demonstrate that <i>crmp2</i> mRNA could rescue AC and POC formation in <i>crmp2</i>-knockdown zebrafish, whereas the mRNA with the R566C mutation could not. Zebrafish CRMP2 R566C corresponds to human CRMP2 R565C. Further experiments with transfected cultured cells indicated that CRMP2 with the R566C mutation could not bind to kinesin light chain 1 (KLC1). Knockdown of <i>klc1a</i> in zebrafish resulted in defective AC and POC formation, revealing a genetic interaction with <i>crmp2</i>. These findings suggest that the CRMP2 R566C mutant fails to bind to KLC1, preventing axonal elongation and leading to defective AC and POC formation in zebrafish and CC formation defects in humans. Our study highlights the importance of the interaction between CRMP2 and KLC1 in the formation of the forebrain commissures, revealing a novel mechanism associated with CRMP2 mutations underlying human neurodevelopmental abnormalities.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"84 3","pages":"203-216"},"PeriodicalIF":2.7,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141237569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative model of minimal spinal cord injury reveals a rather anti-inflammatory response in the lesion site as well as increased proliferation in the central canal lining in the neonates compared to the adult rats 最小脊髓损伤的比较模型显示,与成年大鼠相比,新生大鼠的病变部位具有相当强的抗炎反应,而且中央管内膜的增殖也有所增加。
IF 2.7 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-05-29 DOI: 10.1002/dneu.22942
Juraj Ševc, Filip Mochnacký, Ján Košuth, Anna Alexovič Matiašová, Lucia Slovinská, Juraj Blaško, Ivan Bukhun, Radovan Holota, Zoltán Tomori, Zuzana Daxnerová

Spinal cord injury (SCI) resulting from trauma decreases the quality of human life. Numerous clues indicate that the limited endogenous regenerative potential is a result of the interplay between the inhibitory nature of mature nervous tissue and the inflammatory actions of immune and glial cells. Knowledge gained from comparing regeneration in adult and juvenile animals could draw attention to factors that should be removed or added for effective therapy in adults. Therefore, we generated a minimal SCI (mSCI) model with a comparable impact on the spinal cord of Wistar rats during adulthood, preadolescence, and the neonatal period. The mechanism of injury is based on unilateral incision with a 20 ga needle tip according to stereotaxic coordinates into the dorsal horn of the L4 lumbar spinal segment. The incision should harm a similar amount of gray matter on a coronal section in each group of experimental animals. According to our results, the impact causes mild injury with minimal adverse effects on the neurological functions of animals but still has a remarkable effect on nervous tissue and its cellular and humoral components. Testing the mSCI model in adults, preadolescents, and neonates revealed a rather anti-inflammatory response of immune cells and astrocytes at the lesion site, as well as increased proliferation in the central canal lining in neonates compared with adult animals. Our results indicate that developing nervous tissue could possess superior reparative potential and confirm the importance of comparative studies to advance in the field of neuroregeneration.

创伤导致的脊髓损伤(SCI)降低了人类的生活质量。许多线索表明,有限的内源性再生潜力是成熟神经组织的抑制性与免疫细胞和神经胶质细胞的炎症作用相互作用的结果。通过比较成年动物和幼年动物的再生情况,我们可以发现在成年动物的有效治疗中应去除或添加的因素。因此,我们建立了一个最小 SCI(mSCI)模型,该模型对 Wistar 大鼠成年期、青春期前和新生儿期脊髓的影响具有可比性。损伤机制是根据立体定向坐标用 20 ga 的针尖单侧切开腰椎 L4 节段的背角。在每组实验动物的冠状切片上,切口应损伤相似数量的灰质。根据我们的研究结果,撞击造成的损伤轻微,对动物神经功能的不良影响极小,但对神经组织及其细胞和体液成分仍有显著影响。在成年、青春期前和新生儿中测试 mSCI 模型发现,与成年动物相比,病变部位的免疫细胞和星形胶质细胞具有相当强的抗炎反应,而新生儿中央管内膜的增殖也有所增加。我们的研究结果表明,发育中的神经组织可能具有更强的修复潜力,并证实了比较研究在神经再生领域取得进展的重要性。
{"title":"Comparative model of minimal spinal cord injury reveals a rather anti-inflammatory response in the lesion site as well as increased proliferation in the central canal lining in the neonates compared to the adult rats","authors":"Juraj Ševc,&nbsp;Filip Mochnacký,&nbsp;Ján Košuth,&nbsp;Anna Alexovič Matiašová,&nbsp;Lucia Slovinská,&nbsp;Juraj Blaško,&nbsp;Ivan Bukhun,&nbsp;Radovan Holota,&nbsp;Zoltán Tomori,&nbsp;Zuzana Daxnerová","doi":"10.1002/dneu.22942","DOIUrl":"10.1002/dneu.22942","url":null,"abstract":"<p>Spinal cord injury (SCI) resulting from trauma decreases the quality of human life. Numerous clues indicate that the limited endogenous regenerative potential is a result of the interplay between the inhibitory nature of mature nervous tissue and the inflammatory actions of immune and glial cells. Knowledge gained from comparing regeneration in adult and juvenile animals could draw attention to factors that should be removed or added for effective therapy in adults. Therefore, we generated a minimal SCI (mSCI) model with a comparable impact on the spinal cord of Wistar rats during adulthood, preadolescence, and the neonatal period. The mechanism of injury is based on unilateral incision with a 20 ga needle tip according to stereotaxic coordinates into the dorsal horn of the L4 lumbar spinal segment. The incision should harm a similar amount of gray matter on a coronal section in each group of experimental animals. According to our results, the impact causes mild injury with minimal adverse effects on the neurological functions of animals but still has a remarkable effect on nervous tissue and its cellular and humoral components. Testing the mSCI model in adults, preadolescents, and neonates revealed a rather anti-inflammatory response of immune cells and astrocytes at the lesion site, as well as increased proliferation in the central canal lining in neonates compared with adult animals. Our results indicate that developing nervous tissue could possess superior reparative potential and confirm the importance of comparative studies to advance in the field of neuroregeneration.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"84 3","pages":"169-190"},"PeriodicalIF":2.7,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141174902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rare heterozygous genetic variants of NRXN and NLGN gene families involved in synaptic function and their association with neurodevelopmental disorders 涉及突触功能的 NRXN 和 NLGN 基因家族的罕见杂合遗传变异及其与神经发育障碍的关系。
IF 2.7 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-05-13 DOI: 10.1002/dneu.22941
Hamide Betul Gerik-Celebi, Hilmi Bolat, Gul Unsel-Bolat

