Axial fans are widely used in modern industry and new regulations and stringent environmental concerns are prompting manufacturer to design efficient low-noise axial fans. This paper is focused on improving the aerodynamic performances and reducing the tonal noise at BPF and its harmonics by the optimum choice of lean-swept blade and the stacking line for the low-speed axial fan. The aerodynamic characteristics of the axial fan with a shroud are explored by CFD with ANASYS CFX. A hybrid method, SST turbulence model for flow and FW-H equation for acoustics, is chosen to predict the radiated noise. The accuracy and reliability of predicted aerodynamic and aeroacoustics results are verified by comparing both computation and experimental data. A number of modified blades with different leaned angle, swept angle and the stacking lines are modeled and analyzed, and the investigation into the optimum choice of lean-swept blade and the stacking line is conducted according to aerodynamic performances and tonal noise. Q-criterion which can visualize the major flow disturbances is applied for the purpose of identification of acoustic sources. The turbulent flow structures on the leading edge, tip and suction side of the blade are main noise sources. An optimal modification is determined through the analysis of the aerodynamic performances and noise, which is to achieve the desired performances by blade sweep and lean and adjusting the stacking line. The results show that aerodynamic and acoustic performances of the optimized fan are better than that of the original fan and the improvement is more obvious to change the stacking line with centre of gravity compare to blade sweep and lean for the low-speed axial fan.
{"title":"Aerodynamic Characteristics and Noise Analysis of a Low-Speed Axial Fan","authors":"B. Luo, W. Chu, W. Dong, Xiangyi Chen","doi":"10.1115/GT2018-76079","DOIUrl":"https://doi.org/10.1115/GT2018-76079","url":null,"abstract":"Axial fans are widely used in modern industry and new regulations and stringent environmental concerns are prompting manufacturer to design efficient low-noise axial fans. This paper is focused on improving the aerodynamic performances and reducing the tonal noise at BPF and its harmonics by the optimum choice of lean-swept blade and the stacking line for the low-speed axial fan. The aerodynamic characteristics of the axial fan with a shroud are explored by CFD with ANASYS CFX. A hybrid method, SST turbulence model for flow and FW-H equation for acoustics, is chosen to predict the radiated noise. The accuracy and reliability of predicted aerodynamic and aeroacoustics results are verified by comparing both computation and experimental data. A number of modified blades with different leaned angle, swept angle and the stacking lines are modeled and analyzed, and the investigation into the optimum choice of lean-swept blade and the stacking line is conducted according to aerodynamic performances and tonal noise. Q-criterion which can visualize the major flow disturbances is applied for the purpose of identification of acoustic sources. The turbulent flow structures on the leading edge, tip and suction side of the blade are main noise sources. An optimal modification is determined through the analysis of the aerodynamic performances and noise, which is to achieve the desired performances by blade sweep and lean and adjusting the stacking line. The results show that aerodynamic and acoustic performances of the optimized fan are better than that of the original fan and the improvement is more obvious to change the stacking line with centre of gravity compare to blade sweep and lean for the low-speed axial fan.","PeriodicalId":114672,"journal":{"name":"Volume 1: Aircraft Engine; Fans and Blowers; Marine","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124025575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the drive for greater increases in fuel efficiency and reductions in CO2 emissions from aero engines, an epicyclic reduction gearbox can be used to break the link between the turbine and fan, enabling the engine to run at a higher bypass ratio. However, even small power losses can generate significant amounts of heat, due to the high loads transmitted from the gearbox. A substantial amount of cooling is required to remove this heat and a large part of this is supplied directly to the gear face. Assessing the performance of coolants and minimising the buildup of oil in the system is therefore a critical stage in the design process. Traditionally, finite volume CFD methods have been used to compute flow and heat transfer solutions. More recently, Lagrangian methods such as Smoothed Particle Hydrodynamics (SPH) have also been applied. The Lattice Boltzman Method (LBM) is a mesoscopic particle based method which uses statistical properties of particles based at each point of a lattice to calculate flow properties. This is a fully transient method and allows for a simple and efficient derivation of LES turbulence properties. In this work the Lattice Bolztman Method is used to investigate the impingement of an oil jet on a rotating spur gear. A comparison of LBM simulations is made against published work using other methods such as SPH and CFD — utilising the Volume of Fluid method — as well as a qualitative comparison with published experimental high speed images. These all show an excellent agreement and the simulations take the same order of magnitude of computational power as 3D single phase SPH, but are fully multiphase and have LES turbulence. This method is then used to investigate how changes to the oil feed delivery rate affect the spreading of the oil jet on the gear tooth and the splashing profiles. The potential for applying this method to other scenarios, such as lubricating and cooling meshing gears, is also discussed.
