首页 > 最新文献

Drug Metabolism and Disposition最新文献

英文 中文
Characterization of human alcohol dehydrogenase 4 and aldehyde dehydrogenase 2 as enzymes involved in the formation of 5-carboxylpirfenidone, a major metabolite of pirfenidone. 参与吡非尼酮主要代谢物 5-羧基吡非尼酮形成的人类醇脱氢酶 4 和醛脱氢酶 2 的特征。
IF 4.4 3区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-29 DOI: 10.1124/dmd.124.001917
Rei Sato, Tatsuki Fukami, Kazuya Shimomura, Yongjie Zhang, Masataka Nakano, Miki Nakajima

Pirfenidone (PIR) is used to treatment of idiopathic pulmonary fibrosis. After oral administration, it is metabolized by cytochrome P450 1A2 to 5-hydroxylpirfenidone (5-OH PIR) and further oxidized to 5-carboxylpirfenidone (5-COOH PIR), a major metabolite excreted in the urine (90% of the dose). This study aimed to identify enzymes that catalyze the formation of 5-COOH PIR from 5-OH PIR in the human liver. 5-COOH PIR was formed from 5-OH PIR in the presence of NAD+ by human liver microsomes (HLM) more than by human liver cytosol (HLC), with the concomitant formation of the aldehyde form (5-CHO PIR) as an intermediate metabolite. By purifying enzymes from HLM, alcohol dehydrogenases (ADHs) were identified as candidate enzymes catalyzing 5-CHO PIR formation, although ADHs are localized in the cytoplasm. Among constructed recombinant ADH1-5 expressed in HEK293T cells, only ADH4 efficiently catalyzed 5-CHO PIR formation from 5-OH PIR with a K m value (29.0 {plus minus} 4.9 µM), which was close to that by HLM (59.1 {plus minus} 4.6 µM). In contrast to commercially available HLC, in-house prepared HLC clearly showed substantial 5-CHO PIR formation, and ADH4 protein levels were significantly (rs = 0.772, P < 0.0001) correlated with 5-CHO PIR formation in 25 in-house prepared HLC samples. Some components of the commercially available HLC may inhibit ADH4 activity. Disulfiram, an inhibitor of aldehyde dehydrogenases (ALDH), decreased 5-COOH PIR formation and increased 5-CHO PIR formation from 5-OH PIR in HLM. ALDH2 knockdown in HepG2 cells by siRNA decreased 5-COOH PIR formation by 61%. Significance Statement This study clarified that 5-COOH PIR formation from 5-OH PIR proceeds via a two-step oxidation reaction catalyzed by ADH4 and disulfiram-sensitive enzymes, including ALDH2. Inter-individual differences in the expression levels or functions of these enzymes could cause variations in the pharmacokinetics of PIR.

吡非尼酮(PIR)用于治疗特发性肺纤维化。口服后,它通过细胞色素 P450 1A2 代谢为 5-hydroxylpirfenidone (5-OH PIR),并进一步氧化为 5-boxylpirfenidone (5-COOH PIR),这是一种通过尿液排出的主要代谢物(占剂量的 90%)。本研究旨在确定在人体肝脏中催化 5-OH PIR 形成 5-COOH PIR 的酶。在有 NAD+ 存在的情况下,人肝微粒体(HLM)比人肝细胞浆(HLC)更容易从 5-OH PIR 生成 5-COOH PIR,同时形成醛形式(5-CHO PIR)作为中间代谢物。通过纯化 HLM 中的酶,发现醇脱氢酶(ADHs)是催化 5-CHO PIR 形成的候选酶,尽管 ADHs 定位于细胞质中。在 HEK293T 细胞中表达的重组 ADH1-5 中,只有 ADH4 能有效催化 5-OH PIR 生成 5-CHO PIR,其 K m 值(29.0{正负}4.9 µM)接近 HLM 的 K m 值(59.1{正负}4.6 µM)。与市售 HLC 不同的是,内部制备的 HLC 明显显示出大量 5-CHO PIR 的形成,在 25 个内部制备的 HLC 样品中,ADH4 蛋白水平与 5-CHO PIR 的形成显著相关(rs = 0.772,P < 0.0001)。市售 HLC 的某些成分可能会抑制 ADH4 的活性。醛脱氢酶(ALDH)抑制剂双硫仑可减少 5-COOH PIR 的形成,并增加 HLM 中 5-OH PIR 形成的 5-CHO PIR。通过 siRNA 敲除 HepG2 细胞中的 ALDH2 可使 5-COOH PIR 的形成减少 61%。意义声明 本研究阐明了 5-OH PIR 经由 ADH4 和对双硫仑敏感的酶,包括 ALDH2 催化的两步氧化反应形成 5-COOH PIR。这些酶的表达水平或功能的个体差异可能会导致 PIR 药代动力学的变化。
{"title":"Characterization of human alcohol dehydrogenase 4 and aldehyde dehydrogenase 2 as enzymes involved in the formation of 5-carboxylpirfenidone, a major metabolite of pirfenidone.","authors":"Rei Sato, Tatsuki Fukami, Kazuya Shimomura, Yongjie Zhang, Masataka Nakano, Miki Nakajima","doi":"10.1124/dmd.124.001917","DOIUrl":"10.1124/dmd.124.001917","url":null,"abstract":"<p><p>Pirfenidone (PIR) is used to treatment of idiopathic pulmonary fibrosis. After oral administration, it is metabolized by cytochrome P450 1A2 to 5-hydroxylpirfenidone (5-OH PIR) and further oxidized to 5-carboxylpirfenidone (5-COOH PIR), a major metabolite excreted in the urine (90% of the dose). This study aimed to identify enzymes that catalyze the formation of 5-COOH PIR from 5-OH PIR in the human liver. 5-COOH PIR was formed from 5-OH PIR in the presence of NAD<sup>+</sup> by human liver microsomes (HLM) more than by human liver cytosol (HLC), with the concomitant formation of the aldehyde form (5-CHO PIR) as an intermediate metabolite. By purifying enzymes from HLM, alcohol dehydrogenases (ADHs) were identified as candidate enzymes catalyzing 5-CHO PIR formation, although ADHs are localized in the cytoplasm. Among constructed recombinant ADH1-5 expressed in HEK293T cells, only ADH4 efficiently catalyzed 5-CHO PIR formation from 5-OH PIR with a <i>K</i> <sub>m</sub> value (29.0 {plus minus} 4.9 µM), which was close to that by HLM (59.1 {plus minus} 4.6 µM). In contrast to commercially available HLC, in-house prepared HLC clearly showed substantial 5-CHO PIR formation, and ADH4 protein levels were significantly (<i>rs</i> = 0.772, <i>P</i> < 0.0001) correlated with 5-CHO PIR formation in 25 in-house prepared HLC samples. Some components of the commercially available HLC may inhibit ADH4 activity. Disulfiram, an inhibitor of aldehyde dehydrogenases (ALDH), decreased 5-COOH PIR formation and increased 5-CHO PIR formation from 5-OH PIR in HLM. ALDH2 knockdown in HepG2 cells by siRNA decreased 5-COOH PIR formation by 61%. <b>Significance Statement</b> This study clarified that 5-COOH PIR formation from 5-OH PIR proceeds via a two-step oxidation reaction catalyzed by ADH4 and disulfiram-sensitive enzymes, including ALDH2. Inter-individual differences in the expression levels or functions of these enzymes could cause variations in the pharmacokinetics of PIR.</p>","PeriodicalId":11309,"journal":{"name":"Drug Metabolism and Disposition","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacokinetics and ADME Profiling of Tanimilast Following an Intravenous 14C-Microtracer co-administered with an Inhaled Dose in Healthy Male Individuals. 健康男性静脉注射 14C 微示踪剂和吸入剂量后他尼司特的药代动力学和 ADME 分析。
IF 4.4 3区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-29 DOI: 10.1124/dmd.124.001895
Michele Bassi, Veronica Puviani, Debora Santoro, Sonia Biondaro, Aida Emirova, Mirco Govoni