The interaction of neurexins (NRXNs) in the presynaptic membrane with postsynaptic cell adhesion molecules called neuroligins (NLGNs) is critical for this synaptic function. Impaired synaptic functions are emphasized in neurodevelopmental disorders to uncover etiological factors. We evaluated variants in NRXN and NLGN genes encoding molecules located directly at the synapse in patients with neuropsychiatric disorders using clinical exome sequencing and chromosomal microarray. We presented detailed clinical findings of cases carrying heterozygous NRXN1 (c.190C > T, c.1679C > T and two copy number variations [CNVs]), NRXN2 (c.808dup, c.1901G > T), NRXN3 (c.3889C > T), and NLGN1 (c.269C > G, c.473T > A) gene variants. In addition, three novel variants were identified in the NRXN1 (c.1679C > T), NRXN3 [c.3889C > T (p.Pro1297Ser)], and NLGN1 [c.473T > A (p.Ile158Lys)] genes. We emphasize the clinical findings of CNVs of the NRXN1 gene causing a more severe clinical presentation than single nucleotide variants of the NRXN1 gene in this study. We detected an NRXN2 gene variant (c.808dup) with low allelic frequency in two unrelated cases with the same diagnosis. We emphasize the importance of this variant for future studies. We suggest that NRXN2, NRXN3, and NLGN1 genes, which are less frequently reported than NRXN1 gene variants, may also be associated with neurodevelopmental disorders.

突触前膜中的神经肽(NRXNs)与突触后细胞粘附分子(NLGNs)之间的相互作用对这种突触功能至关重要。神经发育障碍强调突触功能受损,以揭示病因。我们利用临床外显子组测序和染色体微阵列评估了神经精神疾病患者中编码直接位于突触的分子的 NRXN 和 NLGN 基因的变异。我们详细介绍了携带杂合性 NRXN1(c.190C > T、c.1679C > T 和两个拷贝数变异 [CNV])、NRXN2(c.808dup、c.1901G > T)、NRXN3(c.3889C > T)和 NLGN1(c.269C > G、c.473T > A)基因变异的病例的临床发现。此外,还在 NRXN1(c.1679C > T)、NRXN3 [c.3889C > T (p.Pro1297Ser)] 和 NLGN1 [c.473T > A (p.Ile158Lys)] 基因中发现了三个新变异。与 NRXN1 基因的单核苷酸变异相比,我们强调 NRXN1 基因的 CNV 会导致更严重的临床表现。我们在两例诊断相同的无关病例中检测到了等位基因频率较低的 NRXN2 基因变异(c.808dup)。我们强调该变异对未来研究的重要性。我们认为,与 NRXN1 基因变异相比,NRXN2、NRXN3 和 NLGN1 基因变异的报告频率较低,但它们也可能与神经发育障碍有关。
{"title":"Rare heterozygous genetic variants of NRXN and NLGN gene families involved in synaptic function and their association with neurodevelopmental disorders","authors":"Hamide Betul Gerik-Celebi,&nbsp;Hilmi Bolat,&nbsp;Gul Unsel-Bolat","doi":"10.1002/dneu.22941","DOIUrl":"10.1002/dneu.22941","url":null,"abstract":"<p>The interaction of neurexins (NRXNs) in the presynaptic membrane with postsynaptic cell adhesion molecules called neuroligins (NLGNs) is critical for this synaptic function. Impaired synaptic functions are emphasized in neurodevelopmental disorders to uncover etiological factors. We evaluated variants in <i>NRXN</i> and <i>NLGN</i> genes encoding molecules located directly at the synapse in patients with neuropsychiatric disorders using clinical exome sequencing and chromosomal microarray. We presented detailed clinical findings of cases carrying heterozygous <i>NRXN1</i> (c.190C &gt; T, c.1679C &gt; T and two copy number variations [CNVs]), <i>NRXN2</i> (c.808dup, c.1901G &gt; T), <i>NRXN3</i> (c.3889C &gt; T), and <i>NLGN1</i> (c.269C &gt; G, c.473T &gt; A) gene variants. In addition, three novel variants were identified in the <i>NRXN1</i> (c.1679C &gt; T), <i>NRXN3</i> [c.3889C &gt; T (p.Pro1297Ser)], and <i>NLGN1</i> [c.473T &gt; A (p.Ile158Lys)] genes. We emphasize the clinical findings of CNVs of the <i>NRXN1</i> gene causing a more severe clinical presentation than single nucleotide variants of the <i>NRXN1</i> gene in this study. We detected an <i>NRXN2</i> gene variant (c.808dup) with low allelic frequency in two unrelated cases with the same diagnosis. We emphasize the importance of this variant for future studies. We suggest that <i>NRXN2, NRXN3</i>, and <i>NLGN1</i> genes, which are less frequently reported than <i>NRXN1</i> gene variants, may also be associated with neurodevelopmental disorders.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"84 3","pages":"158-168"},"PeriodicalIF":2.7,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dneu.22941","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140912294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pregestational fructose-induced metabolic syndrome in Wistar rats causes sexually dimorphic behavioral changes in their offspring 妊娠前果糖诱导的 Wistar 大鼠代谢综合征会导致其后代出现性别双态行为变化。
IF 2.7 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-04-25 DOI: 10.1002/dneu.22940
Marié L. Cuervo Sánchez, Facundo H. Prado Spalm, Natalia E. Furland, Ana S. Vallés