{"title":"Investigation of Oil Jet Impingement on a Rotating Gear Using Lattice Boltzman Method (LBM)","authors":"S. Ambrose, H. Morvan, K. Simmons","doi":"10.1115/GT2018-76371","DOIUrl":"https://doi.org/10.1115/GT2018-76371","url":null,"abstract":"In the drive for greater increases in fuel efficiency and reductions in CO2 emissions from aero engines, an epicyclic reduction gearbox can be used to break the link between the turbine and fan, enabling the engine to run at a higher bypass ratio. However, even small power losses can generate significant amounts of heat, due to the high loads transmitted from the gearbox. A substantial amount of cooling is required to remove this heat and a large part of this is supplied directly to the gear face. Assessing the performance of coolants and minimising the buildup of oil in the system is therefore a critical stage in the design process. Traditionally, finite volume CFD methods have been used to compute flow and heat transfer solutions. More recently, Lagrangian methods such as Smoothed Particle Hydrodynamics (SPH) have also been applied. The Lattice Boltzman Method (LBM) is a mesoscopic particle based method which uses statistical properties of particles based at each point of a lattice to calculate flow properties. This is a fully transient method and allows for a simple and efficient derivation of LES turbulence properties. In this work the Lattice Bolztman Method is used to investigate the impingement of an oil jet on a rotating spur gear. A comparison of LBM simulations is made against published work using other methods such as SPH and CFD — utilising the Volume of Fluid method — as well as a qualitative comparison with published experimental high speed images. These all show an excellent agreement and the simulations take the same order of magnitude of computational power as 3D single phase SPH, but are fully multiphase and have LES turbulence. This method is then used to investigate how changes to the oil feed delivery rate affect the spreading of the oil jet on the gear tooth and the splashing profiles. The potential for applying this method to other scenarios, such as lubricating and cooling meshing gears, is also discussed.","PeriodicalId":114672,"journal":{"name":"Volume 1: Aircraft Engine; Fans and Blowers; Marine","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127624255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recent inspection of shipboard gas-turbine components under the platform has indicated the apparent presence of CMAS (calcium, magnesium, alumino-silicate) and its related attack. This type of attack has often been observed in aero gas turbine engines when sand and similar siliceous matter is ingested into the engine and the sand debris melts due to high engine operating temperature greater than 1150°C. Initial chemical analysis shows that the CMAS-affected areas of ship engine components versus aero engine components are similar. However, this phenomenon commonly observed in advanced aeroengines are not supposed to occur in the ship engine components since their probable temperature is known to be much lower than 1150°C (i.e., melting temperature of CMAS). As a consequence, some important questions arise as to: What caused this “CMAS” attack in ship engine components? Was this initiated by hot corrosion, which created a molten salt pool at a sufficient temperature to trigger CMAS attack? Did sodium chloride mixed with dust and debris lower the temperature at which molten CMAS would initiate? Past research provides a basic understanding of hot corrosion, but may ignore other reactants and other species inherently associated with ‘natural CMAS’ and mechanisms contributing to hot corrosion or CMAS attack. Further examination of ship and aero components will discern the local structure chemical profile of the component coatings, the chemical compositions of the alloy substrates, and the interface between the coating and the molten “CMAS” by several methods. Integrated computational materials engineering (ICME) and validating experiments will assist in developing degradation mechanisms. The environment complexity is also to be taken into account to determine whether salt-induced CMAS attack or CaO-induced hot corrosion may be dominant. The mechanisms need to be further studied and defined. The current work will address a series of systematic approaches to the aforementioned CMAS issues and will also present some recent results on CMAS-related effects on components and an elected alloy material system.
