Pub Date : 2023-10-02DOI: 10.1080/15567036.2023.2263401
Enpei Wang, Lei Li
ABSTRACTMicroencapsulated phase change material (MPC) slurry is created by combining phase change material with a carrier fluid that has superior heat transfer properties compared to ordinary water. MPC slurry is conventionally investigated as heat storage and working fluid in a variety of applications to reduce power consumption. This study numerically investigates the impact of several critical parameters on the heat transfer coefficient (HTC) of MPC slurry in a circular pipe, using Eulerian–Eulerian model. The right triangle curve, one of equivalent specific heat model (ESHM), was applied to evaluate the influence of different critical variable values specified as Tin = 305 K, qwall = −125~−200 kW/m2, αv = 0~15%, Re = 6290~13838, and D = 10~25 mm. The results show that increasing the velocity develops local HTC and reduce the rate of heat transformation. Phase change processing takes roughly twice as long at 1.1 m/s as at 0.5 m/s. Additionally, the results demonstrate that a high concentration of MPC slurry is advantageous for energy storage, as the temperature of MPC slurry is maintained over a considerable distance in cooling conditions. At a velocity of 0.8 m/s, the outlet bulk temperature of MPC slurry at various concentrations is 2–6 K higher than that of water. Furthermore, the evaluation reveals that the HTC was largely determined by pipe size, which was the primary factor. The findings of this study are useful for optimizing energy systems that require thermal energy management.KEYWORDS: Microencapsulated phase change materialEulerian–Eulerian modelflow characteristicsequivalent specific heat modelCFD Nomenclatures A=interfacial area, m2cp=specific heat capacity, KJ/kg KD=diameter of the pipe, mmh=heat transfer coefficient, kW/m2 KK=thermal conductivity, W/m KLH=latent heat, J/kgP=pressure, PaQ=heat flux, kW/m2Re=Reynolds numberT=temperature, Kv=velocity, m/sZ=length along the pipe, mSubscripts = b=bulk MPC slurryl=liquid phasem=massp=MPC particles=solid phasesl=phases interactionw=carrier fluid (water)Greek letters=α=volume fractionμ=viscosity, N/m2 sρ=density, kg/m3Disclosure statementNo potential conflict of interest was reported by the author(s).
{"title":"Numerical study of the flow and heat transfer characteristics of microencapsulated phase change slurry","authors":"Enpei Wang, Lei Li","doi":"10.1080/15567036.2023.2263401","DOIUrl":"https://doi.org/10.1080/15567036.2023.2263401","url":null,"abstract":"ABSTRACTMicroencapsulated phase change material (MPC) slurry is created by combining phase change material with a carrier fluid that has superior heat transfer properties compared to ordinary water. MPC slurry is conventionally investigated as heat storage and working fluid in a variety of applications to reduce power consumption. This study numerically investigates the impact of several critical parameters on the heat transfer coefficient (HTC) of MPC slurry in a circular pipe, using Eulerian–Eulerian model. The right triangle curve, one of equivalent specific heat model (ESHM), was applied to evaluate the influence of different critical variable values specified as Tin = 305 K, qwall = −125~−200 kW/m2, αv = 0~15%, Re = 6290~13838, and D = 10~25 mm. The results show that increasing the velocity develops local HTC and reduce the rate of heat transformation. Phase change processing takes roughly twice as long at 1.1 m/s as at 0.5 m/s. Additionally, the results demonstrate that a high concentration of MPC slurry is advantageous for energy storage, as the temperature of MPC slurry is maintained over a considerable distance in cooling conditions. At a velocity of 0.8 m/s, the outlet bulk temperature of MPC slurry at various concentrations is 2–6 K higher than that of water. Furthermore, the evaluation reveals that the HTC was largely determined by pipe size, which was the primary factor. The findings of this study are useful for optimizing energy systems that require thermal energy management.KEYWORDS: Microencapsulated phase change materialEulerian–Eulerian modelflow characteristicsequivalent specific heat modelCFD Nomenclatures A=interfacial area, m2cp=specific heat capacity, KJ/kg KD=diameter of the pipe, mmh=heat transfer coefficient, kW/m2 KK=thermal conductivity, W/m KLH=latent heat, J/kgP=pressure, PaQ=heat flux, kW/m2Re=Reynolds numberT=temperature, Kv=velocity, m/sZ=length along the pipe, mSubscripts = b=bulk MPC slurryl=liquid phasem=massp=MPC particles=solid phasesl=phases interactionw=carrier fluid (water)Greek letters=α=volume fractionμ=viscosity, N/m2 sρ=density, kg/m3Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":11580,"journal":{"name":"Energy Sources, Part A: Recovery, Utilization, and Environmental Effects","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135901910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-02DOI: 10.1080/15567036.2023.2267495