Metabolic syndrome (MetS), marked by enduring metabolic inflammation, has detrimental effects on cognitive performance and brain structure, influencing behavior. This study aimed to investigate whether maternal MetS could negatively impact the neurodevelopment and metabolism of offspring. To test this hypothesis, 2 months old female Wistar rats were subjected to a 10-week regimen of tap water alone or supplemented with 20% fructose to induce MetS. Dams were mated with healthy males to generate litters: OC (offspring from control dams) and OMetS (offspring from dams with MetS). To isolate prenatal effects, all pups were breastfed by control nurse dams, maintaining a standard diet and water ad libitum until weaning. Behavioral assessments were conducted between postnatal days (PN) 22 and 95, and metabolic parameters were analyzed post-sacrifice on PN100. Results from the elevated plus maze, the open field, and the marble burying tests revealed a heightened anxiety-like phenotype in OMetS females. The novel object recognition test showed that exclusively OMetS males had long-term memory impairment. In the reciprocal social interaction test, OMetS displayed a lower number of social interactions, with a notable increase in “socially inactive” behavior observed exclusively in females. Additionally, in the three-chamber test, social preference and social novelty indexes were found to be lower solely among OMetS females. An increase in visceral fat concomitantly with hypertriglyceridemia was the relevant postmortem metabolic finding in OMetS females. In summary, maternal MetS leads to enduring damage and adverse effects on offspring neurobehavior and metabolism, with notable sexual dimorphism.

代谢综合征(MetS)以持久的代谢炎症为特征,对认知能力和大脑结构有不利影响,并影响行为。本研究旨在探讨母体代谢综合征是否会对后代的神经发育和新陈代谢产生负面影响。为了验证这一假设,对2个月大的雌性Wistar大鼠进行了为期10周的单独或添加20%果糖的自来水诱导MetS。母鼠与健康雄鼠交配产仔:OC(来自对照组母鼠的后代)和 OMetS(来自患有 MetS 的母鼠的后代)。为隔离产前影响,所有幼崽均由对照组哺乳母鼠哺乳,并在断奶前保持标准饮食和自由饮水。行为评估在出生后第 22 天到第 95 天之间进行,代谢参数在出生后第 100 天进行分析。高架加迷宫、开阔地和大理石埋藏测试的结果显示,OMetS雌鼠的焦虑表型增强。新物体识别测试表明,只有 OMetS 雄性动物存在长期记忆障碍。在互惠社交互动测试中,OMetS的社交互动次数较少,只有雌性OMetS的 "社交不活跃 "行为明显增加。此外,在三室测试中,发现只有 OMetS 女性的社交偏好和社交新奇指数较低。内脏脂肪的增加与高甘油三酯血症是 OMetS 女性死后代谢的相关发现。总之,母体代谢紊乱会对后代的神经行为和新陈代谢造成持久的损害和不利影响,并具有明显的性别二态性。
{"title":"Pregestational fructose-induced metabolic syndrome in Wistar rats causes sexually dimorphic behavioral changes in their offspring","authors":"Marié L. Cuervo Sánchez,&nbsp;Facundo H. Prado Spalm,&nbsp;Natalia E. Furland,&nbsp;Ana S. Vallés","doi":"10.1002/dneu.22940","DOIUrl":"10.1002/dneu.22940","url":null,"abstract":"<p>Metabolic syndrome (MetS), marked by enduring metabolic inflammation, has detrimental effects on cognitive performance and brain structure, influencing behavior. This study aimed to investigate whether maternal MetS could negatively impact the neurodevelopment and metabolism of offspring. To test this hypothesis, 2 months old female Wistar rats were subjected to a 10-week regimen of tap water alone or supplemented with 20% fructose to induce MetS. Dams were mated with healthy males to generate litters: OC (offspring from control dams) and OMetS (offspring from dams with MetS). To isolate prenatal effects, all pups were breastfed by control nurse dams, maintaining a standard diet and water ad libitum until weaning. Behavioral assessments were conducted between postnatal days (PN) 22 and 95, and metabolic parameters were analyzed post-sacrifice on PN100. Results from the elevated plus maze, the open field, and the marble burying tests revealed a heightened anxiety-like phenotype in OMetS females. The novel object recognition test showed that exclusively OMetS males had long-term memory impairment. In the reciprocal social interaction test, OMetS displayed a lower number of social interactions, with a notable increase in “socially inactive” behavior observed exclusively in females. Additionally, in the three-chamber test, social preference and social novelty indexes were found to be lower solely among OMetS females. An increase in visceral fat concomitantly with hypertriglyceridemia was the relevant postmortem metabolic finding in OMetS females. In summary, maternal MetS leads to enduring damage and adverse effects on offspring neurobehavior and metabolism, with notable sexual dimorphism.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"84 3","pages":"142-157"},"PeriodicalIF":2.7,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140656178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microglia undergo disease-associated transcriptional activation and CX3C motif chemokine receptor 1 expression regulates neurogenesis in the aged brain 小胶质细胞经历与疾病相关的转录激活,CX3C motif趋化因子受体1的表达调控老年脑的神经发生
IF 2.7 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-04-14 DOI: 10.1002/dneu.22939
Jonas Fritze, Chandramouli Muralidharan, Eleanor Stamp, Henrik Ahlenius