{"title":"CMAS Effects on Ship Gas-Turbine Components/Materials","authors":"D. Shifler, S. R. Choi","doi":"10.1115/GT2018-75865","DOIUrl":"https://doi.org/10.1115/GT2018-75865","url":null,"abstract":"Recent inspection of shipboard gas-turbine components under the platform has indicated the apparent presence of CMAS (calcium, magnesium, alumino-silicate) and its related attack. This type of attack has often been observed in aero gas turbine engines when sand and similar siliceous matter is ingested into the engine and the sand debris melts due to high engine operating temperature greater than 1150°C. Initial chemical analysis shows that the CMAS-affected areas of ship engine components versus aero engine components are similar. However, this phenomenon commonly observed in advanced aeroengines are not supposed to occur in the ship engine components since their probable temperature is known to be much lower than 1150°C (i.e., melting temperature of CMAS). As a consequence, some important questions arise as to: What caused this “CMAS” attack in ship engine components? Was this initiated by hot corrosion, which created a molten salt pool at a sufficient temperature to trigger CMAS attack? Did sodium chloride mixed with dust and debris lower the temperature at which molten CMAS would initiate?\u0000 Past research provides a basic understanding of hot corrosion, but may ignore other reactants and other species inherently associated with ‘natural CMAS’ and mechanisms contributing to hot corrosion or CMAS attack. Further examination of ship and aero components will discern the local structure chemical profile of the component coatings, the chemical compositions of the alloy substrates, and the interface between the coating and the molten “CMAS” by several methods. Integrated computational materials engineering (ICME) and validating experiments will assist in developing degradation mechanisms.\u0000 The environment complexity is also to be taken into account to determine whether salt-induced CMAS attack or CaO-induced hot corrosion may be dominant. The mechanisms need to be further studied and defined. The current work will address a series of systematic approaches to the aforementioned CMAS issues and will also present some recent results on CMAS-related effects on components and an elected alloy material system.","PeriodicalId":114672,"journal":{"name":"Volume 1: Aircraft Engine; Fans and Blowers; Marine","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133163134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Morioka, Hitoshi Oyori, Naoki Seki, T. Fukuda, Fuminori Suzuki
The MEE (More Electric Engine) is a concept for engine system electrification and is an evolutionary step in engine system design that contributes to the reduction of aviation CO2 emissions. Mifee (Metering and integrated fuel feeding electrification) and the E3M (Engine Embedded Electric Machine) are the key technologies of the MEE. The purpose of engine thermal management is maintaining the balance between heat generation by the engine system and heat dissipation to the outside of the engine. In recent engine system designs, thermal system design has become an issue because of increased heat generation within the system. For example, a recently developed turbo-fan engine system increases the heat generation by introduction of a fan drive gear system that produces a large amount of heat in addition to the conventional heat source, such as engine main bearings and gears. The MEE will have further heat sources within its system, like the E3M, which is a high-power electric machine. In this paper, an investigation approach and the result of a feasibility study of the MEE thermal management system is described. In addition, the perspective of the technology trend from the MEE toward future hybrid propulsion is also discussed. The global requirements for climate protection strongly demand game-changing technology that significantly improves the aircraft’s overall efficiency. A series/parallel partial hybrid propulsion system, in which both a turbo-fan engine and electrical motor-driven fans generate propulsive power, is considered to be one of the most promising approaches for the future commercial aircraft hybrid propulsion system. The MEE and E3M technology evolves until it will be applied in hybrid propulsion system.