Cun Wei, Zhigang Zhou, Ming Ni, Rixin Wang, Mingyang Cong, Dayi Yang, Jing Liu
ABSTRACTDecarbonizing district heating requires utilization of low-emitting energy sources. However, earlier studies did not fully consider the district heating potential and CO2 reduction impacts of limited biomass sources. This study presents a new model that examines the potential for utilizing biomass straw sources as fuel for biomass boilers and thermal power plants, with a case study conducted in Heilongjiang Province, China. Results from the model show that the available biomass straw supply increases from 83,799 kilotons to approximately 127,939 kilotons before declining to around 90,000 kilotons. By employing biomass straw as fuel for district heating, an area between 99.4 and 469.8 million m2 can be served by biomass boilers and thermal power plants, leading to CO2 emission reductions ranging from 15.21 to 30.41 million tons. This reduction represents 19–38% compared to the initial CO2 emissions, indicating potential positive carbon reduction benefits. The developed model can be useful for policy makers and industry stakeholders seeking efficient strategies for decarbonizing district heating.KEYWORDS: CO2 emissionsbiomass energycrop strawdistrict heatingHeilongjiang AcknowledgementsThis work is supported financially by the National Natural Science Foundation of China (No. 62276080).Disclosure statementThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.Data availability statementThe data supporting the findings of this study are available within the article.Additional informationFundingThe work was supported by the National Natural Science Foundation of China [No. 62276080].Notes on contributorsCun WeiCun Wei, Certified Energy Manager by the American Association of Energy Engineers, currently pursue his PhD degree in Energy Engineering field at Harbin Institute of Technology. He obtained his master degree from Shanghai Maritime University. His research interests are development and application of low-carbon energy.Zhigang ZhouZhigang Zhou, Professor/doctoral supervisor, currently serves as director of the Department of Thermal Energy Engineering, School of Architecture, Harbin Institute of Technology. His main research directions are urban low-carbon smart heating technology, digital platform of multi-energy complementary supply system, etc.Ming NiMing Ni is currently working as associate professor in Qingdao Technical College. He obtained his bachelor degree from Qufu Normal University and his graduate degree from Central China Normal University. His research interests are linguistics and management. He has teaching and research experience of 30 years.Rixin WangRixin Wang is currently pursuing her PhD degree in Civil Engineering field at Harbin Institute of technology. Her research interests are smart heating and intelligent control technology.Mingyang CongMingyang Cong is currently pursuing her PhD degree in Civil Engi
{"title":"Analysis of carbon emissions for district heating using biomass straw instead of coal: A case study","authors":"Cun Wei, Zhigang Zhou, Ming Ni, Rixin Wang, Mingyang Cong, Dayi Yang, Jing Liu","doi":"10.1080/15567036.2023.2267495","DOIUrl":"https://doi.org/10.1080/15567036.2023.2267495","url":null,"abstract":"ABSTRACTDecarbonizing district heating requires utilization of low-emitting energy sources. However, earlier studies did not fully consider the district heating potential and CO2 reduction impacts of limited biomass sources. This study presents a new model that examines the potential for utilizing biomass straw sources as fuel for biomass boilers and thermal power plants, with a case study conducted in Heilongjiang Province, China. Results from the model show that the available biomass straw supply increases from 83,799 kilotons to approximately 127,939 kilotons before declining to around 90,000 kilotons. By employing biomass straw as fuel for district