首页 > 最新文献

Endocrine reviews最新文献

英文 中文
Relative Energy Deficiency in Sport (REDs): Endocrine Manifestations, Pathophysiology and Treatments. 运动中的相对能量缺乏症(REDs):内分泌表现、病理生理学和治疗方法。
IF 22 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-09-12 DOI: 10.1210/endrev/bnae011
Angeliki M Angelidi, Konstantinos Stefanakis, Sharon H Chou, Laura Valenzuela-Vallejo, Konstantina Dipla, Chrysoula Boutari, Konstantinos Ntoskas, Panagiotis Tokmakidis, Alexander Kokkinos, Dimitrios G Goulis, Helen A Papadaki, Christos S Mantzoros

Research on lean, energy-deficient athletic and military cohorts has broadened the concept of the Female Athlete Triad into the Relative Energy Deficiency in Sport (REDs) syndrome. REDs represents a spectrum of abnormalities induced by low energy availability (LEA), which serves as the underlying cause of all symptoms described within the REDs concept, affecting exercising populations of either biological sex. Both short- and long-term LEA, in conjunction with other moderating factors, may produce a multitude of maladaptive changes that impair various physiological systems and adversely affect health, well-being, and sport performance. Consequently, the comprehensive definition of REDs encompasses a broad spectrum of physiological sequelae and adverse clinical outcomes related to LEA, such as neuroendocrine, bone, immune, and hematological effects, ultimately resulting in compromised health and performance. In this review, we discuss the pathophysiology of REDs and associated disorders. We briefly examine current treatment recommendations for REDs, primarily focusing on nonpharmacological, behavioral, and lifestyle modifications that target its underlying cause-energy deficit. We also discuss treatment approaches aimed at managing symptoms, such as menstrual dysfunction and bone stress injuries, and explore potential novel treatments that target the underlying physiology, emphasizing the roles of leptin and the activin-follistatin-inhibin axis, the roles of which remain to be fully elucidated, in the pathophysiology and management of REDs. In the near future, novel therapies leveraging our emerging understanding of molecules and physiological axes underlying energy availability or lack thereof may restore LEA-related abnormalities, thus preventing and/or treating REDs-related health complications, such as stress fractures, and improving performance.

对瘦弱、能量缺乏的运动员和军人群体的研究,将女性运动员三联征的概念扩展为运动中相对能量缺乏(REDs)综合征。REDs 代表了低能量可用性(LEA)诱发的一系列异常现象,是 REDs 概念中描述的所有症状的根本原因,影响着任何生理性别的运动人群。短期和长期的 LEA 与其他调节因素相结合,可产生多种不适应变化,损害各种生理系统,并对健康、福祉和运动表现产生不利影响。因此,REDs 的综合定义涵盖了与 LEA 相关的一系列生理后遗症和不良临床结果,如神经内分泌、骨骼、免疫和血液学影响,最终导致健康和运动表现受损。在本综述中,我们将讨论 REDs 及其相关疾病的病理生理学。我们简要研究了目前针对 REDs 的治疗建议,主要侧重于针对其根本原因--能量不足--的非药物、行为和生活方式的调整。我们还讨论了旨在控制月经功能障碍和骨应力损伤等症状的治疗方法,并探讨了针对潜在生理机制的潜在新型疗法,强调了瘦素和激活素-花粉抑制素轴在 REDs 病理生理学和治疗中的作用,这些作用仍有待全面阐明。在不久的将来,利用我们对能量可用性或缺乏能量可用性的分子和生理轴的新认识,新型疗法可能会恢复与 LEA 相关的异常,从而预防和/或治疗与 REDs 相关的健康并发症,如应力性骨折,并改善运动表现。
{"title":"Relative Energy Deficiency in Sport (REDs): Endocrine Manifestations, Pathophysiology and Treatments.","authors":"Angeliki M Angelidi, Konstantinos Stefanakis, Sharon H Chou, Laura Valenzuela-Vallejo, Konstantina Dipla, Chrysoula Boutari, Konstantinos Ntoskas, Panagiotis Tokmakidis, Alexander Kokkinos, Dimitrios G Goulis, Helen A Papadaki, Christos S Mantzoros","doi":"10.1210/endrev/bnae011","DOIUrl":"10.1210/endrev/bnae011","url":null,"abstract":"<p><p>Research on lean, energy-deficient athletic and military cohorts has broadened the concept of the Female Athlete Triad into the Relative Energy Deficiency in Sport (REDs) syndrome. REDs represents a spectrum of abnormalities induced by low energy availability (LEA), which serves as the underlying cause of all symptoms described within the REDs concept, affecting exercising populations of either biological sex. Both short- and long-term LEA, in conjunction with other moderating factors, may produce a multitude of maladaptive changes that impair various physiological systems and adversely affect health, well-being, and sport performance. Consequently, the comprehensive definition of REDs encompasses a broad spectrum of physiological sequelae and adverse clinical outcomes related to LEA, such as neuroendocrine, bone, immune, and hematological effects, ultimately resulting in compromised health and performance. In this review, we discuss the pathophysiology of REDs and associated disorders. We briefly examine current treatment recommendations for REDs, primarily focusing on nonpharmacological, behavioral, and lifestyle modifications that target its underlying cause-energy deficit. We also discuss treatment approaches aimed at managing symptoms, such as menstrual dysfunction and bone stress injuries, and explore potential novel treatments that target the underlying physiology, emphasizing the roles of leptin and the activin-follistatin-inhibin axis, the roles of which remain to be fully elucidated, in the pathophysiology and management of REDs. In the near future, novel therapies leveraging our emerging understanding of molecules and physiological axes underlying energy availability or lack thereof may restore LEA-related abnormalities, thus preventing and/or treating REDs-related health complications, such as stress fractures, and improving performance.</p>","PeriodicalId":11544,"journal":{"name":"Endocrine reviews","volume":" ","pages":"676-708"},"PeriodicalIF":22.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140131024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphorylation-Dependent Regulation of Guanylyl Cyclase (GC)-A and Other Membrane GC Receptors. 鸟苷酸环化酶 (GC)-A 和其他膜 GC 受体的磷酸化依赖性调控
IF 22 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-09-12 DOI: 10.1210/endrev/bnae015
Lincoln R Potter

Receptor guanylyl cyclases (GCs) are single membrane spanning, multidomain enzymes, that synthesize cGMP in response to natriuretic peptides or other ligands. They are evolutionarily conserved from sea urchins to humans and regulate diverse physiologies. Most family members are phosphorylated on 4 to 7 conserved serines or threonines at the beginning of their kinase homology domains. This review describes studies that demonstrate that phosphorylation and dephosphorylation are required for activation and inactivation of these enzymes, respectively. Phosphorylation sites in GC-A, GC-B, GC-E, and sea urchin receptors are discussed, as are mutant receptors that mimic the dephosphorylated inactive or phosphorylated active forms of GC-A and GC-B, respectively. A salt bridge model is described that explains why phosphorylation is required for enzyme activation. Potential kinases, phosphatases, and ATP regulation of GC receptors are also discussed. Critically, knock-in mice with glutamate substitutions for receptor phosphorylation sites are described. The inability of opposing signaling pathways to inhibit cGMP synthesis in mice where GC-A or GC-B cannot be dephosphorylated demonstrates the necessity of receptor dephosphorylation in vivo. Cardiac hypertrophy, oocyte meiosis, long-bone growth/achondroplasia, and bone density are regulated by GC phosphorylation, but additional processes are likely to be identified in the future.

受体鸟苷酸环化酶(GCs)是一种跨膜的多域酶,可在钠尿肽或其他配体的作用下合成 cGMP。从海胆到人类,它们在进化过程中保持一致,并调节着不同的生理机能。大多数家族成员在其激酶同源结构域起始处的四到七个保守丝氨酸或苏氨酸上被磷酸化。本综述介绍了证明这些酶的激活和失活分别需要磷酸化和去磷酸化的研究。本文讨论了 GC-A、GC-B、GC-E 和海胆受体中的磷酸化位点,以及分别模拟 GC-A 和 GC-B 的去磷酸化、非活性或磷酸化、活性形式的突变受体。描述的盐桥模型解释了酶激活需要磷酸化的原因。还讨论了 GC 受体的潜在激酶、磷酸酶和 ATP 调节。重要的是,描述了受体磷酸化位点被谷氨酸取代的基因敲入小鼠。在 GC-A 或 GC-B 不能去磷酸化的小鼠中,相反的信号通路不能抑制 cGMP 合成,这证明了体内受体去磷酸化的必要性。心脏肥大、卵母细胞减数分裂、长骨生长/软骨增生和骨密度受 GC 磷酸化调节,但未来可能还会发现其他过程。
{"title":"Phosphorylation-Dependent Regulation of Guanylyl Cyclase (GC)-A and Other Membrane GC Receptors.","authors":"Lincoln R Potter","doi":"10.1210/endrev/bnae015","DOIUrl":"10.1210/endrev/bnae015","url":null,"abstract":"<p><p>Receptor guanylyl cyclases (GCs) are single membrane spanning, multidomain enzymes, that synthesize cGMP in response to natriuretic peptides or other ligands. They are evolutionarily conserved from sea urchins to humans and regulate diverse physiologies. Most family members are phosphorylated on 4 to 7 conserved serines or threonines at the beginning of their kinase homology domains. This review describes studies that demonstrate that phosphorylation and dephosphorylation are required for activation and inactivation of these enzymes, respectively. Phosphorylation sites in GC-A, GC-B, GC-E, and sea urchin receptors are discussed, as are mutant receptors that mimic the dephosphorylated inactive or phosphorylated active forms of GC-A and GC-B, respectively. A salt bridge model is described that explains why phosphorylation is required for enzyme activation. Potential kinases, phosphatases, and ATP regulation of GC receptors are also discussed. Critically, knock-in mice with glutamate substitutions for receptor phosphorylation sites are described. The inability of opposing signaling pathways to inhibit cGMP synthesis in mice where GC-A or GC-B cannot be dephosphorylated demonstrates the necessity of receptor dephosphorylation in vivo. Cardiac hypertrophy, oocyte meiosis, long-bone growth/achondroplasia, and bone density are regulated by GC phosphorylation, but additional processes are likely to be identified in the future.</p>","PeriodicalId":11544,"journal":{"name":"Endocrine reviews","volume":" ","pages":"755-771"},"PeriodicalIF":22.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405504/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140849913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mini-Puberty, Physiological and Disordered: Consequences, and Potential for Therapeutic Replacement. 小青春期,生理性和失调性:后果和治疗替代的潜力。
IF 22 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-07-12 DOI: 10.1210/endrev/bnae003
Julia Rohayem, Emma C Alexander, Sabine Heger, Anna Nordenström, Sasha R Howard

There are 3 physiological waves of central hypothalamic-pituitary-gonadal (HPG) axis activity over the lifetime. The first occurs during fetal life, the second-termed "mini-puberty"-in the first months after birth, and the third at puberty. After adolescence, the axis remains active all through adulthood. Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disorder characterized by a deficiency in hypothalamic gonadotropin-releasing hormone (GnRH) secretion or action. In cases of severe CHH, all 3 waves of GnRH pulsatility are absent. The absence of fetal HPG axis activation manifests in around 50% of male newborns with micropenis and/or undescended testes (cryptorchidism). In these boys, the lack of the mini-puberty phase accentuates testicular immaturity. This is characterized by a low number of Sertoli cells, which are important for future reproductive capacity. Thus, absent mini-puberty will have detrimental effects on later fertility in these males. The diagnosis of CHH is often missed in infants, and even if recognized, there is no consensus on optimal therapeutic management. Here we review physiological mini-puberty and consequences of central HPG axis disorders; provide a diagnostic approach to allow for early identification of these conditions; and review current treatment options for replacement of mini-puberty in male infants with CHH. There is evidence from small case series that replacement with gonadotropins to mimic "mini-puberty" in males could have beneficial outcomes not only regarding testis descent, but also normalization of testis and penile sizes. Moreover, such therapeutic replacement regimens in disordered mini-puberty could address both reproductive and nonreproductive implications.

在人的一生中,下丘脑-垂体-性腺轴(HPG)的中枢活动有三个生理波段。第一波发生在胎儿时期,第二波被称为 "小青春期",发生在出生后的头几个月,第三波发生在青春期。青春期过后,该轴在整个成年期都会保持活跃。先天性性腺功能减退症(CHH)是一种罕见的遗传性疾病,其特点是下丘脑促性腺激素释放激素(GnRH)分泌或作用不足。在严重的 CHH 病例中,GnRH 的三波搏动都不存在。胎儿 HPG 轴激活缺失表现为约 50% 的男性新生儿有小阴茎和/或睾丸下降不全(隐睾症)。在这些男孩中,小青春期的缺失凸显了睾丸的不成熟。其特点是塞尔托利细胞数量少,而塞尔托利细胞对未来的生殖能力非常重要。因此,小青春期的缺失将对这些男性日后的生育能力产生不利影响。婴儿 CHH 的诊断常常被漏诊,即使确诊,最佳治疗方法也没有达成共识。在此,我们回顾了生理性小头畸形和 HPG 轴中枢紊乱的后果;提供了一种诊断方法,以便及早发现这些病症;并回顾了目前替代 CHH 男婴小头畸形的治疗方案。有小型病例系列的证据表明,用促性腺激素替代来模拟男性的 "小青春期 "不仅在睾丸下降方面有益,而且还能使睾丸和阴茎大小正常化。此外,对发育紊乱的 "小青春期 "采取这种治疗替代方案,可以解决生殖和非生殖方面的问题。
{"title":"Mini-Puberty, Physiological and Disordered: Consequences, and Potential for Therapeutic Replacement.","authors":"Julia Rohayem, Emma C Alexander, Sabine Heger, Anna Nordenström, Sasha R Howard","doi":"10.1210/endrev/bnae003","DOIUrl":"10.1210/endrev/bnae003","url":null,"abstract":"<p><p>There are 3 physiological waves of central hypothalamic-pituitary-gonadal (HPG) axis activity over the lifetime. The first occurs during fetal life, the second-termed \"mini-puberty\"-in the first months after birth, and the third at puberty. After adolescence, the axis remains active all through adulthood. Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disorder characterized by a deficiency in hypothalamic gonadotropin-releasing hormone (GnRH) secretion or action. In cases of severe CHH, all 3 waves of GnRH pulsatility are absent. The absence of fetal HPG axis activation manifests in around 50% of male newborns with micropenis and/or undescended testes (cryptorchidism). In these boys, the lack of the mini-puberty phase accentuates testicular immaturity. This is characterized by a low number of Sertoli cells, which are important for future reproductive capacity. Thus, absent mini-puberty will have detrimental effects on later fertility in these males. The diagnosis of CHH is often missed in infants, and even if recognized, there is no consensus on optimal therapeutic management. Here we review physiological mini-puberty and consequences of central HPG axis disorders; provide a diagnostic approach to allow for early identification of these conditions; and review current treatment options for replacement of mini-puberty in male infants with CHH. There is evidence from small case series that replacement with gonadotropins to mimic \"mini-puberty\" in males could have beneficial outcomes not only regarding testis descent, but also normalization of testis and penile sizes. Moreover, such therapeutic replacement regimens in disordered mini-puberty could address both reproductive and nonreproductive implications.</p>","PeriodicalId":11544,"journal":{"name":"Endocrine reviews","volume":" ","pages":"460-492"},"PeriodicalIF":22.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244267/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140021219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic and Epigenetic Landscape for Drug Development in Polycystic Ovary Syndrome. 多囊卵巢综合症药物开发的基因和表观遗传学前景。
IF 22 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-07-12 DOI: 10.1210/endrev/bnae002
Yi Chen, Guiquan Wang, Jingqiao Chen, Congying Wang, Xi Dong, Hsun-Ming Chang, Shuai Yuan, Yue Zhao, Liangshan Mu

The treatment of polycystic ovary syndrome (PCOS) faces challenges as all known treatments are merely symptomatic. The US Food and Drug Administration has not approved any drug specifically for treating PCOS. As the significance of genetics and epigenetics rises in drug development, their pivotal insights have greatly enhanced the efficacy and success of drug target discovery and validation, offering promise for guiding the advancement of PCOS treatments. In this context, we outline the genetic and epigenetic advancement in PCOS, which provide novel insights into the pathogenesis of this complex disease. We also delve into the prospective method for harnessing genetic and epigenetic strategies to identify potential drug targets and ensure target safety. Additionally, we shed light on the preliminary evidence and distinctive challenges associated with gene and epigenetic therapies in the context of PCOS.

多囊卵巢综合症(PCOS)的治疗面临挑战,因为所有已知的治疗方法都只是对症治疗。美国食品和药物管理局(FDA)尚未批准任何专门用于治疗多囊卵巢综合症的药物。随着遗传学和表观遗传学在药物开发中的重要性不断提高,它们的重要见解大大提高了药物靶点发现和验证的效率和成功率,为指导多囊卵巢综合症治疗的进步带来了希望。在此背景下,我们概述了多囊卵巢综合症的遗传学和表观遗传学进展,这些进展为这一复杂疾病的发病机制提供了新的见解。我们还深入探讨了利用基因和表观遗传学策略识别潜在药物靶点并确保靶点安全性的前瞻性方法。此外,我们还阐明了与多囊卵巢综合症相关的基因和表观遗传疗法的初步证据和独特挑战。
{"title":"Genetic and Epigenetic Landscape for Drug Development in Polycystic Ovary Syndrome.","authors":"Yi Chen, Guiquan Wang, Jingqiao Chen, Congying Wang, Xi Dong, Hsun-Ming Chang, Shuai Yuan, Yue Zhao, Liangshan Mu","doi":"10.1210/endrev/bnae002","DOIUrl":"10.1210/endrev/bnae002","url":null,"abstract":"<p><p>The treatment of polycystic ovary syndrome (PCOS) faces challenges as all known treatments are merely symptomatic. The US Food and Drug Administration has not approved any drug specifically for treating PCOS. As the significance of genetics and epigenetics rises in drug development, their pivotal insights have greatly enhanced the efficacy and success of drug target discovery and validation, offering promise for guiding the advancement of PCOS treatments. In this context, we outline the genetic and epigenetic advancement in PCOS, which provide novel insights into the pathogenesis of this complex disease. We also delve into the prospective method for harnessing genetic and epigenetic strategies to identify potential drug targets and ensure target safety. Additionally, we shed light on the preliminary evidence and distinctive challenges associated with gene and epigenetic therapies in the context of PCOS.</p>","PeriodicalId":11544,"journal":{"name":"Endocrine reviews","volume":" ","pages":"437-459"},"PeriodicalIF":22.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139650495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Search for the Causes of Common Hyperandrogenism, 1965 to Circa 2015. 寻找常见雄激素过多症的原因,1965 年至 2015 年左右。
IF 22 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-07-12 DOI: 10.1210/endrev/bnae007
Robert L Rosenfield

From 1965 to 2015, immense strides were made into understanding the mechanisms underlying the common androgen excess disorders, premature adrenarche and polycystic ovary syndrome (PCOS). The author reviews the critical discoveries of this era from his perspective investigating these disorders, commencing with his early discoveries of the unique pattern of plasma androgens in premature adrenarche and the elevation of an index of the plasma free testosterone concentration in most hirsute women. The molecular genetic basis, though not the developmental biologic basis, for adrenarche is now known and 11-oxytestosterones shown to be major bioactive adrenal androgens. The evolution of the lines of research into the pathogenesis of PCOS is historically traced: research milestones are cited in the areas of neuroendocrinology, insulin resistance, hyperinsulinism, type 2 diabetes mellitus, folliculogenesis, androgen secretion, obesity, phenotyping, prenatal androgenization, epigenetics, and complex genetics. Large-scale genome-wide association studies led to the 2014 discovery of an unsuspected steroidogenic regulator DENND1A (differentially expressed in normal and neoplastic development). The splice variant DENND1A.V2 is constitutively overexpressed in PCOS theca cells in long-term culture and accounts for their PCOS-like phenotype. The genetics are complex, however: DENND1A intronic variant copy number is related to phenotype severity, and recent data indicate that rare variants in a DENND1A regulatory network and other genes are related to PCOS. Obesity exacerbates PCOS manifestations via insulin resistance and proinflammatory cytokine excess; excess adipose tissue also forms testosterone. Polycystic ovaries in 40 percent of apparently normal women lie on the PCOS functional spectrum. Much remains to be learned.

从 1965 年到 2015 年,人们在了解常见的雄激素过多疾病--过早性腺发育和多囊卵巢综合征(PCOS)的发病机制方面取得了巨大进步。作者从他研究这些疾病的角度回顾了这一时期的重要发现,首先是他早期发现早衰性肾上腺皮质激素的独特模式,以及大多数多毛女性血浆游离睾酮浓度指数的升高。现在,人们已经知道了肾上腺早熟的分子遗传学基础(尽管不是发育生物学基础),并证明 11-氧睾酮是具有生物活性的主要肾上腺雄激素。多囊卵巢综合症发病机制研究路线的演变可追溯到历史:在神经内分泌学、胰岛素抵抗、高胰岛素血症、2 型糖尿病、卵泡生成、雄激素分泌、肥胖、表型、产前雄激素化、表观遗传学和复杂遗传学等领域的研究具有里程碑意义。大规模的全基因组关联研究促使人们在2014年发现了一种未被察觉的类固醇生成调节因子DENND1A(在正常和肿瘤性发育过程中差异表达)。剪接变体DENND1A.V2在长期培养的多囊卵巢综合征(PCOS)绒毛膜细胞中构成性过表达,并导致其多囊卵巢综合征样表型。然而,遗传学是复杂的:DENND1A 内含子变异拷贝数与表型严重程度有关,最近的数据表明,DENND1A 调控网络和其他基因中的罕见变异与多囊卵巢综合症有关。肥胖会通过胰岛素抵抗和促炎症细胞因子过多加剧多囊卵巢综合症的表现;过多的脂肪组织还会形成睾酮。四分之一表面上正常的女性患有多囊卵巢综合症,这属于多囊卵巢综合症的功能范围。还有许多问题有待了解。
{"title":"The Search for the Causes of Common Hyperandrogenism, 1965 to Circa 2015.","authors":"Robert L Rosenfield","doi":"10.1210/endrev/bnae007","DOIUrl":"10.1210/endrev/bnae007","url":null,"abstract":"<p><p>From 1965 to 2015, immense strides were made into understanding the mechanisms underlying the common androgen excess disorders, premature adrenarche and polycystic ovary syndrome (PCOS). The author reviews the critical discoveries of this era from his perspective investigating these disorders, commencing with his early discoveries of the unique pattern of plasma androgens in premature adrenarche and the elevation of an index of the plasma free testosterone concentration in most hirsute women. The molecular genetic basis, though not the developmental biologic basis, for adrenarche is now known and 11-oxytestosterones shown to be major bioactive adrenal androgens. The evolution of the lines of research into the pathogenesis of PCOS is historically traced: research milestones are cited in the areas of neuroendocrinology, insulin resistance, hyperinsulinism, type 2 diabetes mellitus, folliculogenesis, androgen secretion, obesity, phenotyping, prenatal androgenization, epigenetics, and complex genetics. Large-scale genome-wide association studies led to the 2014 discovery of an unsuspected steroidogenic regulator DENND1A (differentially expressed in normal and neoplastic development). The splice variant DENND1A.V2 is constitutively overexpressed in PCOS theca cells in long-term culture and accounts for their PCOS-like phenotype. The genetics are complex, however: DENND1A intronic variant copy number is related to phenotype severity, and recent data indicate that rare variants in a DENND1A regulatory network and other genes are related to PCOS. Obesity exacerbates PCOS manifestations via insulin resistance and proinflammatory cytokine excess; excess adipose tissue also forms testosterone. Polycystic ovaries in 40 percent of apparently normal women lie on the PCOS functional spectrum. Much remains to be learned.</p>","PeriodicalId":11544,"journal":{"name":"Endocrine reviews","volume":" ","pages":"553-592"},"PeriodicalIF":22.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140058958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preclinical Rodent Models for Human Bone Disease, Including a Focus on Cortical Bone. 人类骨病的临床前啮齿动物模型,包括皮质骨。
IF 22 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-07-12 DOI: 10.1210/endrev/bnae004
Natalie Y Y Koh, Justyna J Miszkiewicz, Mary Louise Fac, Natalie K Y Wee, Natalie A Sims

Preclinical models (typically ovariectomized rats and genetically altered mice) have underpinned much of what we know about skeletal biology. They have been pivotal for developing therapies for osteoporosis and monogenic skeletal conditions, including osteogenesis imperfecta, achondroplasia, hypophosphatasia, and craniodysplasias. Further therapeutic advances, particularly to improve cortical strength, require improved understanding and more rigorous use and reporting. We describe here how trabecular and cortical bone structure develop, are maintained, and degenerate with aging in mice, rats, and humans, and how cortical bone structure is changed in some preclinical models of endocrine conditions (eg, postmenopausal osteoporosis, chronic kidney disease, hyperparathyroidism, diabetes). We provide examples of preclinical models used to identify and test current therapies for osteoporosis, and discuss common concerns raised when comparing rodent preclinical models to the human skeleton. We focus especially on cortical bone, because it differs between small and larger mammals in its organizational structure. We discuss mechanisms common to mouse and human controlling cortical bone strength and structure, including recent examples revealing genetic contributors to cortical porosity and osteocyte network configurations during growth, maturity, and aging. We conclude with guidelines for clear reporting on mouse models with a goal for better consistency in the use and interpretation of these models.

临床前模型(通常是切除卵巢的大鼠和基因改变的小鼠)为我们了解骨骼生物学奠定了基础。它们在开发骨质疏松症和单基因骨骼疾病(包括成骨不全症、软骨发育不全症、软骨发育不全症和颅骨发育不全症)的疗法方面发挥了关键作用。要取得进一步的治疗进展,尤其是改善皮质强度,就必须加深了解并更严格地使用和报告。我们在此描述小鼠、大鼠和人类骨小梁和骨皮质结构是如何发育、维持和随着年龄增长而退化的,以及在内分泌疾病(如绝经后骨质疏松症、慢性肾病、甲状旁腺功能亢进、糖尿病)的临床前模型中骨皮质结构是如何变化的。我们将举例说明用于确定和测试当前骨质疏松症疗法的临床前模型,并讨论将啮齿动物临床前模型与人体骨骼进行比较时常见的问题。我们尤其关注皮质骨,因为小型哺乳动物和大型哺乳动物的皮质骨在组织结构上有所不同。我们讨论了小鼠和人类控制皮质骨强度和结构的共同机制,包括最近揭示了生长、成熟和老化过程中皮质孔隙率和骨细胞网络配置的遗传因素。最后,我们提出了明确报告小鼠模型的指导原则,目的是更好地统一这些模型的使用和解释。
{"title":"Preclinical Rodent Models for Human Bone Disease, Including a Focus on Cortical Bone.","authors":"Natalie Y Y Koh, Justyna J Miszkiewicz, Mary Louise Fac, Natalie K Y Wee, Natalie A Sims","doi":"10.1210/endrev/bnae004","DOIUrl":"10.1210/endrev/bnae004","url":null,"abstract":"<p><p>Preclinical models (typically ovariectomized rats and genetically altered mice) have underpinned much of what we know about skeletal biology. They have been pivotal for developing therapies for osteoporosis and monogenic skeletal conditions, including osteogenesis imperfecta, achondroplasia, hypophosphatasia, and craniodysplasias. Further therapeutic advances, particularly to improve cortical strength, require improved understanding and more rigorous use and reporting. We describe here how trabecular and cortical bone structure develop, are maintained, and degenerate with aging in mice, rats, and humans, and how cortical bone structure is changed in some preclinical models of endocrine conditions (eg, postmenopausal osteoporosis, chronic kidney disease, hyperparathyroidism, diabetes). We provide examples of preclinical models used to identify and test current therapies for osteoporosis, and discuss common concerns raised when comparing rodent preclinical models to the human skeleton. We focus especially on cortical bone, because it differs between small and larger mammals in its organizational structure. We discuss mechanisms common to mouse and human controlling cortical bone strength and structure, including recent examples revealing genetic contributors to cortical porosity and osteocyte network configurations during growth, maturity, and aging. We conclude with guidelines for clear reporting on mouse models with a goal for better consistency in the use and interpretation of these models.</p>","PeriodicalId":11544,"journal":{"name":"Endocrine reviews","volume":" ","pages":"493-520"},"PeriodicalIF":22.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244217/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139691561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Immune Landscape of Pheochromocytoma and Paraganglioma: Current Advances and Perspectives. 嗜铬细胞瘤和副神经节瘤的免疫格局:当前进展与前景。
IF 22 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-07-12 DOI: 10.1210/endrev/bnae005
Ondrej Uher, Katerina Hadrava Vanova, David Taïeb, Bruna Calsina, Mercedes Robledo, Roderick Clifton-Bligh, Karel Pacak

Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors derived from neural crest cells from adrenal medullary chromaffin tissues and extra-adrenal paraganglia, respectively. Although the current treatment for PPGLs is surgery, optimal treatment options for advanced and metastatic cases have been limited. Hence, understanding the role of the immune system in PPGL tumorigenesis can provide essential knowledge for the development of better therapeutic and tumor management strategies, especially for those with advanced and metastatic PPGLs. The first part of this review outlines the fundamental principles of the immune system and tumor microenvironment, and their role in cancer immunoediting, particularly emphasizing PPGLs. We focus on how the unique pathophysiology of PPGLs, such as their high molecular, biochemical, and imaging heterogeneity and production of several oncometabolites, creates a tumor-specific microenvironment and immunologically "cold" tumors. Thereafter, we discuss recently published studies related to the reclustering of PPGLs based on their immune signature. The second part of this review discusses future perspectives in PPGL management, including immunodiagnostic and promising immunotherapeutic approaches for converting "cold" tumors into immunologically active or "hot" tumors known for their better immunotherapy response and patient outcomes. Special emphasis is placed on potent immune-related imaging strategies and immune signatures that could be used for the reclassification, prognostication, and management of these tumors to improve patient care and prognosis. Furthermore, we introduce currently available immunotherapies and their possible combinations with other available therapies as an emerging treatment for PPGLs that targets hostile tumor environments.

嗜铬细胞瘤和副神经节瘤(PPGLs)是一种罕见的神经内分泌肿瘤,分别来自肾上腺髓质绒毛组织或肾上腺外副神经节的神经嵴细胞。虽然目前治疗 PPGLs 的方法是手术,但晚期和转移性病例的最佳治疗方案却很有限。因此,了解免疫系统在 PPGL 肿瘤发生过程中的作用可为制定更好的治疗和肿瘤管理策略提供必要的知识,尤其是对晚期和转移性 PPGL 患者而言。本综述的第一部分概述了免疫系统和肿瘤微环境的基本原理,以及它们在癌症免疫调节中的作用,特别强调了 PPGLs。我们将重点讨论 PPGLs 独特的病理生理学,如其高度的分子、生化和成像异质性以及多种肿瘤代谢产物的产生,是如何形成肿瘤特异性微环境和免疫学上 "冷 "的肿瘤的。随后,我们将讨论近期发表的基于免疫特征对 PPGLs 进行再聚类的相关研究。综述的第二部分讨论了 PPGL 管理的未来前景,包括将 "冷 "肿瘤转化为免疫活跃或 "热 "肿瘤的免疫诊断和有前景的免疫治疗方法,这些肿瘤因其更好的免疫治疗反应和患者预后而闻名。我们特别强调了有效的免疫相关成像策略和免疫特征,可用于这些肿瘤的重新分类、预后和管理,以改善患者护理和预后。此外,我们还介绍了目前可用的免疫疗法及其与其他可用疗法的可能组合,作为针对恶劣肿瘤环境的新兴 PPGLs 治疗方法。
{"title":"The Immune Landscape of Pheochromocytoma and Paraganglioma: Current Advances and Perspectives.","authors":"Ondrej Uher, Katerina Hadrava Vanova, David Taïeb, Bruna Calsina, Mercedes Robledo, Roderick Clifton-Bligh, Karel Pacak","doi":"10.1210/endrev/bnae005","DOIUrl":"10.1210/endrev/bnae005","url":null,"abstract":"<p><p>Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors derived from neural crest cells from adrenal medullary chromaffin tissues and extra-adrenal paraganglia, respectively. Although the current treatment for PPGLs is surgery, optimal treatment options for advanced and metastatic cases have been limited. Hence, understanding the role of the immune system in PPGL tumorigenesis can provide essential knowledge for the development of better therapeutic and tumor management strategies, especially for those with advanced and metastatic PPGLs. The first part of this review outlines the fundamental principles of the immune system and tumor microenvironment, and their role in cancer immunoediting, particularly emphasizing PPGLs. We focus on how the unique pathophysiology of PPGLs, such as their high molecular, biochemical, and imaging heterogeneity and production of several oncometabolites, creates a tumor-specific microenvironment and immunologically \"cold\" tumors. Thereafter, we discuss recently published studies related to the reclustering of PPGLs based on their immune signature. The second part of this review discusses future perspectives in PPGL management, including immunodiagnostic and promising immunotherapeutic approaches for converting \"cold\" tumors into immunologically active or \"hot\" tumors known for their better immunotherapy response and patient outcomes. Special emphasis is placed on potent immune-related imaging strategies and immune signatures that could be used for the reclassification, prognostication, and management of these tumors to improve patient care and prognosis. Furthermore, we introduce currently available immunotherapies and their possible combinations with other available therapies as an emerging treatment for PPGLs that targets hostile tumor environments.</p>","PeriodicalId":11544,"journal":{"name":"Endocrine reviews","volume":" ","pages":"521-552"},"PeriodicalIF":22.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244254/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139912327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Glucocorticoid Receptor: Isoforms, Functions, and Contribution to Glucocorticoid Sensitivity. 糖皮质激素受体:同工型、功能和对糖皮质激素敏感性的贡献。
IF 22 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-07-12 DOI: 10.1210/endrev/bnae008
Jack Lockett, Warrick J Inder, Vicki L Clifton