MEE (More Electric Engine)是发动机系统电气化的一个概念,是发动机系统设计的一个进化步骤,有助于减少航空二氧化碳排放。Mifee(计量和综合燃油电气化)和E3M(发动机嵌入式电机)是MEE的关键技术。发动机热管理的目的是维持发动机系统产生的热量和散热到发动机外部之间的平衡。在最近的发动机系统设计中,热系统设计已经成为一个问题,因为系统内的热量增加。例如,最近开发的涡轮风扇发动机系统通过引入风扇驱动齿轮系统来增加热量的产生,除了传统的热源(如发动机主轴承和齿轮)外,该系统还产生大量的热量。MEE将在其系统中有更多的热源,就像E3M一样,这是一个高功率的电机。本文介绍了MEE热管理系统可行性研究的调查方法和结果。此外,还对未来混合动力推进的技术发展趋势进行了展望。全球对气候保护的要求强烈要求改变游戏规则的技术,从而显著提高飞机的整体效率。串联/并联部分混合动力推进系统是未来商用飞机混合动力推进系统中最有前途的方法之一,该系统由涡轮风扇发动机和电动机驱动的风扇共同产生推进动力。MEE和E3M技术将不断发展,直至应用于混合动力推进系统。
{"title":"Thermal Management System for the MEE and Engine Embedded Electric Machine","authors":"N. Morioka, Hitoshi Oyori, Naoki Seki, T. Fukuda, Fuminori Suzuki","doi":"10.1115/GT2018-76356","DOIUrl":"https://doi.org/10.1115/GT2018-76356","url":null,"abstract":"The MEE (More Electric Engine) is a concept for engine system electrification and is an evolutionary step in engine system design that contributes to the reduction of aviation CO2 emissions. Mifee (Metering and integrated fuel feeding electrification) and the E3M (Engine Embedded Electric Machine) are the key technologies of the MEE. The purpose of engine thermal management is maintaining the balance between heat generation by the engine system and heat dissipation to the outside of the engine. In recent engine system designs, thermal system design has become an issue because of increased heat generation within the system. For example, a recently developed turbo-fan engine system increases the heat generation by introduction of a fan drive gear system that produces a large amount of heat in addition to the conventional heat source, such as engine main bearings and gears. The MEE will have further heat sources within its system, like the E3M, which is a high-power electric machine. In this paper, an investigation approach and the result of a feasibility study of the MEE thermal management system is described.\u0000 In addition, the perspective of the technology trend from the MEE toward future hybrid propulsion is also discussed. The global requirements for climate protection strongly demand game-changing technology that significantly improves the aircraft’s overall efficiency. A series/parallel partial hybrid propulsion system, in which both a turbo-fan engine and electrical motor-driven fans generate propulsive power, is considered to be one of the most promising approaches for the future commercial aircraft hybrid propulsion system. The MEE and E3M technology evolves until it will be applied in hybrid propulsion system.","PeriodicalId":114672,"journal":{"name":"Volume 1: Aircraft Engine; Fans and Blowers; Marine","volume":"62 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125824549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. J. Frohnapfel, Elizabeth Mack, A. Untăroiu, W. O'Brien, K. Lowe
With highly integrated airframe architectures emerging as the leading concept of next generation aviation vehicles, research is needed to understand the interactions between inlet swirl distortions and turbofan engines. To meet these research demands, a computational fluid dynamics investigation was conducted to monitor the streamwise development of a complex swirling velocity field in the inlet duct of a turbofan engine with and without the presence of the turbofan nose cone component. By modeling the two geometric setups, natural fluid development and forced fluid/nose cone interactions were distinguishable. To validate the model, computational results were compared to existing experimental data at the fan rotor inlet plane. With the nose cone included, flow angle and swirl intensity predictions from the computational approach agreed well with the experimental measurements. The computational results were expanded upstream to demonstrate the effects of the nose cone geometry on the incoming swirl distortion. Radial flow angles in the presence of the nose cone began to vary from natural swirl development at approximately 0.25 fan diameters upstream, reaching a maximum difference near the leading edge of the nose cone component. Results from this investigation provided a validated model for the prediction of swirl development in a turbofan inlet duct in the presence of a nose cone. Significant change in the swirl profile development was shown from natural vortex motion to induced fluid/solid interactions.
{"title":"Turbofan Nose Cone Interactions With Inlet Swirl","authors":"D. J. Frohnapfel, Elizabeth Mack, A. Untăroiu, W. O'Brien, K. Lowe","doi":"10.1115/GT2018-76616","DOIUrl":"https://doi.org/10.1115/GT2018-76616","url":null,"abstract":"With highly integrated airframe architectures emerging as the leading concept of next generation aviation vehicles, research is needed to understand the interactions between inlet swirl distortions and turbofan engines. To meet these research demands, a computational fluid dynamics investigation was conducted to monitor the streamwise development of a complex swirling velocity field in the inlet duct of a turbofan engine with and without the presence of the turbofan nose cone component. By modeling the two geometric setups, natural fluid development and forced fluid/nose cone interactions were distinguishable. To validate the model, computational results were compared to existing experimental data at the fan rotor inlet plane. With the nose cone included, flow angle and swirl intensity predictions from the computational approach agreed well with the experimental measurements. The computational results were expanded upstream to demonstrate the effects of the nose cone geometry on the incoming swirl distortion. Radial flow angles in the presence of the nose cone began to vary from natural swirl development at approximately 0.25 fan diameters upstream, reaching a maximum difference near the leading edge of the nose cone component. Results from this investigation provided a validated model for the prediction of swirl development in a turbofan inlet duct in the presence of a nose cone. Significant change in the swirl profile development was shown from natural vortex motion to induced fluid/solid interactions.","PeriodicalId":114672,"journal":{"name":"Volume 1: Aircraft Engine; Fans and Blowers; Marine","volume":"103 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122100745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ioannis Kolias, A. Alexiou, N. Aretakis, K. Mathioudakis
In the context of an engine design calculation, isentropic or polytropic efficiencies of turbomachinery components are assumed at the outset of the cycle analysis and their values are updated or validated following the aerodynamic design of the components. In the present paper, aerodynamic design calculations of axial-flow compressors and turbines are directly integrated into the corresponding performance component models. This creates a consistent, single-step preliminary design and performance modelling process using a relatively small number of physical and geometric inputs. The aerodynamic design for establishing a component’s overall efficiency is accomplished through a mean-line, stage-by-stage approach where the stagewise isentropic efficiency is calculated employing either loss or semi-empirical correlations. From this process, the stagewise flow annulus radii are also obtained and are used to axially size the component stages assuming the blade aspect ratio and axial gapping distributions. The component flowpath geometry is then produced by simply “stacking” axially the component stages. The developed method is validated against publicly available data for a high-pressure compressor and a low-pressure turbine. Finally, the effectiveness of the method is demonstrated by considering the multi-point design of a High Bypass Ratio Geared Turbofan Engine with bypass Variable Area Nozzle.
{"title":"Direct Integration of Axial Turbomachinery Preliminary Aerodynamic Design Calculations in Engine Performance Component Models","authors":"Ioannis Kolias, A. Alexiou, N. Aretakis, K. Mathioudakis","doi":"10.1115/GT2018-76494","DOIUrl":"https://doi.org/10.1115/GT2018-76494","url":null,"abstract":"In the context of an engine design calculation, isentropic or polytropic efficiencies of turbomachinery components are assumed at the outset of the cycle analysis and their values are updated or validated following the aerodynamic design of the components. In the present paper, aerodynamic design calculations of axial-flow compressors and turbines are directly integrated into the corresponding performance component models. This creates a consistent, single-step preliminary design and performance modelling process using a relatively small number of physical and geometric inputs.\u0000 The aerodynamic design for establishing a component’s overall efficiency is accomplished through a mean-line, stage-by-stage approach where the stagewise isentropic efficiency is calculated employing either loss or semi-empirical correlations. From this process, the stagewise flow annulus radii are also obtained and are used to axially size the component stages assuming the blade aspect ratio and axial gapping distributions. The component flowpath geometry is then produced by simply “stacking” axially the component stages.\u0000 The developed method is validated against publicly available data for a high-pressure compressor and a low-pressure turbine. Finally, the effectiveness of the method is demonstrated by considering the multi-point design of a High Bypass Ratio Geared Turbofan Engine with bypass Variable Area Nozzle.","PeriodicalId":114672,"journal":{"name":"Volume 1: Aircraft Engine; Fans and Blowers; Marine","volume":"74 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131854025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gas turbines in general and aircraft engines in particular undergo frequently dynamic operations. These operations include the routine start-up, load change and shut downs to cover their operation envelope. The frequency of the dynamic operation depends on the size of the engines and the field of application. Engines for commuter aircrafts and particularly helicopter engines operate more often in an off-design mode compared to large commercial aircraft engines and power generation gas turbines. During these routine operations, the compressor mass flow, the pressure ratio, the combustion chamber fuel and air mass flow as well as turbine mass flow change. These changes affect the engine aerodynamic performance and its efficiency. To avoid the inception of rotating stall and surge, high performance gas turbines are equipped with mechanisms that adjust the stator stagger angles thus aligning the stator exit flow angle to the rotor inlet angle, which reduces an excessive incidence. The reduction of incidence angle not only preserves the stable operation of the compressor but it also prevents the compressor efficiency from deterioration. The existence of an inherent positive pressure gradient may cause the boundary layer separation on compressor blades leading to the rotating stall and surge. Such condition, however, does not exist in a turbine, and therefore, there has been no compelling reason to apply the blade adjusting method to the turbine component. For the first time, the impact of turbine blade stagger angle adjustment on the gas turbine efficiency during the operation is shown in this paper. Given a statistically distributed load condition, the extensive dynamic simulation reported in this paper shows how the efficiency can be positively affected through proper blade adjustment. For the time dependent operation, the code GETRAN developed by the author was enhanced to include the turbine blade adjustment as a function of time. To conduct the dynamic simulation with turbine stator stagger angle adjustment during a dynamic operation, the full geometry of the Brown Boveri GT-9 gas turbine was utilized. Starting from the reference stagger angle, it is varied within an incidence range of ± 3 degree. Detailed simulation results show the substantial efficiency improvement through stator stagger blade adjustment.
{"title":"Impact of Turbine Blade Stagger Angle Adjustment on the Efficiency and Performance of Gas Turbines During Off-Design and Dynamic Operation","authors":"M. Schobeiri","doi":"10.1115/GT2018-75968","DOIUrl":"https://doi.org/10.1115/GT2018-75968","url":null,"abstract":"Gas turbines in general and aircraft engines in particular undergo frequently dynamic operations. These operations include the routine start-up, load change and shut downs to cover their operation envelope. The frequency of the dynamic operation depends on the size of the engines and the field of application. Engines for commuter aircrafts and particularly helicopter engines operate more often in an off-design mode compared to large commercial aircraft engines and power generation gas turbines. During these routine operations, the compressor mass flow, the pressure ratio, the combustion chamber fuel and air mass flow as well as turbine mass flow change. These changes affect the engine aerodynamic performance and its efficiency. To avoid the inception of rotating stall and surge, high performance gas turbines are equipped with mechanisms that adjust the stator stagger angles thus aligning the stator exit flow angle to the rotor inlet angle, which reduces an excessive incidence. The reduction of incidence angle not only preserves the stable operation of the compressor but it also prevents the compressor efficiency from deterioration. The existence of an inherent positive pressure gradient may cause the boundary layer separation on compressor blades leading to the rotating stall and surge. Such condition, however, does not exist in a turbine, and therefore, there has been no compelling reason to apply the blade adjusting method to the turbine component. For the first time, the impact of turbine blade stagger angle adjustment on the gas turbine efficiency during the operation is shown in this paper. Given a statistically distributed load condition, the extensive dynamic simulation reported in this paper shows how the efficiency can be positively affected through proper blade adjustment. For the time dependent operation, the code GETRAN developed by the author was enhanced to include the turbine blade adjustment as a function of time. To conduct the dynamic simulation with turbine stator stagger angle adjustment during a dynamic operation, the full geometry of the Brown Boveri GT-9 gas turbine was utilized. Starting from the reference stagger angle, it is varied within an incidence range of ± 3 degree. Detailed simulation results show the substantial efficiency improvement through stator stagger blade adjustment.","PeriodicalId":114672,"journal":{"name":"Volume 1: Aircraft Engine; Fans and Blowers; Marine","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116544479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
During situations of high incidence, high curvature of aero-engine intake lips can locally accelerate flow to supersonic speeds, producing undesirable shock wave boundary layer interactions (SWBLIs). The present work describes simulations of a novel experimental model resembling a lower intake lip at incidence. RANS, LES and hybrid RANS-LES are carried out at two angles of attack, α = 23° and α = 25°, with α = 25° possessing a high degree of shock oscillation. Modifications to the Spalart-Allmaras (SA) RANS turbulence model are proposed to account for re-laminarisation and curvature. These provide an improvement in prediction compared standard SA model. However, RANS models fail to reproduce post shock interaction flow, giving incorrect shape of the flow distortion. LES and hybrid RANS-LES perform well here, with downstream flow distortion in very good agreement with experimental measurements. LES and hybrid RANS-LES also capture the time averaged smearing of the shock which RANS cannot. However, low frequency shock oscillations in the α = 25° case are costly for LES, requiring long simulation time to obtain time averaged flow statistics. Hybrid RANS-LES offers a significant saving in computational cost, costing approximately 20% of LES.
{"title":"Numerical Modelling of Shock Wave Boundary Layer Interactions in Aero-Engine Intakes at Incidence","authors":"H. Kalsi, P. Tucker","doi":"10.1115/GT2018-75872","DOIUrl":"https://doi.org/10.1115/GT2018-75872","url":null,"abstract":"During situations of high incidence, high curvature of aero-engine intake lips can locally accelerate flow to supersonic speeds, producing undesirable shock wave boundary layer interactions (SWBLIs). The present work describes simulations of a novel experimental model resembling a lower intake lip at incidence. RANS, LES and hybrid RANS-LES are carried out at two angles of attack, α = 23° and α = 25°, with α = 25° possessing a high degree of shock oscillation. Modifications to the Spalart-Allmaras (SA) RANS turbulence model are proposed to account for re-laminarisation and curvature. These provide an improvement in prediction compared standard SA model. However, RANS models fail to reproduce post shock interaction flow, giving incorrect shape of the flow distortion. LES and hybrid RANS-LES perform well here, with downstream flow distortion in very good agreement with experimental measurements. LES and hybrid RANS-LES also capture the time averaged smearing of the shock which RANS cannot. However, low frequency shock oscillations in the α = 25° case are costly for LES, requiring long simulation time to obtain time averaged flow statistics. Hybrid RANS-LES offers a significant saving in computational cost, costing approximately 20% of LES.","PeriodicalId":114672,"journal":{"name":"Volume 1: Aircraft Engine; Fans and Blowers; Marine","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129510690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gino Angelini, T. Bonanni, A. Corsini, G. Delibra, L. Tieghi, D. Volponi
In this paper, a systematic CFD work is carried out with the aim to inspect the influence of different cascade parameters on the aerodynamic performance of a reversible fan blade profile. From the obtained results, we derive a meta-model for the aerodynamic properties of this profile. Through RANS simulations of different arrangements in cascades, the aerodynamic performance of airfoils are analyzed as Reynolds number, solidity, pitch angle and angle of attack are varied. The definition of a trial matrix allows the reduction of the minimum number of simulations required. The computed CFD values of lift and drag coefficients, stall margin and the zero-lift angle strongly depend on cascade configuration and differ significantly from standard panel method software predictions. In this work, X-Foil has been used as a benchmark. Particularly, the high influence of pitch angle and solidity is here highlighted, while a less marked dependence from the Reynolds number has been found. Meta-models for lift and drag coefficients have been later derived, and an analysis of variance has improved the models by reducing the number of significant factors. The application of the meta-models to a quasi-3D in-house software for fan performance prediction is also shown. The effectiveness of the derived meta-models is proven through a spanwise comparison of a reversible fan with the X-Foil based and meta-model based versions of the software and 3D fields from a standard CFD simulation. The meta-model improves the software prediction capability, leading to a very low global overestimation of the specific work of the fan.
{"title":"A Meta-Model for Aerodynamic Properties of a Reversible Profile in Cascade With Variable Stagger and Solidity","authors":"Gino Angelini, T. Bonanni, A. Corsini, G. Delibra, L. Tieghi, D. Volponi","doi":"10.1115/GT2018-76363","DOIUrl":"https://doi.org/10.1115/GT2018-76363","url":null,"abstract":"In this paper, a systematic CFD work is carried out with the aim to inspect the influence of different cascade parameters on the aerodynamic performance of a reversible fan blade profile. From the obtained results, we derive a meta-model for the aerodynamic properties of this profile. Through RANS simulations of different arrangements in cascades, the aerodynamic performance of airfoils are analyzed as Reynolds number, solidity, pitch angle and angle of attack are varied. The definition of a trial matrix allows the reduction of the minimum number of simulations required. The computed CFD values of lift and drag coefficients, stall margin and the zero-lift angle strongly depend on cascade configuration and differ significantly from standard panel method software predictions. In this work, X-Foil has been used as a benchmark. Particularly, the high influence of pitch angle and solidity is here highlighted, while a less marked dependence from the Reynolds number has been found.\u0000 Meta-models for lift and drag coefficients have been later derived, and an analysis of variance has improved the models by reducing the number of significant factors. The application of the meta-models to a quasi-3D in-house software for fan performance prediction is also shown. The effectiveness of the derived meta-models is proven through a spanwise comparison of a reversible fan with the X-Foil based and meta-model based versions of the software and 3D fields from a standard CFD simulation. The meta-model improves the software prediction capability, leading to a very low global overestimation of the specific work of the fan.","PeriodicalId":114672,"journal":{"name":"Volume 1: Aircraft Engine; Fans and Blowers; Marine","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133792998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Song, Jing-wei Shi, Li Zhou, Zhanxue Wang, Xiaobo Zhang
Lighter weight, simpler structure, higher vectoring efficiency and faster vector response are recent trends in development of aircraft engine exhaust system. To meet these new challenges, a concept of hybrid SVC nozzle was proposed in this work to achieve thrust vectoring by adopting a rotatable valve and by introducing a secondary flow injection. In this paper, we numerically investigated the flow mechanism of the hybrid SVC nozzle. Nozzle performance (e.g. the thrust vector angle and the thrust coefficient) was studied with consideration of the influence of aerodynamic and geometric parameters, such as the nozzle pressure ratio (NPR), the secondary pressure ratio (SPR) and the deflection angle of the rotatable valve (θ). The numerical results indicate that the introductions of the rotatable valve and the secondary injection induce an asymmetrically distributed static pressure to nozzle internal walls. Such static pressure distribution generates a side force on the primary flow, thereby achieving thrust vectoring. Both the thrust vector angle and vectoring efficiency can be enhanced by reducing NPR or by increasing θ. A maximum vector angle of 16.7 ° is attained while NPR is 3 and the corresponding vectoring efficiency is 6.33 °/%. The vector angle first increases and then decreases along with the elevation of SPR, and there exists an optimum value of SPR for maximum thrust vector angle. The effects of θ and SPR on the thrust coefficient were found to be insignificant. The rotatable valve can be utilized to improve vectoring efficiency and to control the vector angle as expected.
{"title":"An Investigation of Flow Characteristics and Parameter Effects for a New Concept of Hybrid SVC Nozzle","authors":"F. Song, Jing-wei Shi, Li Zhou, Zhanxue Wang, Xiaobo Zhang","doi":"10.1115/GT2018-75511","DOIUrl":"https://doi.org/10.1115/GT2018-75511","url":null,"abstract":"Lighter weight, simpler structure, higher vectoring efficiency and faster vector response are recent trends in development of aircraft engine exhaust system. To meet these new challenges, a concept of hybrid SVC nozzle was proposed in this work to achieve thrust vectoring by adopting a rotatable valve and by introducing a secondary flow injection. In this paper, we numerically investigated the flow mechanism of the hybrid SVC nozzle. Nozzle performance (e.g. the thrust vector angle and the thrust coefficient) was studied with consideration of the influence of aerodynamic and geometric parameters, such as the nozzle pressure ratio (NPR), the secondary pressure ratio (SPR) and the deflection angle of the rotatable valve (θ). The numerical results indicate that the introductions of the rotatable valve and the secondary injection induce an asymmetrically distributed static pressure to nozzle internal walls. Such static pressure distribution generates a side force on the primary flow, thereby achieving thrust vectoring. Both the thrust vector angle and vectoring efficiency can be enhanced by reducing NPR or by increasing θ. A maximum vector angle of 16.7 ° is attained while NPR is 3 and the corresponding vectoring efficiency is 6.33 °/%. The vector angle first increases and then decreases along with the elevation of SPR, and there exists an optimum value of SPR for maximum thrust vector angle. The effects of θ and SPR on the thrust coefficient were found to be insignificant. The rotatable valve can be utilized to improve vectoring efficiency and to control the vector angle as expected.","PeriodicalId":114672,"journal":{"name":"Volume 1: Aircraft Engine; Fans and Blowers; Marine","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132506174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}