heating, an area between 99.4 and 469.8 million m2 can be served by biomass boilers and thermal power plants, leading to CO2 emission reductions ranging from 15.21 to 30.41 million tons. This reduction represents 19–38% compared to the initial CO2 emissions, indicating potential positive carbon reduction benefits. The developed model can be useful for policy makers and industry stakeholders seeking efficient strategies for decarbonizing district heating.KEYWORDS: CO2 emissionsbiomass energycrop strawdistrict heatingHeilongjiang AcknowledgementsThis work is supported financially by the National Natural Science Foundation of China (No. 62276080).Disclosure statementThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.Data availability statementThe data supporting the findings of this study are available within the article.Additional informationFundingThe work was supported by the National Natural Science Foundation of China [No. 62276080].Notes on contributorsCun WeiCun Wei, Certified Energy Manager by the American Association of Energy Engineers, currently pursue his PhD degree in Energy Engineering field at Harbin Institute of Technology. He obtained his master degree from Shanghai Maritime University. His research interests are development and application of low-carbon energy.Zhigang ZhouZhigang Zhou, Professor/doctoral supervisor, currently serves as director of the Department of Thermal Energy Engineering, School of Architecture, Harbin Institute of Technology. His main research directions are urban low-carbon smart heating technology, digital platform of multi-energy complementary supply system, etc.Ming NiMing Ni is currently working as associate professor in Qingdao Technical College. He obtained his bachelor degree from Qufu Normal University and his graduate degree from Central China Normal University. His research interests are linguistics and management. He has teaching and research experience of 30 years.Rixin WangRixin Wang is currently pursuing her PhD degree in Civil Engineering field at Harbin Institute of technology. Her research interests are smart heating and intelligent control technology.Mingyang CongMingyang Cong is currently pursuing her PhD degree in Civil Engi","PeriodicalId":11580,"journal":{"name":"Energy Sources, Part A: Recovery, Utilization, and Environmental Effects","volume":"118 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135902224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-02DOI: 10.1080/15567036.2023.2266423
Fatma Kayacetin
ABSTRACTInstead of using canola purelines, the use of other species in genus Brassica will be a novel concept to obtain sustainable biodiesel production. This study compares the crude oil percentage, fatty acid composition, and biodiesel characteristics of spring and autumn sown Brassica juncea, B. rapa ssp. oleifera, Sinapis alba, B. nigra purelines appropriateness for biodiesel production. The results indicated that crude oil percentage and fatty acid composition are significantly affected by an interaction between years × genotypes. The crude oil percentage in all species in genus Brassica changed between 14.31 and 30.46% in spring crops and 22.29 and 36.88% in autumn crops. Erucic acid (C22:1; 10.2–42.8%), oleic acid (C18:1; 14.2–34.9%), and linoleic acid (C18:2; 6.8–25.1%) were identified as major fatty acids in all genotypes. Technical features of biodiesel produced by transesterification of species in genus Brassica oil such as acid value (0.18–0.50 mg KOH g−1), water content (110–480 mg kg−1), iodine value (97.30–119.89 g iodine 100 g−1), cold filter plugging point (−5–5°C), flash point (170–205°Ϲ), and glyceride (0.003–0.46% mm−1). These values indicated that regardless of the time of sowing, these lines are appropriate for biodiesel production in accordance with the TS EN 14,214 standards. Br2 (B. rapa ssp. oleifera) autumn and Bj3 (B. juncea) spring crops are preferable compared to other genotypes to achieve higher yield and quality. Therefore, these genotypes are recommended for further evaluation and sustainable biodiesel production.KEYWORDS: Biofuel technical featureBrassica junceaB. nigraB. rapa ssp. oleiferacrude oil percentagefatty acidSinapis alba AcknowledgementsThe author wishes to thank the DB Agricultural Energy to which determines crude oil percentage, fatty acid component, and biodiesel technical properties in its laboratory, to the entire project team for their contribution, and