Glucocorticoids exert pleiotropic effects on all tissues to regulate cellular and metabolic homeostasis. Synthetic forms are used therapeutically in a wide range of conditions for their anti-inflammatory benefits, at the cost of dose and duration-dependent side effects. Significant variability occurs between tissues, disease states, and individuals with regard to both the beneficial and deleterious effects. The glucocorticoid receptor (GR) is the site of action for these hormones and a vast body of work has been conducted understanding its function. Traditionally, it was thought that the anti-inflammatory benefits of glucocorticoids were mediated by transrepression of pro-inflammatory transcription factors, while the adverse metabolic effects resulted from direct transactivation. This canonical understanding of the GR function has been brought into question over the past 2 decades with advances in the resolution of scientific techniques, and the discovery of multiple isoforms of the receptor present in most tissues. Here we review the structure and function of the GR, the nature of the receptor isoforms, and the contribution of the receptor to glucocorticoid sensitivity, or resistance in health and disease.

糖皮质激素对所有组织都有多方面的影响,可调节细胞和新陈代谢的平衡。合成糖皮质激素可用于治疗多种疾病,具有抗炎作用,但其副作用与剂量和持续时间有关。不同组织、不同疾病状态和不同个体之间,糖皮质激素的益处和副作用都存在显著差异。糖皮质激素受体是这些激素的作用部位,人们已对其功能进行了大量研究。传统上,人们认为糖皮质激素的抗炎作用是通过转抑促炎转录因子介导的,而对代谢的不利影响则是直接转激活的结果。过去二十年来,随着科学技术分辨率的提高和大多数组织中糖皮质激素受体多种异构体的发现,这种对糖皮质激素受体功能的传统认识受到了质疑。在此,我们回顾了糖皮质激素受体的结构和功能、受体异构体的性质以及受体对糖皮质激素的敏感性或在健康和疾病中的抵抗力的贡献。
{"title":"The Glucocorticoid Receptor: Isoforms, Functions, and Contribution to Glucocorticoid Sensitivity.","authors":"Jack Lockett, Warrick J Inder, Vicki L Clifton","doi":"10.1210/endrev/bnae008","DOIUrl":"10.1210/endrev/bnae008","url":null,"abstract":"<p><p>Glucocorticoids exert pleiotropic effects on all tissues to regulate cellular and metabolic homeostasis. Synthetic forms are used therapeutically in a wide range of conditions for their anti-inflammatory benefits, at the cost of dose and duration-dependent side effects. Significant variability occurs between tissues, disease states, and individuals with regard to both the beneficial and deleterious effects. The glucocorticoid receptor (GR) is the site of action for these hormones and a vast body of work has been conducted understanding its function. Traditionally, it was thought that the anti-inflammatory benefits of glucocorticoids were mediated by transrepression of pro-inflammatory transcription factors, while the adverse metabolic effects resulted from direct transactivation. This canonical understanding of the GR function has been brought into question over the past 2 decades with advances in the resolution of scientific techniques, and the discovery of multiple isoforms of the receptor present in most tissues. Here we review the structure and function of the GR, the nature of the receptor isoforms, and the contribution of the receptor to glucocorticoid sensitivity, or resistance in health and disease.</p>","PeriodicalId":11544,"journal":{"name":"Endocrine reviews","volume":" ","pages":"593-624"},"PeriodicalIF":22.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244253/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140318028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Appetite- and Weight-Regulating Neuroendocrine Circuitry in Hypothalamic Obesity. 下丘脑肥胖的食欲和体重调节神经内分泌回路。
IF 20.3 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-05-07 DOI: 10.1210/endrev/bnad033
Hoong-Wei Gan, Manuela Cerbone, Mehul Tulsidas Dattani

Since hypothalamic obesity (HyOb) was first described over 120 years ago by Joseph Babinski and Alfred Fröhlich, advances in molecular genetic laboratory techniques have allowed us to elucidate various components of the intricate neurocircuitry governing appetite and weight regulation connecting the hypothalamus, pituitary gland, brainstem, adipose tissue, pancreas, and gastrointestinal tract. On a background of an increasing prevalence of population-level common obesity, the number of survivors of congenital (eg, septo-optic dysplasia, Prader-Willi syndrome) and acquired (eg, central nervous system tumors) hypothalamic disorders is increasing, thanks to earlier diagnosis and management as well as better oncological therapies. Although to date the discovery of several appetite-regulating peptides has led to the development of a range of targeted molecular therapies for monogenic obesity syndromes, outside of these disorders these discoveries have not translated into the development of efficacious treatments for other forms of HyOb. This review aims to summarize our current understanding of the neuroendocrine physiology of appetite and weight regulation, and explore our current understanding of the pathophysiology of HyOb.

自从120多年前Joseph Babinski和Alfred Fröhlich首次描述下丘脑肥胖(HyOb)以来,分子遗传实验室技术的进步使我们能够阐明控制食欲和体重调节的复杂神经回路的各种组成部分,这些神经回路连接着下丘脑、脑垂体、脑干、脂肪组织、胰腺和胃肠道。在人口水平普遍肥胖日益流行的背景下,由于早期诊断和管理以及更好的肿瘤治疗,先天性(如视隔发育不良、普瑞德-威利综合征)和获得性(如中枢神经系统肿瘤)下丘脑疾病的幸存者人数正在增加。尽管到目前为止,几种食欲调节肽的发现已经导致了一系列针对单基因肥胖综合征的靶向分子疗法的发展,但除了这些疾病之外,这些发现还没有转化为对其他形式的肥胖的有效治疗的发展。本文旨在总结我们目前对食欲和体重调节的神经内分泌生理学的认识,并探讨我们目前对HyOb病理生理学的认识。
{"title":"Appetite- and Weight-Regulating Neuroendocrine Circuitry in Hypothalamic Obesity.","authors":"Hoong-Wei Gan, Manuela Cerbone, Mehul Tulsidas Dattani","doi":"10.1210/endrev/bnad033","DOIUrl":"10.1210/endrev/bnad033","url":null,"abstract":"<p><p>Since hypothalamic obesity (HyOb) was first described over 120 years ago by Joseph Babinski and Alfred Fröhlich, advances in molecular genetic laboratory techniques have allowed us to elucidate various components of the intricate neurocircuitry governing appetite and weight regulation connecting the hypothalamus, pituitary gland, brainstem, adipose tissue, pancreas, and gastrointestinal tract. On a background of an increasing prevalence of population-level common obesity, the number of survivors of congenital (eg, septo-optic dysplasia, Prader-Willi syndrome) and acquired (eg, central nervous system tumors) hypothalamic disorders is increasing, thanks to earlier diagnosis and management as well as better oncological therapies. Although to date the discovery of several appetite-regulating peptides has led to the development of a range of targeted molecular therapies for monogenic obesity syndromes, outside of these disorders these discoveries have not translated into the development of efficacious treatments for other forms of HyOb. This review aims to summarize our current understanding of the neuroendocrine physiology of appetite and weight regulation, and explore our current understanding of the pathophysiology of HyOb.</p>","PeriodicalId":11544,"journal":{"name":"Endocrine reviews","volume":" ","pages":"309-342"},"PeriodicalIF":20.3,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11074800/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138451220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
What Is Carcinoid Syndrome? A Critical Appraisal of Its Proposed Mediators. 什么是类癌综合征?对其提议的调解人的批判性评价。
IF 20.3 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-05-07 DOI: 10.1210/endrev/bnad035
Merijn C F Mulders, Wouter W de Herder, Johannes Hofland

Carcinoid syndrome (CS) is a debilitating disease that affects approximately 20% of patients with neuroendocrine neoplasms (NEN). Due to the increasing incidence and improved overall survival of patients with NEN over recent decades, patients are increasingly suffering from chronic and refractory CS symptoms. At present, symptom control is hampered by an incomplete understanding of the pathophysiology of this syndrome. This systematic review is the first to critically appraise the available evidence for the various hormonal mediators considered to play a causative role in CS. Overall, evidence for the putative mediators of CS was scarce and often of poor quality. Based on the available literature, data are only sufficient to agree on the role of serotonin as a mediator of CS-associated diarrhea and fibrosis. A direct role for tachykinins and an indirect role of catecholamines in the pathogenesis of CS is suggested by several studies. Currently, there is insufficient evidence to link histamine, bradykinin, kallikrein, prostaglandins, or motilin to CS. To summarize, available literature only sufficiently appoints serotonin and suggests a role for tachykinins and catecholamines as mediators of CS, with insufficient evidence for other putative mediators. Descriptions of CS should be revised to focus on these proven hormonal associations to be more accurate, and further research is needed into other potential mediators.

类癌综合征(CS)是一种使人衰弱的疾病,影响了大约20%的神经内分泌肿瘤(NEN)患者。近几十年来,由于NEN患者的发病率增加和总体生存率提高,患者越来越多地患有慢性难治性CS症状。目前,由于对该综合征病理生理的不完全了解,阻碍了症状控制。本系统综述首次批判性地评估了各种激素介质被认为在CS中起致病作用的现有证据。总的来说,关于假定的CS介质的证据很少,而且往往质量很差。根据现有文献,数据仅足以同意5 -羟色胺作为cs相关性腹泻和纤维化介质的作用。一些研究表明,快激素在CS的发病机制中起直接作用,儿茶酚胺在CS的发病机制中起间接作用。目前,没有足够的证据将组胺、缓激肽、缓激肽、前列腺素或动蛋白与CS联系起来。综上所述,现有文献仅充分确定了5 -羟色胺,并提出了速激素和儿茶酚胺作为CS的介质的作用,而其他假定的介质的证据不足。对CS的描述应进行修订,将重点放在这些已证实的激素关联上,以使其更加准确,并需要对其他潜在介质进行进一步研究。
{"title":"What Is Carcinoid Syndrome? A Critical Appraisal of Its Proposed Mediators.","authors":"Merijn C F Mulders, Wouter W de Herder, Johannes Hofland","doi":"10.1210/endrev/bnad035","DOIUrl":"10.1210/endrev/bnad035","url":null,"abstract":"<p><p>Carcinoid syndrome (CS) is a debilitating disease that affects approximately 20% of patients with neuroendocrine neoplasms (NEN). Due to the increasing incidence and improved overall survival of patients with NEN over recent decades, patients are increasingly suffering from chronic and refractory CS symptoms. At present, symptom control is hampered by an incomplete understanding of the pathophysiology of this syndrome. This systematic review is the first to critically appraise the available evidence for the various hormonal mediators considered to play a causative role in CS. Overall, evidence for the putative mediators of CS was scarce and often of poor quality. Based on the available literature, data are only sufficient to agree on the role of serotonin as a mediator of CS-associated diarrhea and fibrosis. A direct role for tachykinins and an indirect role of catecholamines in the pathogenesis of CS is suggested by several studies. Currently, there is insufficient evidence to link histamine, bradykinin, kallikrein, prostaglandins, or motilin to CS. To summarize, available literature only sufficiently appoints serotonin and suggests a role for tachykinins and catecholamines as mediators of CS, with insufficient evidence for other putative mediators. Descriptions of CS should be revised to focus on these proven hormonal associations to be more accurate, and further research is needed into other potential mediators.</p>","PeriodicalId":11544,"journal":{"name":"Endocrine reviews","volume":" ","pages":"351-360"},"PeriodicalIF":20.3,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11074795/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138458642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Endocrine reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1