Tanimilast is an inhaled phosphodiesterase-4 inhibitor currently in phase 3 clinical development for treating chronic obstructive pulmonary disease (COPD) and asthma. This trial aimed to characterize the pharmacokinetics, mass balance, and metabolite profiling of tanimilast. Eight healthy male volunteers received a single dose of non-radiolabeled tanimilast via powder inhaler (NEXThaler® (3200μg)), followed by a concomitant intravenous (IV) infusion of a microtracer ([14C]-tanimilast: 18.5μg and 500nCi). Plasma, whole blood, urine, and feces samples were collected up to 240 hours post-dose to quantify non-radiolabeled tanimilast, [14C]-tanimilast, and total-[14C]. The inhaled absolute bioavailability of tanimilast was found to be approximately 50%. Following IV administration of [14C]-tanimilast, plasma clearance was 22 L/h, the steady-state volume of distribution was 201 L, and the half-life was shorter compared to inhaled administration (14 vs. 39 hours, respectively), suggesting that plasma elimination is limited by the absorption rate from the lungs. 79% (71% in feces; 8% in urine) of the IV dose was recovered in excreta as total-[14C]. [14C]-tanimilast was the major radioactive compound in plasma, while no recovery was observed in urine and only 0.3% was recovered in feces, indicating predominant elimination through metabolic route. Importantly, as far as no metabolites accounting for more than 10% of the circulating drug-related exposure in plasma or the administered dose in excreta were detected, no further qualification is required according to regulatory guidelines. This study design successfully characterized the absorption, distribution, and elimination of tanimilast, providing key pharmacokinetic parameters to support its clinical development and regulatory application. Significance Statement This trial investigates PK and ADME profile of tanimilast, an inhaled PDE4 inhibitor for COPD and asthma. Eight male volunteers received a dose of non-radiolabeled tanimilast via NEXThaler® and a microtracer IV dose. Results show pivotal PK results for the characterization of tanimilast, excretion route and quantification of significant metabolites, facilitating streamlined clinical development and regulatory approval.

他尼司特是一种吸入式磷酸二酯酶-4抑制剂,目前正处于治疗慢性阻塞性肺病(COPD)和哮喘的三期临床开发阶段。该试验旨在描述他尼司特的药代动力学、质量平衡和代谢物特征。八名健康男性志愿者通过粉末吸入器(NEXThaler®(3200微克))接受了单剂量无放射性标记的他尼司特,随后同时静脉注射了微量示踪剂([14C]-他尼司特:18.5微克和500nCi)。在用药后 240 小时内收集血浆、全血、尿液和粪便样本,以量化非放射性标记的他尼司特、[14C]-他尼司特和总[14C]。结果发现,他尼司特的吸入绝对生物利用度约为 50%。静脉注射[14C]-他尼司特后,血浆清除率为22升/小时,稳态分布容积为201升,半衰期比吸入给药短(分别为14小时和39小时),这表明血浆消除受到肺部吸收率的限制。79%的静脉注射剂量(71%在粪便中;8%在尿液中)在排泄物中以总[14C]的形式被回收。血浆中的[14C]-他尼司特是主要的放射性化合物,而尿液中没有回收,粪便中仅回收了0.3%,这表明主要通过代谢途径排出体外。重要的是,只要在血浆中未检测到占循环药物相关暴露量 10%以上的代谢物,或在排泄物中未检测到占给药剂量 10%以上的代谢物,就无需根据监管指南进行进一步鉴定。这项研究设计成功地描述了他尼司特的吸收、分布和消除,为其临床开发和监管应用提供了关键的药代动力学参数。意义声明 本试验研究了吸入式PDE4抑制剂他尼司特的PK和ADME特征,用于治疗慢性阻塞性肺病和哮喘。八名男性志愿者通过 NEXThaler® 和微量示踪剂静脉注射了一定剂量的无放射标记的他尼司特。结果显示,PK 结果对他尼司特的特征描述、排泄途径和重要代谢物的定量至关重要,有助于简化临床开发和监管审批。
{"title":"Pharmacokinetics and ADME Profiling of Tanimilast Following an Intravenous <sup>14</sup>C-Microtracer co-administered with an Inhaled Dose in Healthy Male Individuals.","authors":"Michele Bassi, Veronica Puviani, Debora Santoro, Sonia Biondaro, Aida Emirova, Mirco Govoni","doi":"10.1124/dmd.124.001895","DOIUrl":"10.1124/dmd.124.001895","url":null,"abstract":"<p><p>Tanimilast is an inhaled phosphodiesterase-4 inhibitor currently in phase 3 clinical development for treating chronic obstructive pulmonary disease (COPD) and asthma. This trial aimed to characterize the pharmacokinetics, mass balance, and metabolite profiling of tanimilast. Eight healthy male volunteers received a single dose of non-radiolabeled tanimilast via powder inhaler (NEXThaler<sup>®</sup> (3200μg)), followed by a concomitant intravenous (IV) infusion of a microtracer ([<sup>14</sup>C]-tanimilast: 18.5μg and 500nCi). Plasma, whole blood, urine, and feces samples were collected up to 240 hours post-dose to quantify non-radiolabeled tanimilast, [<sup>14</sup>C]-tanimilast, and total-[<sup>14</sup>C]. The inhaled absolute bioavailability of tanimilast was found to be approximately 50%. Following IV administration of [<sup>14</sup>C]-tanimilast, plasma clearance was 22 L/h, the steady-state volume of distribution was 201 L, and the half-life was shorter compared to inhaled administration (14 vs. 39 hours, respectively), suggesting that plasma elimination is limited by the absorption rate from the lungs. 79% (71% in feces; 8% in urine) of the IV dose was recovered in excreta as total-[<sup>14</sup>C]. [<sup>14</sup>C]-tanimilast was the major radioactive compound in plasma, while no recovery was observed in urine and only 0.3% was recovered in feces, indicating predominant elimination through metabolic route. Importantly, as far as no metabolites accounting for more than 10% of the circulating drug-related exposure in plasma or the administered dose in excreta were detected, no further qualification is required according to regulatory guidelines. This study design successfully characterized the absorption, distribution, and elimination of tanimilast, providing key pharmacokinetic parameters to support its clinical development and regulatory application. <b>Significance Statement</b> This trial investigates PK and ADME profile of tanimilast, an inhaled PDE4 inhibitor for COPD and asthma. Eight male volunteers received a dose of non-radiolabeled tanimilast via NEXThaler<sup>®</sup> and a microtracer IV dose. Results show pivotal PK results for the characterization of tanimilast, excretion route and quantification of significant metabolites, facilitating streamlined clinical development and regulatory approval.</p>","PeriodicalId":11309,"journal":{"name":"Drug Metabolism and Disposition","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Absolute Membrane Protein Abundance of P-gp, BCRP and MRPs in Term Human Placenta Tissue and Commonly Used Cell Systems: Application in PBPK Modeling of Placental Drug Disposition. 人胎盘组织和常用细胞系统中 P-gp、BCRP 和 MRPs 的绝对膜蛋白丰度:胎盘药物处置 PBPK 模型中的应用。
IF 4.4 3区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-21 DOI: 10.1124/dmd.124.001824
Zubida M Al-Majdoub, Jolien J M Freriksen, Angela Colbers, Jeroen van den Heuvel, Jan Koenderink, Khaled Abduljalil, Brahim Achour, Jill Barber, Rick Greupink, Amin Rostami-Hodjegan

The placenta acts as a barrier, excluding noxious substances whilst actively transferring nutrients to the fetus, mediated by various transporters. This study quantified the expression of key placental transporters in term human placenta (n=5) and BeWo, BeWo b30, and JEG-3 placenta cell lines. Combining these results with pregnancy physiologically-based pharmacokinetic (PBPK) modeling, we demonstrate the utility of proteomic analysis for predicting placental drug disposition and fetal exposure. Using targeted proteomics with QconCAT standards, we found significant expression of P-gp, BCRP, MRP2, MRP4, and MRP6 in the human placenta (0.05 - 0.25 pmol/mg membrane protein) with only regional differences observed for P-gp. Unexpectedly, both P-gp and BCRP were below the limit of quantification in the regularly used BeWo cells, indicating that this cell line may not be suitable for the study of placental P-gp and BCRP-mediated transport. In cellular and vesicular overexpression systems, P-gp and BCRP were detectable as expected. Vesicle batches showed consistent P-gp expression correlating with functional activity (N-methyl-quinidine (NMQ) transport). However, BCRP activity (Estrone 3-sulfate (E1S) transport) did not consistently align with expression levels. Incorporating in vitro transporter kinetic data, along with placental transporter abundance, into a PBPK model enabled the evaluation of fetal exposure. Simulation with a hypothetical drug indicated that estimating fetal exposure relies on the intrinsic clearances of relevant transporters. To minimize interlaboratory discrepancies, expression data was generated using consistent proteomic methodologies in the same lab. Integration of this data in pregnancy-PBPK modeling offers a promising tool to investigate maternal, placental and fetal drug exposure. Significance Statement This study quantified the expression of key transporters in human placenta and various placental cell lines, revealing significant expression variations. By integrating these data with PBPK modeling, the study highlights the importance of transporter abundance data in understanding and predicting placental drug disposition.

胎盘起着屏障的作用,在排除有害物质的同时,通过各种转运体积极地向胎儿输送营养物质。本研究定量检测了足月人类胎盘(n=5)以及 BeWo、BeWo b30 和 JEG-3 胎盘细胞系中主要胎盘转运体的表达。将这些结果与妊娠生理药代动力学(PBPK)模型相结合,我们证明了蛋白质组学分析在预测胎盘药物处置和胎儿暴露方面的实用性。通过使用 QconCAT 标准的靶向蛋白质组学,我们发现 P-gp、BCRP、MRP2、MRP4 和 MRP6 在人类胎盘中有显著表达(0.05 - 0.25 pmol/mg 膜蛋白),只有 P-gp 存在区域差异。意外的是,在常用的 BeWo 细胞中,P-gp 和 BCRP 均低于定量限,这表明该细胞系可能不适合研究胎盘 P-gp 和 BCRP 介导的转运。在细胞和囊泡过表达系统中,可以检测到预期的 P-gp 和 BCRP。囊泡批次显示出与功能活性(N-甲基喹啶(NMQ)转运)相关的一致的 P-gp 表达。然而,BCRP 的活性(3-硫酸雌酮(E1S)转运)与表达水平并不一致。将体外转运体动力学数据和胎盘转运体丰度纳入 PBPK 模型,可以评估胎儿的暴露情况。假定药物的模拟表明,胎儿暴露量的估算依赖于相关转运体的内在清除率。为了尽量减少实验室间的差异,在同一实验室使用一致的蛋白质组学方法生成了表达数据。将这些数据整合到妊娠-PBPK 模型中,为研究母体、胎盘和胎儿的药物暴露提供了一种很有前景的工具。意义声明 本研究量化了人类胎盘和各种胎盘细胞系中关键转运体的表达,揭示了显著的表达变化。通过将这些数据与 PBPK 模型相结合,该研究强调了转运体丰度数据在理解和预测胎盘药物处置方面的重要性。
{"title":"Absolute Membrane Protein Abundance of P-gp, BCRP and MRPs in Term Human Placenta Tissue and Commonly Used Cell Systems: Application in PBPK Modeling of Placental Drug Disposition.","authors":"Zubida M Al-Majdoub, Jolien J M Freriksen, Angela Colbers, Jeroen van den Heuvel, Jan Koenderink, Khaled Abduljalil, Brahim Achour, Jill Barber, Rick Greupink, Amin Rostami-Hodjegan","doi":"10.1124/dmd.124.001824","DOIUrl":"10.1124/dmd.124.001824","url":null,"abstract":"<p><p>The placenta acts as a barrier, excluding noxious substances whilst actively transferring nutrients to the fetus, mediated by various transporters. This study quantified the expression of key placental transporters in term human placenta (n=5) and BeWo, BeWo b30, and JEG-3 placenta cell lines. Combining these results with pregnancy physiologically-based pharmacokinetic (PBPK) modeling, we demonstrate the utility of proteomic analysis for predicting placental drug disposition and fetal exposure. Using targeted proteomics with QconCAT standards, we found significant expression of P-gp, BCRP, MRP2, MRP4, and MRP6 in the human placenta (0.05 - 0.25 pmol/mg membrane protein) with only regional differences observed for P-gp. Unexpectedly, both P-gp and BCRP were below the limit of quantification in the regularly used BeWo cells, indicating that this cell line may not be suitable for the study of placental P-gp and BCRP-mediated transport. In cellular and vesicular overexpression systems, P-gp and BCRP were detectable as expected. Vesicle batches showed consistent P-gp expression correlating with functional activity (N-methyl-quinidine (NMQ) transport). However, BCRP activity (Estrone 3-sulfate (E1S) transport) did not consistently align with expression levels. Incorporating in vitro transporter kinetic data, along with placental transporter abundance, into a PBPK model enabled the evaluation of fetal exposure. Simulation with a hypothetical drug indicated that estimating fetal exposure relies on the intrinsic clearances of relevant transporters. To minimize interlaboratory discrepancies, expression data was generated using consistent proteomic methodologies in the same lab. Integration of this data in pregnancy-PBPK modeling offers a promising tool to investigate maternal, placental and fetal drug exposure. <b>Significance Statement</b> This study quantified the expression of key transporters in human placenta and various placental cell lines, revealing significant expression variations. By integrating these data with PBPK modeling, the study highlights the importance of transporter abundance data in understanding and predicting placental drug disposition.</p>","PeriodicalId":11309,"journal":{"name":"Drug Metabolism and Disposition","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isoform-level expression of the constitutive androstane receptor (CAR or NR1I3) transcription factor better predicts the mRNA expression of the cytochrome P450s in human liver samples. 组成型雄烷受体(CAR 或 NR1I3)转录因子的同工酶水平表达能更好地预测人体肝脏样本中细胞色素 P450s 的 mRNA 表达。
IF 4.4 3区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-21 DOI: 10.1124/dmd.124.001923
Joseph M Collins, Danxin Wang

Many factors cause inter-person variability in the activity and expression of liver cytochrome P450 (CYP) drug-metabolizing enzymes, leading to variable drug exposure and treatment outcomes. Several liver-enriched transcription factors (TFs) are associated with CYP expression, with estrogen receptor alpha (ESR1) and constitutive androstane receptor (CAR or NR1I3) being the two top factors. ESR1 and NR1I3 undergo extensive alternative splicing that results in numerous splice isoforms, but how these splice isoforms associate with CYP expression is unknown. Here, we quantified 18 NR1I3 splice isoforms and the three most abundant ESR1 isoforms in 260 liver samples derived from African Americans (AA, n=125) and European Americans (EA, n=135). Our results showed variable splice isoform populations in the liver for both NR1I3 and ESR1. Multiple linear regression analyses revealed that, compared to gene-level NR1I3, isoform-level NR1I3 expression better predicted the mRNA expression of most CYPs and three UDP-glucuronosyltransferases (UGTs), while ESR1 isoforms improved predictive models for the UGTs and CYP2D6, but not for most CYPs. Also, different NR1I3 isoforms were associated with different CYPs, and the associations varied depending on sample ancestry. Surprisingly, non-canonical NR1I3 isoforms having retained introns (introns 2 or 6) were abundantly expressed and associated with the expression of most CYPs and UGTs, whereas the reference isoform (NR1I3-205) only associated with CYP2D6. Moreover, NR1I3 isoform diversity increased during the differentiation of induced pluripotent stem cells to hepatocytes, paralleling increasing CYP expression. These results suggest that isoform-level TF expression may help to explain variation in CYP or UGT expression between individuals. Significance Statement We quantified 18 NR1I3 splice isoforms and three ESR1 splice isoforms in 260 liver samples derived from AA and EA donors and found variable NR1I3 and ESR1 splice isoform expression in the liver. Multiple linear regression analysis showed that, compared to gene-level expression, isoform-level expression of NR1I3 and ESR1 better predicted the mRNA expression of some CYPs and UGTs, highlighting the importance of isoform-level analyses to enhance our understanding of gene transcriptional regulatory networks controlling the expression of drug-metabolizing enzymes.

许多因素会导致肝脏细胞色素 P450(CYP)药物代谢酶的活性和表达的人际变异,从而导致不同的药物暴露和治疗结果。几种富含肝脏的转录因子(TFs)与 CYP 的表达有关,其中雌激素受体α(ESR1)和组成型雄烷受体(CAR 或 NR1I3)是最主要的两个因子。ESR1 和 NR1I3 经过广泛的替代剪接,产生了许多剪接异构体,但这些剪接异构体如何与 CYP 表达相关尚不清楚。在这里,我们对来自非裔美国人(AA,n=125)和欧裔美国人(EA,n=135)的 260 份肝脏样本中的 18 种 NR1I3 剪接异构体和三种最丰富的 ESR1 异构体进行了量化。我们的研究结果表明,肝脏中 NR1I3 和 ESR1 的剪接同工酶群各不相同。多元线性回归分析显示,与基因水平的 NR1I3 相比,同工酶水平的 NR1I3 表达能更好地预测大多数 CYPs 和三种 UDP-葡萄糖醛酸转移酶(UGTs)的 mRNA 表达,而 ESR1 同工酶能改善 UGTs 和 CYP2D6 的预测模型,但不能预测大多数 CYPs。此外,不同的 NR1I3 同工酶与不同的 CYPs 有关联,且关联因样本血统而异。令人惊讶的是,保留了内含子(内含子 2 或 6)的非规范 NR1I3 同工型表达丰富,并与大多数 CYPs 和 UGTs 的表达相关,而参考同工型(NR1I3-205)仅与 CYP2D6 相关。此外,在诱导多能干细胞向肝细胞分化的过程中,NR1I3 同工酶多样性增加,与 CYP 表达的增加同步。这些结果表明,同工酶水平的 TF 表达可能有助于解释不同个体之间 CYP 或 UGT 表达的差异。意义声明 我们对来自 AA 和 EA 供体的 260 份肝脏样本中的 18 种 NR1I3 拼接同工酶和 3 种 ESR1 拼接同工酶进行了定量分析,发现肝脏中 NR1I3 和 ESR1 拼接同工酶的表达存在差异。多元线性回归分析表明,与基因水平的表达相比,NR1I3 和 ESR1 的同工酶水平表达能更好地预测某些 CYPs 和 UGTs 的 mRNA 表达,这凸显了同工酶水平分析对于加深我们对控制药物代谢酶表达的基因转录调控网络的了解的重要性。
{"title":"Isoform-level expression of the constitutive androstane receptor (CAR or NR1I3) transcription factor better predicts the mRNA expression of the cytochrome P450s in human liver samples.","authors":"Joseph M Collins, Danxin Wang","doi":"10.1124/dmd.124.001923","DOIUrl":"10.1124/dmd.124.001923","url":null,"abstract":"<p><p>Many factors cause inter-person variability in the activity and expression of liver cytochrome P450 (CYP) drug-metabolizing enzymes, leading to variable drug exposure and treatment outcomes. Several liver-enriched transcription factors (TFs) are associated with CYP expression, with estrogen receptor alpha (ESR1) and constitutive androstane receptor (CAR or NR1I3) being the two top factors. ESR1 and NR1I3 undergo extensive alternative splicing that results in numerous splice isoforms, but how these splice isoforms associate with CYP expression is unknown. Here, we quantified 18 NR1I3 splice isoforms and the three most abundant ESR1 isoforms in 260 liver samples derived from African Americans (AA, n=125) and European Americans (EA, n=135). Our results showed variable splice isoform populations in the liver for both NR1I3 and ESR1. Multiple linear regression analyses revealed that, compared to gene-level NR1I3, isoform-level NR1I3 expression better predicted the mRNA expression of most CYPs and three UDP-glucuronosyltransferases (UGTs), while ESR1 isoforms improved predictive models for the UGTs and CYP2D6, but not for most CYPs. Also, different NR1I3 isoforms were associated with different CYPs, and the associations varied depending on sample ancestry. Surprisingly, non-canonical NR1I3 isoforms having retained introns (introns 2 or 6) were abundantly expressed and associated with the expression of most CYPs and UGTs, whereas the reference isoform (NR1I3-205) only associated with CYP2D6. Moreover, NR1I3 isoform diversity increased during the differentiation of induced pluripotent stem cells to hepatocytes, paralleling increasing CYP expression. These results suggest that isoform-level TF expression may help to explain variation in CYP or UGT expression between individuals. <b>Significance Statement</b> We quantified 18 NR1I3 splice isoforms and three ESR1 splice isoforms in 260 liver samples derived from AA and EA donors and found variable NR1I3 and ESR1 splice isoform expression in the liver. Multiple linear regression analysis showed that, compared to gene-level expression, isoform-level expression of NR1I3 and ESR1 better predicted the mRNA expression of some CYPs and UGTs, highlighting the importance of isoform-level analyses to enhance our understanding of gene transcriptional regulatory networks controlling the expression of drug-metabolizing enzymes.</p>","PeriodicalId":11309,"journal":{"name":"Drug Metabolism and Disposition","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Environmentally Persistent Free Radicals stimulate CYP2E1-mediated generation of reactive oxygen species at the expense of substrate metabolism. 环境中的持久性自由基会刺激 CYP2E1 介导的活性氧生成,从而影响底物代谢。
IF 4.4 3区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-21 DOI: 10.1124/dmd.124.001939
George F Cawley, J Patrick Connick, Marilyn K Eyer, Wayne L Backes

Environmentally persistent free radicals (EPFRs) are a recently recognized component of particulate matter that cause respiratory and cardiovascular toxicity. The mechanism of EPFR toxicity appears to be related to their ability to generate reactive oxygen species (ROS), causing oxidative damage. EPFRs were shown to affect P450 function, inducing the expression of some forms through the Ah receptor. However, another characteristic of EPFRs lies in their ability to inhibit P450 activities. CYP2E1 is one of the P450s that is inhibited by EPFR (MCP230) exposure. As CYP2E1 is also known to generate ROS, it is important to understand the ability of EPFRs to influence the function of this enzyme and to identify the mechanisms involved. CYP2E1 was shown to be inhibited by EPFRs, and to a lesser extent by non-EPFR particles. As EPFR-mediated inhibition was more robust at subsaturating NADPH-cytochrome P450 reductase (POR) concentrations, disruption of POR·CYP2E1 complex formation and electron transfer were examined. Surprisingly, neither complex formation nor electron transfer between POR and CYP2E1 were inhibited by EPFRs. Examination of ROS production showed that MCP230 generated a greater amount of ROS than the non-EPFR CuO-Si. When a POR/CYP2E1-containing reconstituted system was added to the pollutant-particle systems there was a synergistic stimulation of ROS production. The results indicate that EPFRs cause inhibition of CYP2E1-mediated substrate metabolism, yet do not alter electron transfer and actually stimulate ROS generation. Taken together, the results are consistent with EPFRs affecting CYP2E1 function by inhibiting substrate metabolism and increasing the generation of ROS. Significance Statement Environmentally persistent free radicals affect CYP2E1 function by inhibition of monooxygenase activity. This inhibition is not due to disruption of the POR·CYP2E1 complex or inhibition of electron transfer, but due to uncoupling of NADPH and oxygen consumption from substrate metabolism to the generation of ROS. These results show that EPFRs block the metabolism of foreign compounds, and also synergistically stimulate the formation of reactive oxygen species that lead to oxidative damage within the organism.

环境持久性自由基(EPFRs)是最近公认的颗粒物成分,可导致呼吸道和心血管中毒。EPFR 的毒性机制似乎与它们产生活性氧(ROS)、造成氧化损伤的能力有关。研究表明,EPFR 会影响 P450 的功能,通过 Ah 受体诱导某些形式的 P450 表达。然而,EPFRs 的另一个特点是能够抑制 P450 的活性。CYP2E1 是受到 EPFR(MCP230)抑制的 P450 之一。众所周知,CYP2E1 也会产生 ROS,因此了解 EPFR 影响该酶功能的能力并确定其中的机制非常重要。研究表明,CYP2E1 会受到 EPFR 的抑制,其次是非 EPFR 颗粒。由于 EPFR 介导的抑制作用在 NADPH-细胞色素 P450 还原酶(POR)浓度过饱和时更为强烈,因此对 POR-CYP2E1 复合物的形成和电子传递的破坏进行了研究。令人惊讶的是,EPFRs 既没有抑制 POR 和 CYP2E1 之间的复合物形成,也没有抑制它们之间的电子传递。对 ROS 产生情况的研究表明,MCP230 产生的 ROS 量高于非 EPFR 的 CuO-Si。当在污染物-粒子系统中加入含有 POR/CYP2E1 的重组系统时,ROS 的产生会受到协同刺激。结果表明,EPFR 会抑制 CYP2E1 介导的底物代谢,但不会改变电子传递,反而会刺激 ROS 的产生。综合来看,这些结果与 EPFR 通过抑制底物代谢和增加 ROS 生成来影响 CYP2E1 功能的观点一致。意义声明 环境持久性自由基通过抑制单氧化酶的活性来影响 CYP2E1 的功能。这种抑制不是由于 POR-CYP2E1 复合物的破坏或电子传递的抑制,而是由于 NADPH 和氧消耗从底物代谢到 ROS 生成的脱钩。这些结果表明,EPFR 阻断了外来化合物的代谢,同时也协同刺激了活性氧的形成,从而导致生物体内的氧化损伤。
{"title":"Environmentally Persistent Free Radicals stimulate CYP2E1-mediated generation of reactive oxygen species at the expense of substrate metabolism.","authors":"George F Cawley, J Patrick Connick, Marilyn K Eyer, Wayne L Backes","doi":"10.1124/dmd.124.001939","DOIUrl":"10.1124/dmd.124.001939","url":null,"abstract":"<p><p>Environmentally persistent free radicals (EPFRs) are a recently recognized component of particulate matter that cause respiratory and cardiovascular toxicity. The mechanism of EPFR toxicity appears to be related to their ability to generate reactive oxygen species (ROS), causing oxidative damage. EPFRs were shown to affect P450 function, inducing the expression of some forms through the Ah receptor. However, another characteristic of EPFRs lies in their ability to inhibit P450 activities. CYP2E1 is one of the P450s that is inhibited by EPFR (MCP230) exposure. As CYP2E1 is also known to generate ROS, it is important to understand the ability of EPFRs to influence the function of this enzyme and to identify the mechanisms involved. CYP2E1 was shown to be inhibited by EPFRs, and to a lesser extent by non-EPFR particles. As EPFR-mediated inhibition was more robust at subsaturating NADPH-cytochrome P450 reductase (POR) concentrations, disruption of POR·CYP2E1 complex formation and electron transfer were examined. Surprisingly, neither complex formation nor electron transfer between POR and CYP2E1 were inhibited by EPFRs. Examination of ROS production showed that MCP230 generated a greater amount of ROS than the non-EPFR CuO-Si. When a POR/CYP2E1-containing reconstituted system was added to the pollutant-particle systems there was a synergistic stimulation of ROS production. The results indicate that EPFRs cause inhibition of CYP2E1-mediated substrate metabolism, yet do not alter electron transfer and actually stimulate ROS generation. Taken together, the results are consistent with EPFRs affecting CYP2E1 function by inhibiting substrate metabolism and increasing the generation of ROS. <b>Significance Statement</b> Environmentally persistent free radicals affect CYP2E1 function by inhibition of monooxygenase activity. This inhibition is not due to disruption of the POR·CYP2E1 complex or inhibition of electron transfer, but due to uncoupling of NADPH and oxygen consumption from substrate metabolism to the generation of ROS. These results show that EPFRs block the metabolism of foreign compounds, and also synergistically stimulate the formation of reactive oxygen species that lead to oxidative damage within the organism.</p>","PeriodicalId":11309,"journal":{"name":"Drug Metabolism and Disposition","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intestine vs. Liver Uncovering the Hidden major Metabolic organs of Silybin in Rats. 水飞蓟宾在大鼠体内隐藏的主要代谢器官。
IF 4.4 3区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-17 DOI: 10.1124/dmd.124.001817
Yuanbo Sun, Like Xie, Jing Zhang, Runing Liu, Hanbing Li, Yanquan Yang, Yapeng Wu, Ying Peng, Guangji Wang, Natalie Medlicott, Jianguo Sun

Silybin, extracted milk thistle, was a flavonolignan compound with hepatoprotective effect. Now it is commonly used in dietary supplements, functional foods, and nutraceuticals. However, the metabolism of silybin has not been systematically characterized in organisms to date. Therefore, we established a novel HPLC-Q-TOF/MS method to analyze and identify the prototype and metabolites of silybin in rats. Totally, 29 (out of 32) new metabolic pathways and 56 (out of 59) unreported metabolite products were detected. Moreover, we found that the liver had a high first-pass effect of 63.30%{plus minus}13.01 for silybin and only one metabolite was detected. And the metabolites identified in gastrointestinal tract possessed 88% of all (52 out of 59). At the same time, the high concentration of silybin in the livers also indicated large amounts of silybin may be accumulated in liver instead of being metabolized. These results indicated the primary metabolizing organ of silybin in rats was intestine rather than liver, which would also offer solid chemical foundation for exploring more promising health care products of silybin. Significance Statement This study confirmed the main metabolism place of silybin in rats were gastrointestinal tracts instead of livers and the intestinal microbes were closely involved. Then 29 (out of 32) metabolism pathways and 56 (out of 59) metabolites were identified for the first time in rats. And to further study the liver disposition of silybin, its hepatic first-pass effect was determined for the first time.

从奶蓟草中提取的水飞蓟宾是一种具有保肝作用的黄酮木脂素化合物。现在,水飞蓟宾已被广泛应用于膳食补充剂、功能性食品和营养保健品中。然而,迄今为止,水飞蓟宾在生物体内的代谢尚未得到系统研究。因此,我们建立了一种新型的 HPLC-Q-TOF/MS 方法来分析和鉴定水飞蓟宾在大鼠体内的原型和代谢物。结果发现,在 32 种新的代谢途径和 59 种未报道的代谢产物中,我们发现了 29 种(共 32 种)。此外,我们还发现肝脏对水飞蓟宾的首过效应高达 63.30%{正负}13.01,且只检测到一种代谢产物。而在胃肠道中发现的代谢物占全部代谢物的 88%(59 种中的 52 种)。同时,水飞蓟宾在肝脏中的高浓度也表明,大量水飞蓟宾可能积聚在肝脏中而没有被代谢掉。这些结果表明,水飞蓟宾在大鼠体内的主要代谢器官是肠道而不是肝脏,这也为探索更多有前景的水飞蓟宾保健品提供了坚实的化学基础。意义 本研究证实水飞蓟宾在大鼠体内的主要代谢器官是胃肠道而不是肝脏,而且肠道微生物与水飞蓟宾的代谢密切相关。研究首次发现了水飞蓟宾在大鼠体内的 32 条代谢途径中的 29 条,以及 59 种代谢物中的 56 种。为了进一步研究水飞蓟宾在肝脏的处置,还首次测定了水飞蓟宾在肝脏的首过效应。
{"title":"<b>Intestine vs. Liver</b> <b>?</b> <b>Uncovering the Hidden major Metabolic organs of Silybin in Rats</b>.","authors":"Yuanbo Sun, Like Xie, Jing Zhang, Runing Liu, Hanbing Li, Yanquan Yang, Yapeng Wu, Ying Peng, Guangji Wang, Natalie Medlicott, Jianguo Sun","doi":"10.1124/dmd.124.001817","DOIUrl":"10.1124/dmd.124.001817","url":null,"abstract":"<p><p>Silybin, extracted milk thistle, was a flavonolignan compound with hepatoprotective effect. Now it is commonly used in dietary supplements, functional foods, and nutraceuticals. However, the metabolism of silybin has not been systematically characterized in organisms to date. Therefore, we established a novel HPLC-Q-TOF/MS method to analyze and identify the prototype and metabolites of silybin in rats. Totally, 29 (out of 32) new metabolic pathways and 56 (out of 59) unreported metabolite products were detected. Moreover, we found that the liver had a high first-pass effect of 63.30%{plus minus}13.01 for silybin and only one metabolite was detected. And the metabolites identified in gastrointestinal tract possessed 88% of all (52 out of 59). At the same time, the high concentration of silybin in the livers also indicated large amounts of silybin may be accumulated in liver instead of being metabolized. These results indicated the primary metabolizing organ of silybin in rats was intestine rather than liver, which would also offer solid chemical foundation for exploring more promising health care products of silybin. <b>Significance Statement</b> This study confirmed the main metabolism place of silybin in rats were gastrointestinal tracts instead of livers and the intestinal microbes were closely involved. Then 29 (out of 32) metabolism pathways and 56 (out of 59) metabolites were identified for the first time in rats. And to further study the liver disposition of silybin, its hepatic first-pass effect was determined for the first time.</p>","PeriodicalId":11309,"journal":{"name":"Drug Metabolism and Disposition","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early Prediction and Impact Assessment of CYP3A4-Related Drug-Drug Interactions for Small-Molecule Anticancer Drugs Using Human-CYP3A4-Transgenic Mouse Models. 利用人类-CYP3A4 转基因小鼠模型对小分子抗癌药物的 CYP3A4 相关药物相互作用进行早期预测和影响评估。
IF 4.4 3区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-16 DOI: 10.1124/dmd.123.001530
David Damoiseaux, Jos H Beijnen, Alwin D R Huitema, Thomas P C Dorlo

Early detection of drug-drug interactions (DDIs) can facilitate timely drug development decisions, prevent unnecessary restrictions on patient enrollment, resulting in clinical study populations that are not representative of the indicated study population, and allow for appropriate dose adjustments to ensure safety in clinical trials. All of these factors contribute to a streamlined drug approval process and enhanced patient safety. Here we describe a new approach for early prediction of the magnitude of change in exposure for cytochrome P450 (P450) CYP3A4-related DDIs of small-molecule anticancer drugs based on the model-based extrapolation of human-CYP3A4-transgenic mice pharmacokinetics to humans. Victim drugs brigatinib and lorlatinib were evaluated with the new approach in combination with the perpetrator drugs itraconazole and rifampicin. Predictions of the magnitude of change in exposure deviated at most 0.99- to 1.31-fold from clinical trial results for inhibition with itraconazole, whereas exposure predictions for the induction with rifampicin were less accurate, with deviations of 0.22- to 0.48-fold. Results for the early prediction of DDIs and their clinical impact appear promising for CYP3A4 inhibition, but validation with more victim and perpetrator drugs is essential to evaluate the performance of the new method. SIGNIFICANCE STATEMENT: The described method offers an alternative for the early detection and assessment of potential clinical impact of CYP3A4-related drug-drug interactions. The model was able to adequately describe the inhibition of CYP3A4 metabolism and the subsequent magnitude of change in exposure. However, it was unable to accurately predict the magnitude of change in exposure of victim drugs in combination with an inducer.

及早发现药物间相互作用 (DDI) 可促进及时做出药物开发决策,防止对患者入组进行不必要的限制,导致临床研究人群不能代表指定研究人群,并允许进行适当的剂量调整,以确保临床试验的安全性。所有这些因素都有助于简化药物审批流程和提高患者安全性。在这里,我们介绍了一种新方法,即根据基于模型的人类-CYP3A4转基因小鼠药代动力学外推法,对小分子抗癌药物与细胞色素P450(CYP)3A4相关的DDIs暴露量变化幅度进行早期预测。采用新方法评估了受害者药物brigatinib和lorlatinib与肇事者药物伊曲康唑和利福平的联合用药情况。对于伊曲康唑的抑制作用,暴露量变化幅度的预测与临床试验结果的偏差最多为0.99至1.31倍,而对于利福平的诱导作用,暴露量预测的准确性较低,偏差为0.22至0.48倍。对于 CYP3A4 抑制,早期预测 DDIs 及其临床影响的结果似乎很有希望,但要评估新方法的性能,必须使用更多的受害药物和加害药物进行验证。意义声明 所描述的方法为早期检测和评估 CYP3A4 相关 DDIs 的潜在临床影响提供了一种替代方法。该模型能够充分描述 CYP3A4 代谢的抑制作用以及随后暴露量的变化幅度。但是,它无法准确预测与诱导剂合用的受害药物暴露量的变化幅度。
{"title":"Early Prediction and Impact Assessment of CYP3A4-Related Drug-Drug Interactions for Small-Molecule Anticancer Drugs Using Human-CYP3A4-Transgenic Mouse Models.","authors":"David Damoiseaux, Jos H Beijnen, Alwin D R Huitema, Thomas P C Dorlo","doi":"10.1124/dmd.123.001530","DOIUrl":"10.1124/dmd.123.001530","url":null,"abstract":"<p><p>Early detection of drug-drug interactions (DDIs) can facilitate timely drug development decisions, prevent unnecessary restrictions on patient enrollment, resulting in clinical study populations that are not representative of the indicated study population, and allow for appropriate dose adjustments to ensure safety in clinical trials. All of these factors contribute to a streamlined drug approval process and enhanced patient safety. Here we describe a new approach for early prediction of the magnitude of change in exposure for cytochrome P450 (P450) CYP3A4-related DDIs of small-molecule anticancer drugs based on the model-based extrapolation of human-CYP3A4-transgenic mice pharmacokinetics to humans. Victim drugs brigatinib and lorlatinib were evaluated with the new approach in combination with the perpetrator drugs itraconazole and rifampicin. Predictions of the magnitude of change in exposure deviated at most 0.99- to 1.31-fold from clinical trial results for inhibition with itraconazole, whereas exposure predictions for the induction with rifampicin were less accurate, with deviations of 0.22- to 0.48-fold. Results for the early prediction of DDIs and their clinical impact appear promising for CYP3A4 inhibition, but validation with more victim and perpetrator drugs is essential to evaluate the performance of the new method. SIGNIFICANCE STATEMENT: The described method offers an alternative for the early detection and assessment of potential clinical impact of CYP3A4-related drug-drug interactions. The model was able to adequately describe the inhibition of CYP3A4 metabolism and the subsequent magnitude of change in exposure. However, it was unable to accurately predict the magnitude of change in exposure of victim drugs in combination with an inducer.</p>","PeriodicalId":11309,"journal":{"name":"Drug Metabolism and Disposition","volume":" ","pages":"1217-1223"},"PeriodicalIF":4.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Roles of the ABCG2 Transporter in Protoporphyrin IX Distribution and Toxicity. ABCG2 转运体在原卟啉 IX 分布和毒性中的作用。
IF 4.4 3区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-16 DOI: 10.1124/dmd.123.001582
Qian Qi, Ruizhi Gu, Junjie Zhu, Karl E Anderson, Xiaochao Ma

ATP-binding cassette transporter subfamily G member 2 (ABCG2) is a membrane-bound transporter responsible for the efflux of various xenobiotics and endobiotics, including protoporphyrin IX (PPIX), an intermediate in the heme biosynthesis pathway. Certain genetic mutations and chemicals impair the conversion of PPIX to heme and/or increase PPIX production, leading to PPIX accumulation and toxicity. In mice, deficiency of ABCG2 protects against PPIX-mediated phototoxicity and hepatotoxicity by modulating PPIX distribution. In addition, in vitro studies revealed that ABCG2 inhibition increases the efficacy of PPIX-based photodynamic therapy by retaining PPIX inside target cells. In this review, we discuss the roles of ABCG2 in modulating the tissue distribution of PPIX, PPIX-mediated toxicity, and PPIX-based photodynamic therapy. SIGNIFICANCE STATEMENT: This review summarized the roles of ABCG2 in modulating PPIX distribution and highlighted the therapeutic potential of ABCG2 inhibitors for the management of PPIX-mediated toxicity.

ATP 结合盒转运体 G 亚家族成员 2(ABCG2)是一种膜结合转运体,负责各种异种生物和内生生物的外流,包括血红素生物合成途径中的中间体原卟啉 IX(PPIX)。某些基因突变和化学物质会影响 PPIX 向血红素的转化和/或增加 PPIX 的产生,从而导致 PPIX 的积累和毒性。在小鼠体内,ABCG2 的缺乏可通过调节 PPIX 的分布,防止 PPIX 介导的光毒性和肝毒性。此外,体外研究表明,抑制 ABCG2 可将 PPIX 保留在靶细胞内,从而提高基于 PPIX 的光动力疗法的疗效。在这篇综述中,我们讨论了 ABCG2 在调节 PPIX 的组织分布、PPIX 介导的毒性和基于 PPIX 的光动力疗法中的作用。意义声明 本综述总结了 ABCG2 在调节 PPIX 分布中的作用,并强调了 ABCG2 抑制剂在治疗 PPIX 介导的毒性方面的治疗潜力。
{"title":"Roles of the ABCG2 Transporter in Protoporphyrin IX Distribution and Toxicity.","authors":"Qian Qi, Ruizhi Gu, Junjie Zhu, Karl E Anderson, Xiaochao Ma","doi":"10.1124/dmd.123.001582","DOIUrl":"10.1124/dmd.123.001582","url":null,"abstract":"<p><p>ATP-binding cassette transporter subfamily G member 2 (ABCG2) is a membrane-bound transporter responsible for the efflux of various xenobiotics and endobiotics, including protoporphyrin IX (PPIX), an intermediate in the heme biosynthesis pathway. Certain genetic mutations and chemicals impair the conversion of PPIX to heme and/or increase PPIX production, leading to PPIX accumulation and toxicity. In mice, deficiency of ABCG2 protects against PPIX-mediated phototoxicity and hepatotoxicity by modulating PPIX distribution. In addition, in vitro studies revealed that ABCG2 inhibition increases the efficacy of PPIX-based photodynamic therapy by retaining PPIX inside target cells. In this review, we discuss the roles of ABCG2 in modulating the tissue distribution of PPIX, PPIX-mediated toxicity, and PPIX-based photodynamic therapy. SIGNIFICANCE STATEMENT: This review summarized the roles of ABCG2 in modulating PPIX distribution and highlighted the therapeutic potential of ABCG2 inhibitors for the management of PPIX-mediated toxicity.</p>","PeriodicalId":11309,"journal":{"name":"Drug Metabolism and Disposition","volume":" ","pages":"1201-1207"},"PeriodicalIF":4.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495668/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139729285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacometabolomics in Drug Disposition, Toxicity, and Precision Medicine. 药物代谢组学在药物处置、毒性和精准医疗中的应用。
IF 4.4 3区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-16 DOI: 10.1124/dmd.123.001074
George R Trevor, Yong Jin Lim, Bradley L Urquhart

The precision medicine initiative has driven a substantial change in the way scientists and health care practitioners think about diagnosing and treating disease. While it has long been recognized that drug response is determined by the intersection of genetic, environmental, and disease factors, improvements in technology have afforded precision medicine guided dosing of drugs to improve efficacy and reduce toxicity. Pharmacometabolomics aims to evaluate small molecule metabolites in plasma and/or urine to help evaluate mechanisms that predict and/or reflect drug efficacy and toxicity. In this mini review, we provide an overview of pharmacometabolomic approaches and methodologies. Relevant examples where metabolomic techniques have been used to better understand drug efficacy and toxicity in major depressive disorder and cancer chemotherapy are discussed. In addition, the utility of metabolomics in drug development and understanding drug metabolism, transport, and pharmacokinetics is reviewed. Pharmacometabolomic approaches can help describe factors mediating drug disposition, efficacy, and toxicity. While important advancements in this area have been made, there remain several challenges that must be overcome before this approach can be fully implemented into clinical drug therapy. SIGNIFICANCE STATEMENT: Pharmacometabolomics has emerged as an approach to identify metabolites that allow for implementation of precision medicine approaches to pharmacotherapy. This review article provides an overview of pharmacometabolomics including highlights of important examples.

精准医疗计划推动了科学家和医疗从业人员在诊断和治疗疾病方面的思维方式发生重大改变。虽然人们早已认识到药物反应是由遗传、环境和疾病因素共同决定的,但技术的进步为精准医疗提供了药物剂量指导,以提高疗效和减少毒性。药物代谢组学旨在评估血浆和/或尿液中的小分子代谢物,以帮助评估预测和/或反映药物疗效和毒性的机制。在这篇小型综述中,我们将概述药物代谢组学的途径和方法。文中讨论了代谢组学技术用于更好地了解药物在重度抑郁症和癌症化疗中的疗效和毒性的相关实例。此外,还综述了代谢组学在药物开发和了解药物代谢、转运和药代动力学方面的作用。药物代谢组学方法有助于了解介导药物处置、药效和毒性的因素。虽然这一领域已经取得了重要进展,但在将这种方法全面应用于临床药物治疗之前,仍有一些挑战必须克服。意义声明 药物代谢组学已成为一种识别代谢物的方法,可用于实施精准药物治疗。这篇综述文章概述了药物代谢组学,包括重要实例的重点介绍。
{"title":"Pharmacometabolomics in Drug Disposition, Toxicity, and Precision Medicine.","authors":"George R Trevor, Yong Jin Lim, Bradley L Urquhart","doi":"10.1124/dmd.123.001074","DOIUrl":"10.1124/dmd.123.001074","url":null,"abstract":"<p><p>The precision medicine initiative has driven a substantial change in the way scientists and health care practitioners think about diagnosing and treating disease. While it has long been recognized that drug response is determined by the intersection of genetic, environmental, and disease factors, improvements in technology have afforded precision medicine guided dosing of drugs to improve efficacy and reduce toxicity. Pharmacometabolomics aims to evaluate small molecule metabolites in plasma and/or urine to help evaluate mechanisms that predict and/or reflect drug efficacy and toxicity. In this mini review, we provide an overview of pharmacometabolomic approaches and methodologies. Relevant examples where metabolomic techniques have been used to better understand drug efficacy and toxicity in major depressive disorder and cancer chemotherapy are discussed. In addition, the utility of metabolomics in drug development and understanding drug metabolism, transport, and pharmacokinetics is reviewed. Pharmacometabolomic approaches can help describe factors mediating drug disposition, efficacy, and toxicity. While important advancements in this area have been made, there remain several challenges that must be overcome before this approach can be fully implemented into clinical drug therapy. SIGNIFICANCE STATEMENT: Pharmacometabolomics has emerged as an approach to identify metabolites that allow for implementation of precision medicine approaches to pharmacotherapy. This review article provides an overview of pharmacometabolomics including highlights of important examples.</p>","PeriodicalId":11309,"journal":{"name":"Drug Metabolism and Disposition","volume":" ","pages":"1187-1195"},"PeriodicalIF":4.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139478217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exogenous Pregnane X Receptor Does Not Undergo Liquid-Liquid Phase Separation in Nucleus under Cell-Based In Vitro Conditions. 外源性孕烷 X 受体在基于细胞的体外条件下不会在细胞核中发生液-液相分离。
IF 4.4 3区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-16 DOI: 10.1124/dmd.123.001570
Pengfei Zhao, Yue Gao, Yanying Zhou, Min Huang, Shicheng Fan, Huichang Bi

Pregnane X receptor (PXR) belongs to the nuclear receptor superfamily that plays a crucial role in hepatic physiologic and pathologic conditions. Phase separation is a process in which biomacromolecules aggregate and condense into a dense phase as liquid condensates and coexist with a dilute phase, contributing to various cellular and biologic functions. Until now, whether PXR could undergo phase separation remains unclear. This study aimed to investigate whether PXR undergoes phase separation. Analysis of the intrinsically disordered regions (IDRs) using algorithm tools indicated a low propensity of PXR to undergo phase separation. Experimental assays such as hyperosmotic stress, agonist treatment, and optoDroplets assay demonstrated the absence of phase separation for PXR. OptoDroplets assay revealed the inability of the fusion protein of Cry2 with PXR to form condensates upon blue light stimulation. Moreover, phase separation of PXR did not occur even though the mRNA and protein expression levels of PXR target, cytochrome P450 3A4, changed after sorbitol treatment. In conclusion, for the first time, these findings suggested that exogenous PXR does not undergo phase separation following activation or under hyperosmotic stress in nucleus of cells. SIGNIFICANCE STATEMENT: PXR plays a critical role in hepatic physiological and pathological processes. The present study clearly demonstrated that exogenous PXR does not undergo phase separation after activation by agonist or under hyperosmotic stress in nucleus. These findings may help understand PXR biology.

孕烷 X 受体(PXR)属于核受体超家族,在肝脏生理和病理状态中发挥着重要作用。相分离是指生物大分子聚集并凝结成液态凝结物的致密相与稀释相共存的过程,有助于实现各种细胞和生物功能。迄今为止,PXR 是否会发生相分离仍不清楚。本研究旨在探讨 PXR 是否会发生相分离。利用算法工具对其内在无序区(IDR)进行的分析表明,PXR 的相分离倾向较低。高渗压力、激动剂处理和光学滴液检测等实验检测表明,PXR 不存在相分离现象。光滴试验表明,Cry2 与 PXR 的融合蛋白在蓝光刺激下无法形成凝集物。此外,即使山梨醇处理后 PXR 靶标 CYP3A4 的 mRNA 和蛋白表达水平发生了变化,PXR 也没有发生相分离。总之,这些发现首次表明,外源 PXR 在激活后或细胞核内高渗压力下不会发生相分离。意义声明 PXR 在肝脏生理和病理过程中起着关键作用。本研究清楚地表明,外源 PXR 在细胞核中被激动剂激活后或在高渗应激状态下不会发生相分离。这些发现可能有助于了解 PXR 的生物学特性。
{"title":"Exogenous Pregnane X Receptor Does Not Undergo Liquid-Liquid Phase Separation in Nucleus under Cell-Based In Vitro Conditions.","authors":"Pengfei Zhao, Yue Gao, Yanying Zhou, Min Huang, Shicheng Fan, Huichang Bi","doi":"10.1124/dmd.123.001570","DOIUrl":"10.1124/dmd.123.001570","url":null,"abstract":"<p><p>Pregnane X receptor (PXR) belongs to the nuclear receptor superfamily that plays a crucial role in hepatic physiologic and pathologic conditions. Phase separation is a process in which biomacromolecules aggregate and condense into a dense phase as liquid condensates and coexist with a dilute phase, contributing to various cellular and biologic functions. Until now, whether PXR could undergo phase separation remains unclear. This study aimed to investigate whether PXR undergoes phase separation. Analysis of the intrinsically disordered regions (IDRs) using algorithm tools indicated a low propensity of PXR to undergo phase separation. Experimental assays such as hyperosmotic stress, agonist treatment, and optoDroplets assay demonstrated the absence of phase separation for PXR. OptoDroplets assay revealed the inability of the fusion protein of Cry2 with PXR to form condensates upon blue light stimulation. Moreover, phase separation of PXR did not occur even though the mRNA and protein expression levels of PXR target, cytochrome P450 3A4, changed after sorbitol treatment. In conclusion, for the first time, these findings suggested that exogenous PXR does not undergo phase separation following activation or under hyperosmotic stress in nucleus of cells. SIGNIFICANCE STATEMENT: PXR plays a critical role in hepatic physiological and pathological processes. The present study clearly demonstrated that exogenous PXR does not undergo phase separation after activation by agonist or under hyperosmotic stress in nucleus. These findings may help understand PXR biology.</p>","PeriodicalId":11309,"journal":{"name":"Drug Metabolism and Disposition","volume":" ","pages":"1161-1169"},"PeriodicalIF":4.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139650401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Drug Metabolism and Disposition
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1