Adult neurogenesis continues throughout life but declines dramatically with age and in neurodegenerative disorders such as Alzheimer's disease. In parallel, microglia become activated resulting in chronic inflammation in the aged brain. A unique type of microglia, suggested to support neurogenesis, exists in the subventricular zone (SVZ), but little is known how they are affected by aging. We analyzed the transcriptome of aging microglia and identified a unique neuroprotective activation profile in aged SVZ microglia, which is partly shared with disease-associated microglia (DAM). CX3C motif chemokine receptor 1 (CX3CR1) is characteristically expressed by brain microglia where it directs migration to targets for phagocytosis. We show that Cx3cr1 expression, as in DAM, is downregulated in old SVZ microglia and that heterozygous Cx3cr1 mice have increased proliferation and neuroblast number in the aged SVZ but not in the dentate gyrus, identifying CX3CR1 signaling as a novel age and brain region-specific regulator of neurogenesis.

成人神经发生贯穿人的一生,但随着年龄的增长以及阿尔茨海默病等神经退行性疾病的发生,成人神经发生会急剧下降。与此同时,小胶质细胞被激活,导致老年大脑慢性炎症。脑室下区(SVZ)存在一种独特的小胶质细胞,被认为支持神经发生,但人们对它们如何受到衰老的影响知之甚少。我们分析了衰老小胶质细胞的转录组,在衰老的室管膜下区小胶质细胞中发现了一种独特的神经保护性激活特征,这种特征部分与疾病相关小胶质细胞(DAM)共享。CX3C motif趋化因子受体1(CX3CR1)是脑小胶质细胞表达的特征性基因,它能引导小胶质细胞迁移到吞噬目标。我们发现 Cx3cr1 的表达与 DAM 一样,在老龄 SVZ 小胶质细胞中下调,杂合子 Cx3cr1 小鼠在老龄 SVZ 中的增殖和神经母细胞数量增加,但在齿状回中没有增加,这表明 CX3CR1 信号传导是神经发生的一种新的年龄和脑区特异性调节因子。
{"title":"Microglia undergo disease-associated transcriptional activation and CX3C motif chemokine receptor 1 expression regulates neurogenesis in the aged brain","authors":"Jonas Fritze,&nbsp;Chandramouli Muralidharan,&nbsp;Eleanor Stamp,&nbsp;Henrik Ahlenius","doi":"10.1002/dneu.22939","DOIUrl":"10.1002/dneu.22939","url":null,"abstract":"<p>Adult neurogenesis continues throughout life but declines dramatically with age and in neurodegenerative disorders such as Alzheimer's disease. In parallel, microglia become activated resulting in chronic inflammation in the aged brain. A unique type of microglia, suggested to support neurogenesis, exists in the subventricular zone (SVZ), but little is known how they are affected by aging. We analyzed the transcriptome of aging microglia and identified a unique neuroprotective activation profile in aged SVZ microglia, which is partly shared with disease-associated microglia (DAM). CX3C motif chemokine receptor 1 (CX3CR1) is characteristically expressed by brain microglia where it directs migration to targets for phagocytosis. We show that Cx3cr1 expression, as in DAM, is downregulated in old SVZ microglia and that heterozygous Cx3cr1 mice have increased proliferation and neuroblast number in the aged SVZ but not in the dentate gyrus, identifying CX3CR1 signaling as a novel age and brain region-specific regulator of neurogenesis.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"84 3","pages":"128-141"},"PeriodicalIF":2.7,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dneu.22939","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxygen and HIF1α-dependent SDF1 expression in primary astrocytes 氧气和 HIF1α 依赖性 SDF1 在原发性星形胶质细胞中的表达。
IF 2.7 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-03-27 DOI: 10.1002/dneu.22938
Andreas Pietrucha, Meray Serdar, Ivo Bendix, Stefanie Endesfelder, Elena auf dem Brinke, Ane Urkola, Christoph Bührer, Thomas Schmitz, Till Scheuer