to Prof. Dr. Khalid Mahmood Khawar (Department of Field Crops, Ankara University, Turkey) for support in the preparation of the article. The author would also like to thank the Scientific and Technological Research Council of Turkey (Grant No. 1505-5190038) for its financial support as a project of the Central Field Crops Research Institute, Ankara, Turkey and DB Agricultural Energy Industry and Trade Limited, Izmir, Turkey. This article covers the works included in the business plan’s Ankara location of DB Agricultural Energy which is the Customers Company of the project supported by TUBITAK.Disclosure statementNo potential conflict of interest was reported by the author.Data availability statementThe data are available on request.Additional informationFundingThis research was funded by the Scientific and Technological Research Council of Turkey, grant number 5190038.Notes on contributorsFatma KayacetinFatma Kayacetin Ph.D. is an Associate Professor in Medicinal and Aromatic Plants Program of Kalecik Vocational School of Ankara University, Turkey
{"title":"Comparison of some species in genus <i>Brassica</i> cultivated on clay loamy soils under semi-arid agroecosystem for suitability to biodiesel production","authors":"Fatma Kayacetin","doi":"10.1080/15567036.2023.2266423","DOIUrl":"https://doi.org/10.1080/15567036.2023.2266423","url":null,"abstract":"ABSTRACTInstead of using canola purelines, the use of other species in genus Brassica will be a novel concept to obtain sustainable biodiesel production. This study compares the crude oil percentage, fatty acid composition, and biodiesel characteristics of spring and autumn sown Brassica juncea, B. rapa ssp. oleifera, Sinapis alba, B. nigra purelines appropriateness for biodiesel production. The results indicated that crude oil percentage and fatty acid composition are significantly affected by an interaction between years × genotypes. The crude oil percentage in all species in genus Brassica changed between 14.31 and 30.46% in spring crops and 22.29 and 36.88% in autumn crops. Erucic acid (C22:1; 10.2–42.8%), oleic acid (C18:1; 14.2–34.9%), and linoleic acid (C18:2; 6.8–25.1%) were identified as major fatty acids in all genotypes. Technical features of biodiesel produced by transesterification of species in genus Brassica oil such as acid value (0.18–0.50 mg KOH g−1), water content (110–480 mg kg−1), iodine value (97.30–119.89 g iodine 100 g−1), cold filter plugging point (−5–5°C), flash point (170–205°Ϲ), and glyceride (0.003–0.46% mm−1). These values indicated that regardless of the time of sowing, these lines are appropriate for biodiesel production in accordance with the TS EN 14,214 standards. Br2 (B. rapa ssp. oleifera) autumn and Bj3 (B. juncea) spring crops are preferable compared to other genotypes to achieve higher yield and quality. Therefore, these genotypes are recommended for further evaluation and sustainable biodiesel production.KEYWORDS: Biofuel technical featureBrassica junceaB. nigraB. rapa ssp. oleiferacrude oil percentagefatty acidSinapis alba AcknowledgementsThe author wishes to thank the DB Agricultural Energy to which determines crude oil percentage, fatty acid component, and biodiesel technical properties in its laboratory, to the entire project team for their contribution, and to Prof. Dr. Khalid Mahmood Khawar (Department of Field Crops, Ankara University, Turkey) for support in the preparation of the article. The author would also like to thank the Scientific and Technological Research Council of Turkey (Grant No. 1505-5190038) for its financial support as a project of the Central Field Crops Research Institute, Ankara, Turkey and DB Agricultural Energy Industry and Trade Limited, Izmir, Turkey. This article covers the works included in the business plan’s Ankara location of DB Agricultural Energy which is the Customers Company of the project supported by TUBITAK.Disclosure statementNo potential conflict of interest was reported by the author.Data availability statementThe data are available on request.Additional informationFundingThis research was funded by the Scientific and Technological Research Council of Turkey, grant number 5190038.Notes on contributorsFatma KayacetinFatma Kayacetin Ph.D. is an Associate Professor in Medicinal and Aromatic Plants Program of Kalecik Vocational School of Ankara University, Turkey","PeriodicalId":11580,"journal":{"name":"Energy Sources, Part A: Recovery, