首页 > 最新文献

Drug Delivery System最新文献

英文 中文
Cell therapeutics loaded with drug delivery system technology 载药系统技术的细胞疗法
Q4 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2023-01-25 DOI: 10.2745/dds.38.31
K. Kusamori, M. Nishikawa
{"title":"Cell therapeutics loaded with drug delivery system technology","authors":"K. Kusamori, M. Nishikawa","doi":"10.2745/dds.38.31","DOIUrl":"https://doi.org/10.2745/dds.38.31","url":null,"abstract":"","PeriodicalId":11331,"journal":{"name":"Drug Delivery System","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42216096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of therapeutic antibodies for the treatment of infection diseases and future aspect 感染性疾病治疗性抗体的研究进展及展望
Q4 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2022-11-25 DOI: 10.2745/dds.37.378
K. Haraya, Keisuke Gotanda, Rie Shiokawa, Maiko Hoshino, Chiyomi Kubo, T. Kuramochi
Since the late 1990s, therapeutic antibodies have been developed for various oncology and immunoinflammatory diseases. To date, more than 100 therapeutic antibodies have been approved in Japan, the U.S., and Europe for these indications. In contrast, the development of antibody drugs in the field of infectious diseases has been limited so far. The recent SARS-CoV-2 pandemic has highlighted the importance of therapeutic antibodies for infectious diseases as well as the development of drug delivery systems(DDS). This review summarizes the past development of antibody drugs for infectious diseases and provides a future perspective of how therapeutic antibodies can be developed by utilizing antibody engineering and DDS technologies.Alternate :抄録1990年代後半に、がん領域や免疫炎症性疾患領域において、抗体医薬品が画期的な治療効果を示して以降、さまざまな疾患領域において抗体医薬品の研究開発がなされ、現在までに日米欧で100品目を超える抗体医薬品が承認されている。感染症領域における抗体医薬品の開発は限られていたが、抗体工学の発展、SARS-CoV-2の感染の拡大により、感染症領域における抗体医薬品の重要性が注目されている。本稿では、これまでの感染症領域における抗体医薬品の開発と、抗体工学やDDS技術の進展に伴う今後の抗体医薬品の展望を概説する。
Since the late 1990s,therapeutic antibodies have been developed for various oncology and immunoinflammatory diseases. Todate, more than 100 therapeutic antibodies have been approved in Japan, the u.s.,and Europe for these indications. In contrast,antibody development of drugs in the field of infectious diseases has been limited so far. therecent SARS-CoV-2 pandemic has highlighted the importance of therapeutic antibodies for infectiousdiseases as well as the development of drug delivery systems (DDS) . This review summarizes the pastdevelopment of antibody drugs for infectious diseases and provides a future perspective of howtherapeutic antibodies can be developed by utilizing antibody engineering and DDStechnologies.alternate20世纪90年代后期,在癌症领域和免疫炎症性疾病领域,抗体药物显示出划时代的治疗效果后,在各种各样的疾病领域,抗体药物的研究开发被广泛应用,目前在日美欧已有超过100种抗品种。身体医药品被批准了。传染病领域的抗体药物的开发一直是有限的,但是随着抗体工程的发展,SARS-CoV-2感染的扩大,传染病领域的抗体药物的重要性受到关注。本文概述了到目前为止传染病领域的抗体医药品的开发,以及随着抗体工程和DDS技术的发展对今后抗体医药品的展望。
{"title":"Development of therapeutic antibodies for the treatment of infection diseases and future aspect","authors":"K. Haraya, Keisuke Gotanda, Rie Shiokawa, Maiko Hoshino, Chiyomi Kubo, T. Kuramochi","doi":"10.2745/dds.37.378","DOIUrl":"https://doi.org/10.2745/dds.37.378","url":null,"abstract":"Since the late 1990s, therapeutic antibodies have been developed for various oncology and immunoinflammatory diseases. To date, more than 100 therapeutic antibodies have been approved in Japan, the U.S., and Europe for these indications. In contrast, the development of antibody drugs in the field of infectious diseases has been limited so far. The recent SARS-CoV-2 pandemic has highlighted the importance of therapeutic antibodies for infectious diseases as well as the development of drug delivery systems(DDS). This review summarizes the past development of antibody drugs for infectious diseases and provides a future perspective of how therapeutic antibodies can be developed by utilizing antibody engineering and DDS technologies.Alternate :抄録1990年代後半に、がん領域や免疫炎症性疾患領域において、抗体医薬品が画期的な治療効果を示して以降、さまざまな疾患領域において抗体医薬品の研究開発がなされ、現在までに日米欧で100品目を超える抗体医薬品が承認されている。