In the naturally hypoxic in utero fetal environment of preterm infants, oxygen and oxygen-sensitive signaling pathways play an important role in brain development, with hypoxia-inducible factor-1α (HIF1α) being an important regulator. Early exposure to nonphysiological high oxygen concentrations by birth in room can induce HIF1α degradation and may affect neuronal and glial development. This involves the dysregulation of astroglial maturation and function, which in turn might contribute to oxygen-induced brain injury. In this study, we investigated the effects of early high oxygen exposure on astroglial maturation and, specifically, on astroglial stromal cell-derived factor 1 (SDF1) expression in vivo and in vitro. In our neonatal mouse model of hyperoxia preterm birth brain injury in vivo, high oxygen exposure affected astroglial development and cortical SDF1 expression. These results were further supported by reduced Sdf1 expression, impaired proliferation, decreased total cell number, and altered expression of astroglial markers in astrocytes in primary cultures grown under high oxygen conditions. Moreover, to mimic the naturally hypoxic in utero fetal environment, astroglial Sdf1 expression was increased after low oxygen exposure in vitro, which appears to be regulated by HIF1α activity. Additionally, the knockdown of Hif1α revealed HIF1α-dependent Sdf1 expression in vitro. Our results indicate HIF1α and oxygen-dependent chemokine expression in primary astrocytes and highlight the importance of oxygen conditions for brain development.

在早产儿胎儿宫内自然缺氧的环境中,氧气和氧敏感信号通路在大脑发育过程中发挥着重要作用,其中缺氧诱导因子-1α(HIF1α)是一个重要的调节因子。婴儿出生后在室内过早地暴露于非生理性高浓度氧气环境中会诱导 HIF1α 降解,并可能影响神经元和神经胶质的发育。这涉及星形胶质细胞成熟和功能失调,进而可能导致氧诱导的脑损伤。在这项研究中,我们研究了早期高氧暴露对星形胶质细胞成熟的影响,特别是对星形胶质细胞基质细胞衍生因子 1(SDF1)体内和体外表达的影响。在我们的高氧早产脑损伤新生小鼠体内模型中,高氧暴露影响了星形胶质细胞的发育和皮质 SDF1 的表达。在高氧条件下生长的原代培养物中,星形胶质细胞的 Sdf1 表达减少、增殖受阻、细胞总数减少以及星形胶质细胞标记物的表达改变进一步证实了这些结果。此外,为了模拟子宫内胎儿自然缺氧的环境,体外低氧暴露后星形胶质细胞 Sdf1 表达增加,这似乎是受 HIF1α 活性调节的。此外,体外敲除 Hif1α 可发现 Sdf1 的表达依赖于 HIF1α。我们的研究结果表明,原代星形胶质细胞中 HIF1α 和氧依赖性趋化因子的表达,并强调了氧条件对大脑发育的重要性。
{"title":"Oxygen and HIF1α-dependent SDF1 expression in primary astrocytes","authors":"Andreas Pietrucha,&nbsp;Meray Serdar,&nbsp;Ivo Bendix,&nbsp;Stefanie Endesfelder,&nbsp;Elena auf dem Brinke,&nbsp;Ane Urkola,&nbsp;Christoph Bührer,&nbsp;Thomas Schmitz,&nbsp;Till Scheuer","doi":"10.1002/dneu.22938","DOIUrl":"10.1002/dneu.22938","url":null,"abstract":"<p>In the naturally hypoxic in utero fetal environment of preterm infants, oxygen and oxygen-sensitive signaling pathways play an important role in brain development, with hypoxia-inducible factor-1α (HIF1α) being an important regulator. Early exposure to nonphysiological high oxygen concentrations by birth in room can induce HIF1α degradation and may affect neuronal and glial development. This involves the dysregulation of astroglial maturation and function, which in turn might contribute to oxygen-induced brain injury. In this study, we investigated the effects of early high oxygen exposure on astroglial maturation and, specifically, on astroglial stromal cell-derived factor 1 (SDF1) expression in vivo and in vitro. In our neonatal mouse model of hyperoxia preterm birth brain injury in vivo, high oxygen exposure affected astroglial development and cortical SDF1 expression. These results were further supported by reduced <i>Sdf1</i> expression, impaired proliferation, decreased total cell number, and altered expression of astroglial markers in astrocytes in primary cultures grown under high oxygen conditions. Moreover, to mimic the naturally hypoxic in utero fetal environment, astroglial <i>Sdf1</i> expression was increased after low oxygen exposure in vitro, which appears to be regulated by HIF1α activity. Additionally, the knockdown of <i>Hif1α</i> revealed HIF1α-dependent <i>Sdf1</i> expression in vitro. Our results indicate HIF1α and oxygen-dependent chemokine expression in primary astrocytes and highlight the importance of oxygen conditions for brain development.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"84 3","pages":"113-127"},"PeriodicalIF":2.7,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dneu.22938","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140305208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ongoing effects of preterm birth on the dopaminergic and noradrenergic pathways in the frontal cortex and hippocampus of guinea pigs 早产对豚鼠额叶皮层和海马多巴胺能和去甲肾上腺素能通路的持续影响。
IF 3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-03-25 DOI: 10.1002/dneu.22937
Roisin A. Moloney, Hannah K. Palliser, Rebecca M. Dyson, Carlton L. Pavy, Max Berry, Jonathon J. Hirst, Julia C. Shaw

Children born preterm have an increased likelihood of developing neurobehavioral disorders such as attention-deficit hyperactivity disorder (ADHD) and anxiety. These disorders have a sex bias, with males having a higher incidence of ADHD, whereas anxiety disorder tends to be more prevalent in females. Both disorders are underpinned by imbalances to key neurotransmitter systems, with dopamine and noradrenaline in particular having major roles in attention regulation and stress modulation. Preterm birth disturbances to neurodevelopment may affect this neurotransmission in a sexually dimorphic manner. Time-mated guinea pig dams were allocated to deliver by preterm induction of labor (gestational age 62 [GA62]) or spontaneously at term (GA69). The resultant offspring were randomized to endpoints as neonates (24 h after term-equivalence age) or juveniles (corrected postnatal day 40, childhood equivalence). Relative mRNA expressions of key dopamine and noradrenaline pathway genes were examined in the frontal cortex and hippocampus and quantified with real-time PCR. Myelin basic protein and neuronal nuclei immunostaining were performed to characterize the impact of preterm birth. Within the frontal cortex, there were persisting reductions in the expression of dopaminergic pathway components that occurred in preterm males only. Conversely, preterm-born females had increased expression of key noradrenergic receptors and a reduction of the noradrenergic transporter within the hippocampus. This study demonstrated that preterm birth results in major changes in dopaminergic and noradrenergic receptor, transporter, and synthesis enzyme gene expression in a sex- and region-based manner that may contribute to the sex differences in susceptibility to neurobehavioral disorders. These findings highlight the need for the development of sex-based treatments for improving these conditions.

早产儿患神经行为障碍(如注意力缺陷多动障碍(ADHD)和焦虑症)的可能性增加。这些疾病有性别倾向,男性多动症的发病率较高,而焦虑症则多发于女性。这两种疾病的基础都是关键神经递质系统的失衡,尤其是多巴胺和去甲肾上腺素在注意力调节和压力调节方面发挥着重要作用。早产对神经发育的干扰可能会以性别双态的方式影响这种神经传递。经过时间交配的豚鼠母鼠被分配到早产引产(胎龄 62 [GA62])或足月自然分娩(GA69)。由此产生的后代被随机分配为新生儿(足月后 24 小时--等效年龄)或幼年(校正后的产后第 40 天--等效儿童)。研究人员检测了额叶皮层和海马中多巴胺和去甲肾上腺素通路关键基因的相对 mRNA 表达量,并通过实时 PCR 进行了量化。此外,还对髓鞘碱性蛋白和神经核进行了免疫染色,以确定早产的影响。在额叶皮层中,多巴胺能通路成分的表达持续减少,这种情况只发生在早产男性身上。相反,早产女性的主要去甲肾上腺素能受体表达增加,海马内的去甲肾上腺素能转运体减少。这项研究表明,早产会导致多巴胺能和去甲肾上腺素能受体、转运体和合成酶基因的表达发生重大变化,而这些变化是以性别和区域为基础的,这可能是导致神经行为障碍易感性性别差异的原因之一。这些发现凸显了开发基于性别的治疗方法以改善这些疾病的必要性。
{"title":"Ongoing effects of preterm birth on the dopaminergic and noradrenergic pathways in the frontal cortex and hippocampus of guinea pigs","authors":"Roisin A. Moloney,&nbsp;Hannah K. Palliser,&nbsp;Rebecca M. Dyson,&nbsp;Carlton L. Pavy,&nbsp;Max Berry,&nbsp;Jonathon J. Hirst,&nbsp;Julia C. Shaw","doi":"10.1002/dneu.22937","DOIUrl":"10.1002/dneu.22937","url":null,"abstract":"<p>Children born preterm have an increased likelihood of developing neurobehavioral disorders such as attention-deficit hyperactivity disorder (ADHD) and anxiety. These disorders have a sex bias, with males having a higher incidence of ADHD, whereas anxiety disorder tends to be more prevalent in females. Both disorders are underpinned by imbalances to key neurotransmitter systems, with dopamine and noradrenaline in particular having major roles in attention regulation and stress modulation. Preterm birth disturbances to neurodevelopment may affect this neurotransmission in a sexually dimorphic manner. Time-mated guinea pig dams were allocated to deliver by preterm induction of labor (gestational age 62 [GA62]) or spontaneously at term (GA69). The resultant offspring were randomized to endpoints as neonates (24 h after term-equivalence age) or juveniles (corrected postnatal day 40, childhood equivalence). Relative mRNA expressions of key dopamine and noradrenaline pathway genes were examined in the frontal cortex and hippocampus and quantified with real-time PCR. Myelin basic protein and neuronal nuclei immunostaining were performed to characterize the impact of preterm birth. Within the frontal cortex, there were persisting reductions in the expression of dopaminergic pathway components that occurred in preterm males only. Conversely, preterm-born females had increased expression of key noradrenergic receptors and a reduction of the noradrenergic transporter within the hippocampus. This study demonstrated that preterm birth results in major changes in dopaminergic and noradrenergic receptor, transporter, and synthesis enzyme gene expression in a sex- and region-based manner that may contribute to the sex differences in susceptibility to neurobehavioral disorders. These findings highlight the need for the development of sex-based treatments for improving these conditions.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"84 2","pages":"93-110"},"PeriodicalIF":3.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dneu.22937","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140206486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cerebellar granule cell migration and folia development require Mllt11/Af1q/Tcf7c 小脑颗粒细胞迁移和叶的发育需要Mllt11/Af1q/Tcf7c。
IF 3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-03-20 DOI: 10.1002/dneu.22936
Marley Blommers, Danielle Stanton-Turcotte, Emily A. Witt, Mohsen Heidari, Angelo Iulianella

The organization of neurons into distinct layers, known as lamination, is a common feature of the nervous system. This process, which arises from the direct coupling of neurogenesis and neuronal migration, plays a crucial role in the development of the cerebellum, a structure exhibiting a distinct folding cytoarchitecture with cells arranged in discrete layers. Disruptions to neuronal migration can lead to various neurodevelopmental disorders, highlighting the significance of understanding the molecular regulation of lamination. We report a role Mllt11/Af1q/Tcf7c (myeloid/lymphoid or mixed-lineage leukemia; translocated to chromosome 11/All1 fused gene from chromosome 1q, also known as Mllt11 transcriptional cofactor 7; henceforth referred to Mllt11) in the migration of cerebellar granule cells (GCs). We now show that Mllt11 plays a role in both the tangential and radial migration of GCs. Loss of Mllt11 led to an accumulation of GC precursors in the rhombic lip region and a reduction in the number of GCs successfully populating developing folia. Consequently, this results in smaller folia and an overall reduction in cerebellar size. Furthermore, analysis of the anchoring centers reveals disruptions in the perinatal folia cytoarchitecture, including alterations in the Bergmann glia fiber orientation and reduced infolding of the Purkinje cell plate. Lastly, we demonstrate that Mllt11 interacts with non-muscle myosin IIB (NMIIB) and Mllt11 loss–reduced NMIIB expression. We propose that the dysregulation of NMIIB underlies altered GC migratory behavior. Taken together, the findings reported herein demonstrate a role for Mllt11 in regulating neuronal migration within the developing cerebellum, which is necessary for its proper neuroanatomical organization.

将神经元组织成不同的层,即层状结构,是神经系统的一个共同特征。这一过程源于神经元发生和神经元迁移的直接耦合,在小脑的发育过程中起着至关重要的作用,小脑的结构表现出独特的折叠细胞结构,细胞排列成离散的层。神经元迁移的中断会导致各种神经发育障碍,因此了解分层的分子调控具有重要意义。我们报告了Mllt11/Af1q/Tcf7c(髓样/淋巴样或混合系白血病;易位到11号染色体/1q染色体上的All1融合基因,又称Mllt11转录辅助因子7;以下简称Mllt11)在小脑颗粒细胞(GCs)迁移中的作用。我们现在证明,Mllt11 在小脑颗粒细胞的切向迁移和径向迁移中都发挥作用。缺失 Mllt11 会导致 GC 前体在菱形唇区堆积,并减少成功填充发育中叶片的 GC 数量。因此,小脑叶片变小,小脑体积整体缩小。此外,对锚定中心的分析揭示了围产期叶细胞结构的破坏,包括伯格曼胶质细胞纤维方向的改变和普肯叶细胞板折叠的减少。最后,我们证明了 Mllt11 与非肌球蛋白 IIB(NMIIB)的相互作用以及 Mllt11 缺失会降低 NMIIB 的表达。我们认为,NMIIB 的失调是 GC 迁徙行为改变的基础。综上所述,本文报告的研究结果表明,Mllt11 在调节发育中小脑内神经元迁移方面发挥作用,而神经元迁移是小脑正常神经解剖组织所必需的。
{"title":"Cerebellar granule cell migration and folia development require Mllt11/Af1q/Tcf7c","authors":"Marley Blommers,&nbsp;Danielle Stanton-Turcotte,&nbsp;Emily A. Witt,&nbsp;Mohsen Heidari,&nbsp;Angelo Iulianella","doi":"10.1002/dneu.22936","DOIUrl":"10.1002/dneu.22936","url":null,"abstract":"<p>The organization of neurons into distinct layers, known as lamination, is a common feature of the nervous system. This process, which arises from the direct coupling of neurogenesis and neuronal migration, plays a crucial role in the development of the cerebellum, a structure exhibiting a distinct folding cytoarchitecture with cells arranged in discrete layers. Disruptions to neuronal migration can lead to various neurodevelopmental disorders, highlighting the significance of understanding the molecular regulation of lamination. We report a role Mllt11/Af1q/Tcf7c (myeloid/lymphoid or mixed-lineage leukemia; translocated to chromosome 11/All1 fused gene from chromosome 1q, also known as Mllt11 transcriptional cofactor 7; henceforth referred to Mllt11) in the migration of cerebellar granule cells (GCs). We now show that Mllt11 plays a role in both the tangential and radial migration of GCs. Loss of <i>Mllt11</i> led to an accumulation of GC precursors in the rhombic lip region and a reduction in the number of GCs successfully populating developing folia. Consequently, this results in smaller folia and an overall reduction in cerebellar size. Furthermore, analysis of the anchoring centers reveals disruptions in the perinatal folia cytoarchitecture, including alterations in the Bergmann glia fiber orientation and reduced infolding of the Purkinje cell plate. Lastly, we demonstrate that Mllt11 interacts with non-muscle myosin IIB (NMIIB) and <i>Mllt11</i> loss–reduced NMIIB expression. We propose that the dysregulation of NMIIB underlies altered GC migratory behavior. Taken together, the findings reported herein demonstrate a role for Mllt11 in regulating neuronal migration within the developing cerebellum, which is necessary for its proper neuroanatomical organization.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"84 2","pages":"74-92"},"PeriodicalIF":3.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/dneu.22936","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140174155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tracing the development of learned song preferences in the female zebra finch brain with functional magnetic resonance imaging 利用功能性磁共振成像追踪雌性斑马雀大脑中学习歌曲偏好的发展过程。
IF 3 4区 医学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-03-11 DOI: 10.1002/dneu.22934
Payal Arya, Nancy H. Kolodny, Sharon M. H. Gobes

In sexually dimorphic zebra finches (Taeniopygia guttata), only males learn to sing their father's song, whereas females learn to recognize the songs of their father or mate but cannot sing themselves. Memory of learned songs is behaviorally expressed in females by preferring familiar songs over unfamiliar ones. Auditory association regions such as the caudomedial mesopallium (CMM; or caudal mesopallium) have been shown to be key nodes in a network that supports preferences for learned songs in adult females. However, much less is known about how song preferences develop during the sensitive period of learning in juvenile female zebra finches. In this study, we used blood-oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to trace the development of a memory-based preference for the father's song in female zebra finches. Using BOLD fMRI, we found that only in adult female zebra finches with a preference for learned song over novel conspecific song, neural selectivity for the father's song was localized in the thalamus (dorsolateral nucleus of the medial thalamus; part of the anterior forebrain pathway, AFP) and in CMM. These brain regions also showed a selective response in juvenile female zebra finches, although activation was less prominent. These data reveal that neural responses in CMM, and perhaps also in the AFP, are shaped during development to support behavioral preferences for learned songs.

在性双态斑马雀(Taeniopygia guttata)中,只有雄性学会唱父亲的歌,而雌性学会识别父亲或配偶的歌,但自己不会唱。雌鸟对所学歌曲的记忆在行为上表现为喜欢熟悉的歌曲而不是不熟悉的歌曲。听觉联想区(如尾内侧中间丘(CMM;或尾部中间丘))已被证明是支持成年雌性偏好学过的歌曲的网络中的关键节点。然而,人们对幼年雌性斑马雀在学习歌曲的敏感期如何形成歌曲偏好还知之甚少。在这项研究中,我们利用血氧水平依赖性(BOLD)功能磁共振成像(fMRI)追踪了雌性斑马雀对父亲的歌声的记忆偏好的发展过程。通过 BOLD fMRI,我们发现只有在成年雌性斑马雀对已学过的歌声而不是新的同种歌声有偏好的情况下,对父亲的歌声的神经选择性才会被定位在丘脑(内侧丘脑背外侧核;前脑通路 AFP 的一部分)和 CMM 中。这些脑区在幼年雌斑马雀中也表现出选择性反应,但激活不那么明显。这些数据揭示了CMM(也许还有AFP)的神经反应是在发育过程中形成的,以支持对所学歌曲的行为偏好。
{"title":"Tracing the development of learned song preferences in the female zebra finch brain with functional magnetic resonance imaging","authors":"Payal Arya,&nbsp;Nancy H. Kolodny,&nbsp;Sharon M. H. Gobes","doi":"10.1002/dneu.22934","DOIUrl":"10.1002/dneu.22934","url":null,"abstract":"<p>In sexually dimorphic zebra finches (<i>Taeniopygia guttata</i>), only males learn to sing their father's song, whereas females learn to recognize the songs of their father or mate but cannot sing themselves. Memory of learned songs is behaviorally expressed in females by preferring familiar songs over unfamiliar ones. Auditory association regions such as the caudomedial mesopallium (CMM; or caudal mesopallium) have been shown to be key nodes in a network that supports preferences for learned songs in adult females. However, much less is known about how song preferences develop during the sensitive period of learning in juvenile female zebra finches. In this study, we used blood-oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to trace the development of a memory-based preference for the father's song in female zebra finches. Using BOLD fMRI, we found that only in adult female zebra finches with a preference for learned song over novel conspecific song, neural selectivity for the father's song was localized in the thalamus (dorsolateral nucleus of the medial thalamus; part of the anterior forebrain pathway, AFP) and in CMM. These brain regions also showed a selective response in juvenile female zebra finches, although activation was less prominent. These data reveal that neural responses in CMM, and perhaps also in the AFP, are shaped during development to support behavioral preferences for learned songs.</p>","PeriodicalId":11300,"journal":{"name":"Developmental Neurobiology","volume":"84 2","pages":"47-58"},"PeriodicalIF":3.0,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140093584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Developmental Neurobiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1