感染症領域における抗体医薬品の開発は限られていたが、抗体工学の発展、SARS-CoV-2の感染の拡大により、感染症領域における抗体医薬品の重要性が注目されている。本稿では、これまでの感染症領域における抗体医薬品の開発と、抗体工学やDDS技術の進展に伴う今後の抗体医薬品の展望を概説する。","PeriodicalId":11331,"journal":{"name":"Drug Delivery System","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48718958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
DDS for combating infectious diseases 对抗传染病的DDS
Q4 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2022-11-25 DOI: 10.2745/dds.37.371
Y. Yoshioka
{"title":"DDS for combating infectious diseases","authors":"Y. Yoshioka","doi":"10.2745/dds.37.371","DOIUrl":"https://doi.org/10.2745/dds.37.371","url":null,"abstract":"","PeriodicalId":11331,"journal":{"name":"Drug Delivery System","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45428467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silk fibroin as a medical material 医用丝素蛋白
Q4 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2022-11-25 DOI: 10.2745/dds.37.448
Wei-bo Xu
{"title":"Silk fibroin as a medical material","authors":"Wei-bo Xu","doi":"10.2745/dds.37.448","DOIUrl":"https://doi.org/10.2745/dds.37.448","url":null,"abstract":"","PeriodicalId":11331,"journal":{"name":"Drug Delivery System","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44826474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Past, present and future of infectious diseases 传染病的过去、现在和未来
Q4 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2022-11-25 DOI: 10.2745/dds.37.372
Y. Matsuura
The history of humankind has been a battle against infectious diseases, and highly lethal viral infections have appeared many times. Even in Japan, one-fourth of the population was lost due to smallpox during the Nara period. In the modern era, effective vaccines and drugs were developed, and everyone was optimistic that infectious diseases could be eradicated from the earth by the end of the 20 th century. However, infectious diseases such as AIDS, influenza, SARS, and MERS emerged. In particular, the novel coronavirus pandemic that occurred in Wuhan, China, at the end of 2019 exposed the vulnerability of modern society to infectious diseases. Furthermore, infectious diseases are undergoing significant changes due to human factors such as globalization and the destruction of nature. In this review, I would like to outline the infectious diseases that humans have experienced so far and introduce the fight against the new coronavirus and future infectious disease countermeasures.Copyright © 2022, Japan Society of Drug Delivery System. All rights reserved.
人类的历史一直是一场与传染病的斗争,高度致命的病毒感染曾多次出现。即使在日本,奈良时期也有四分之一的人口因天花而死亡。在现代,有效的疫苗和药物被开发出来,每个人都乐观地认为传染病可以在20世纪末从地球上根除。然而,艾滋病、流感、非典、中东呼吸综合征等传染病相继出现。特别是2019年底发生在中国武汉的新型冠状病毒大流行,暴露了现代社会在传染病面前的脆弱性。此外,由于全球化和自然破坏等人为因素,传染病正在发生重大变化。在这篇综述中,我将概述迄今为止人类所经历的传染病,并介绍与新型冠状病毒的斗争和未来的传染病对策。版权所有©2022,日本药物输送系统协会。版权所有。
{"title":"Past, present and future of infectious diseases","authors":"Y. Matsuura","doi":"10.2745/dds.37.372","DOIUrl":"https://doi.org/10.2745/dds.37.372","url":null,"abstract":"The history of humankind has been a battle against infectious diseases, and highly lethal viral infections have appeared many times. Even in Japan, one-fourth of the population was lost due to smallpox during the Nara period. In the modern era, effective vaccines and drugs were developed, and everyone was optimistic that infectious diseases could be eradicated from the earth by the end of the 20 th century. However, infectious diseases such as AIDS, influenza, SARS, and MERS emerged. In particular, the novel coronavirus pandemic that occurred in Wuhan, China, at the end of 2019 exposed the vulnerability of modern society to infectious diseases. Furthermore, infectious diseases are undergoing significant changes due to human factors such as globalization and the destruction of nature. In this review, I would like to outline the infectious diseases that humans have experienced so far and introduce the fight against the new coronavirus and future infectious disease countermeasures.Copyright © 2022, Japan Society of Drug Delivery System. All rights reserved.","PeriodicalId":11331,"journal":{"name":"Drug Delivery System","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44729102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adenovirus vector vaccines 腺病毒载体疫苗
Q4 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2022-11-25 DOI: 10.2745/dds.37.421
H. Mizuguchi, M. Tachibana, F. Sakurai
Recently, importance of vaccines for treatment and prevention of emerging and re-emerging infectious diseases has been re-recognized. A replication-incompetent adenovirus(Ad) vector vaccine expressing virus antigen proteins is one of the most advanced platforms as a novel vaccine because an Ad vector vaccine can be rapidly applicable to pandemic. In this review, we describe the basic properties of an Ad vector for vaccine, in addition to the summary of the development of an Ad vector vaccine for emerging and re-emerging infectious diseases, including Coronavirus disease 2019(COVID-19), worldwide.Alternate :抄録非増殖型アデノウイルスベクターは、in vivoへの直接投与において優れた遺伝子導入活性を示すことから、病原体由来の抗原タンパク質を発現させることにより、新興・再興感染症に対するワクチンベクターとして積極的な開発が進められてきた。最近では、新型コロナウイルス感染症(COVID-19)に対するワクチンとして、欧米中露において迅速な実用化がなされた。本稿では、アデノウイルスベクターの特性、COVID-19に対するアデノウイルスベクターワクチンの特徴、およびアデノウイルスベクターワクチンの可能性について解説する。
recently,importance of vaccines for treatment and prevention of emerging and re-emerging infectious diseaseshas been re-recognized. A replication-incompetent adenovirus (Ad) vector vaccine expressing virusantigen proteins is one of the most高级platforms as a novel vaccine because an Ad vectorvaccine can be rapidly applicable to pandemic. In this review,we describe the basic properties of an Ad vector for vaccinein addition to the summary of the development of an Ad vector vaccine for emerging and re-emerginginfectious diseases, including Coronavirus disease 2019 (COVID-19),worldwide.Alternate:摘要非增殖腺病毒载体是in由于在直接给vivo的过程中显示出了出色的基因导入活性,所以通过表达来自病原体的抗原蛋白质,积极开发了针对新兴、再兴感染症的疫苗载体。最近,作为针对新型冠状病毒感染(COVID-19)的疫苗,在欧美、中俄迅速实现了实用化。本文将对腺病毒载体的特性、针对COVID-19的腺病毒载体疫苗的特征以及腺病毒载体疫苗的潜力进行讲解。
{"title":"Adenovirus vector vaccines","authors":"H. Mizuguchi, M. Tachibana, F. Sakurai","doi":"10.2745/dds.37.421","DOIUrl":"https://doi.org/10.2745/dds.37.421","url":null,"abstract":"Recently, importance of vaccines for treatment and prevention of emerging and re-emerging infectious diseases has been re-recognized. A replication-incompetent adenovirus(Ad) vector vaccine expressing virus antigen proteins is one of the most advanced platforms as a novel vaccine because an Ad vector vaccine can be rapidly applicable to pandemic. In this review, we describe the basic properties of an Ad vector for vaccine, in addition to the summary of the development of an Ad vector vaccine for emerging and re-emerging infectious diseases, including Coronavirus disease 2019(COVID-19), worldwide.Alternate :抄録非増殖型アデノウイルスベクターは、in vivoへの直接投与において優れた遺伝子導入活性を示すことから、病原体由来の抗原タンパク質を発現させることにより、新興・再興感染症に対するワクチンベクターとして積極的な開発が進められてきた。最近では、新型コロナウイルス感染症(COVID-19)に対するワクチンとして、欧米中露において迅速な実用化がなされた。本稿では、アデノウイルスベクターの特性、COVID-19に対するアデノウイルスベクターワクチンの特徴、およびアデノウイルスベクターワクチンの可能性について解説する。","PeriodicalId":11331,"journal":{"name":"Drug Delivery System","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45552030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of B cell-targeted vaccines utilizing immune responses against PEG 利用PEG免疫应答的B细胞靶向疫苗的研制
Q4 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2022-11-25 DOI: 10.2745/dds.37.450
Taro Shimizu
{"title":"Development of B cell-targeted vaccines utilizing immune responses against PEG","authors":"Taro Shimizu","doi":"10.2745/dds.37.450","DOIUrl":"https://doi.org/10.2745/dds.37.450","url":null,"abstract":"","PeriodicalId":11331,"journal":{"name":"Drug Delivery System","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49184497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of LONASENⓇTape, the world’s first transdermal antipsychotic drug 世界上第一种经皮抗精神病药物LONASSENⓇTape的开发
Q4 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2022-11-25 DOI: 10.2745/dds.37.438
Masayasu Tanaka
{"title":"Development of LONASENⓇTape, the world’s first transdermal antipsychotic drug","authors":"Masayasu Tanaka","doi":"10.2745/dds.37.438","DOIUrl":"https://doi.org/10.2745/dds.37.438","url":null,"abstract":"","PeriodicalId":11331,"journal":{"name":"Drug Delivery System","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49201868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of indigestible IgA antibody for restoring microbiome balance 用于恢复微生物组平衡的难消化IgA抗体的研制
Q4 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2022-11-25 DOI: 10.2745/dds.37.395
R. Shinkura
Dysbiosis, especially in the gut plays a crucial role in the pathogenesis of a wide variety of diseases, including inflammatory bowel disease, colorectal cancer, cardiovascular disease, obesity, diabetes and multiple sclerosis. At mucosal surfaces, mucosal polymeric immunoglobulin A(IgA)antibodies are known to be important to regulate the gut microbiota as well as to exclude infection induced by pathogenic bacteria or virus such as influenza and SARS-CoV-2(severe acute respiratory syndrome coronavirus 2). Since the 1970s, oral administration of IgA or IgG antibodies has been performed against infectious enteritis caused by pathogenic Escherichia coli or Clostridioides difficile. However, none of them has been successfully developed as an antibody drug up to now. Although IgA is well known to modulate the gut commensal microbiota, the therapeutic IgA drugs to treat dysbiosis has not been developed. Here, we discuss the advantages of therapeutic IgA antibodies.Alternate :抄録Dysbiosisは、健康な微生物叢と比較した微生物組成の変化であり、腸内微生物多様性の減少および微生物分類群の変化を特徴とする。腸内のdysbiosisはまた、炎症性腸疾患、結腸直腸がん、心血管疾患、肥満、糖尿病および多発性硬化症を含むさまざまな疾患の病因において重要な役割を果たすと提唱されている。腸の多量体免疫グロブリンA(IgA)抗体は、腸内微生物叢を調節するだけではなく、病原性細菌、インフルエンザやSARS-CoV-2(重症急性呼吸器症候群コロナウイルス2)などのウイルス感染を粘膜部位から排除するのに重要であることが、多くのエビデンスから示されている。1970年代以降、治療用IgAまたはIgGの経口投与試験が、主に病原性大腸菌またはディフィシル菌によって引き起こされる感染性腸炎を治療するために行われてきた。しかし、現在まで臨床応用として開発に成功したものはない。腸内病原体に対する防御機能に加えて、IgAは腸内共生微生物叢を調節して共生に導くことがよく知られているが、dysbiosisを治療するためのIgA治療薬の開発も進んでいない。本稿では、治療用IgA抗体の利点とその開発について議論する。
Dysbiosis,especially in the gut plays a crucial role in the pathogenesis of a wide variety of diseases,including inflammatory bowel disease,colorectal cancer,cardiovascular disease,obesity,diabetes and multiple sclerosis。At mucosal surfaces,mucosal polymeric immunogloblin A(IgA)antibodies are known to be important to regulate the gut microbiota as well as to exclude infection induced by pathogenic bacteria or virus such as influenza and SARS-Cov-2(severe acute respiratory syndroname)。Since the 1970s,oral administration of IgA or IgG antibodies has been performed against infectious enteritis caused bypathogenic Escherichia coli or Clostridioides difficile。However,none of them has been successfully developed asan antibody drug up to now。Although IgA is well known to modulate the gut commensal microbiota,the therapeutic IgA drugs to treat dysbiosis has not been developed。Here,we discuss the advantages of therapeutic IgA antibodies。Alternate:抄录Dysbiosis是与健康微生物丛相比微生物组成的变化,其特征在于肠内微生物多样性减少和微生物分类群的变化。肠内dysbiosis还被认为在各种疾病的病因中起重要作用,包括炎症性肠病、结直肠癌、心血管疾病、肥胖、糖尿病和多发性硬化。许多证据表明,肠多聚体免疫球蛋白A(IgA)抗体不仅调节肠内微生物丛,而且对从粘膜部位排除病原性细菌、流感和SARS-COV-2(重症急性呼吸综合征冠状病毒2)等病毒感染很重要。自20世纪70年代以来,已经进行了治疗IgA或IgG的口服试验,以治疗主要由致病性大肠杆菌或分枝杆菌引起的感染性肠炎。但是,到目前为止,还没有作为临床应用成功开发的。除了对肠内病原体的防御功能外,已知IgA调节肠内共生微生物丛引导共生,但用于治疗dysbiosis的IgA治疗药物的开发也没有进展。本文讨论IgA抗体治疗的优点及其发展。
{"title":"Development of indigestible IgA antibody for restoring microbiome balance","authors":"R. Shinkura","doi":"10.2745/dds.37.395","DOIUrl":"https://doi.org/10.2745/dds.37.395","url":null,"abstract":"Dysbiosis, especially in the gut plays a crucial role in the pathogenesis of a wide variety of diseases, including inflammatory bowel disease, colorectal cancer, cardiovascular disease, obesity, diabetes and multiple sclerosis. At mucosal surfaces, mucosal polymeric immunoglobulin A(IgA)antibodies are known to be important to regulate the gut microbiota as well as to exclude infection induced by pathogenic bacteria or virus such as influenza and SARS-CoV-2(severe acute respiratory syndrome coronavirus 2). Since the 1970s, oral administration of IgA or IgG antibodies has been performed against infectious enteritis caused by pathogenic Escherichia coli or Clostridioides difficile. However, none of them has been successfully developed as an antibody drug up to now. Although IgA is well known to modulate the gut commensal microbiota, the therapeutic IgA drugs to treat dysbiosis has not been developed. Here, we discuss the advantages of therapeutic IgA antibodies.Alternate :抄録Dysbiosisは、健康な微生物叢と比較した微生物組成の変化であり、腸内微生物多様性の減少および微生物分類群の変化を特徴とする。腸内のdysbiosisはまた、炎症性腸疾患、結腸直腸がん、心血管疾患、肥満、糖尿病および多発性硬化症を含むさまざまな疾患の病因において重要な役割を果たすと提唱されている。腸の多量体免疫グロブリンA(IgA)抗体は、腸内微生物叢を調節するだけではなく、病原性細菌、インフルエンザやSARS-CoV-2(重症急性呼吸器症候群コロナウイルス2)などのウイルス感染を粘膜部位から排除するのに重要であることが、多くのエビデンスから示されている。1970年代以降、治療用IgAまたはIgGの経口投与試験が、主に病原性大腸菌またはディフィシル菌によって引き起こされる感染性腸炎を治療するために行われてきた。しかし、現在まで臨床応用として開発に成功したものはない。腸内病原体に対する防御機能に加えて、IgAは腸内共生微生物叢を調節して共生に導くことがよく知られているが、dysbiosisを治療するためのIgA治療薬の開発も進んでいない。本稿では、治療用IgA抗体の利点とその開発について議論する。","PeriodicalId":11331,"journal":{"name":"Drug Delivery System","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42229853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Viral vector vaccines: efforts to develop vaccines against emerging infectious diseases 病毒载体疫苗:努力开发针对新发传染病的疫苗
Q4 Pharmacology, Toxicology and Pharmaceutics Pub Date : 2022-11-25 DOI: 10.2745/dds.37.429
Tokiko Watanabe
Vaccines are one of the most effective means of preventing viral infections. Since Edward Jenner invented the world's first vaccine in 1796, against smallpox, various types of vaccine have been developed, including inactivated vaccines, attenuated live vaccines, recombinant protein vaccines, viral vector vaccines and nucleic acid vaccines. Viral vector vaccines and nucleic acid vaccines (mRNA vaccines and DNA vaccines) have been developed most recently. In these vaccines, genes encoding viral proteins that serve as antigens are introduced into the body. The viral vector is an excellent vaccine delivery system that efficiently delivers antigen genes to target cells, and has been utilized for vaccine development against a variety of emerging infectious diseases, including AIDS, malaria, Ebola hemorrhagic fever, dengue fever, and most recently COVID-19. Here, we provide an overview of viral vector vaccines and discuss recent efforts to develop vaccines against emerging infectious diseases.Alternate :抄録ウイルス性感染症を予防するうえで、ワクチンは最も有効な手段の一つである。1976年、エドワード・ジェンナーが世界初のワクチンである種痘を発明して以来、さまざまなウイルス性感染症に対して、不活化ワクチン、弱毒生ワクチン、組換えタンパクワクチン、ウイルスベクターワクチン、核酸ワクチンなど、多様なプラットフォームに基づくワクチン開発が進められてきた。本稿では、数あるワクチンプラットフォームの中から、ウイルスベクターワクチンに着目して、いくつかの例をあげて概説するとともに、近年、国際的な問題となっている新興感染症に対するワクチン開発などの取り組みについても述べる。
疫苗是预防病毒感染最有效的手段之一。自1796年爱德华·詹纳(Edward Jenner)发明世界上第一种针对天花的疫苗以来,各种类型的疫苗被开发出来,包括灭活疫苗、减毒活疫苗、重组蛋白疫苗、病毒载体疫苗和核酸疫苗。病毒载体疫苗和核酸疫苗(mRNA疫苗和DNA疫苗)是最近才开发出来的。在这些疫苗中,编码病毒蛋白的基因作为抗原被引入体内。病毒载体是一种优秀的疫苗传递系统,可以有效地将抗原基因传递到靶细胞,已被用于针对艾滋病、疟疾、埃博拉出血热、登革热和最近的COVID-19等多种新出现的传染病的疫苗开发。在这里,我们提供了病毒载体疫苗的概述,并讨论了最近的努力开发疫苗针对新发传染病。另:抄録ウイルス性感染症を予防するうえで,ワクチンは最も有効な手段の一つである。1976年,エドワード・ジェンナーが世界初のワクチンである種痘を発明して以来,さまざまなウイルス性感染症に対して,不活化ワクチン,弱毒生ワクチン,組換えタンパクワクチン,ウイルスベクターワクチン,核酸ワクチンなど,多様なプラットフォームに基づくワクチン開発が進められてきた。本稿では,数あるワクチンプラットフォームの中から,ウイルスベクターワクチンに着目して,いくつかの例をあげて概説するとともに,近年,国際的な問題となっている新興感染症に対するワクチン開発などの取り組みについても述べる。
{"title":"Viral vector vaccines: efforts to develop vaccines against emerging infectious diseases","authors":"Tokiko Watanabe","doi":"10.2745/dds.37.429","DOIUrl":"https://doi.org/10.2745/dds.37.429","url":null,"abstract":"Vaccines are one of the most effective means of preventing viral infections. Since Edward Jenner invented the world's first vaccine in 1796, against smallpox, various types of vaccine have been developed, including inactivated vaccines, attenuated live vaccines, recombinant protein vaccines, viral vector vaccines and nucleic acid vaccines. Viral vector vaccines and nucleic acid vaccines (mRNA vaccines and DNA vaccines) have been developed most recently. In these vaccines, genes encoding viral proteins that serve as antigens are introduced into the body. The viral vector is an excellent vaccine delivery system that efficiently delivers antigen genes to target cells, and has been utilized for vaccine development against a variety of emerging infectious diseases, including AIDS, malaria, Ebola hemorrhagic fever, dengue fever, and most recently COVID-19. Here, we provide an overview of viral vector vaccines and discuss recent efforts to develop vaccines against emerging infectious diseases.Alternate :抄録ウイルス性感染症を予防するうえで、ワクチンは最も有効な手段の一つである。1976年、エドワード・ジェンナーが世界初のワクチンである種痘を発明して以来、さまざまなウイルス性感染症に対して、不活化ワクチン、弱毒生ワクチン、組換えタンパクワクチン、ウイルスベクターワクチン、核酸ワクチンなど、多様なプラットフォームに基づくワクチン開発が進められてきた。本稿では、数あるワクチンプラットフォームの中から、ウイルスベクターワクチンに着目して、いくつかの例をあげて概説するとともに、近年、国際的な問題となっている新興感染症に対するワクチン開発などの取り組みについても述べる。","PeriodicalId":11331,"journal":{"name":"Drug Delivery System","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69200878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Drug Delivery System
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1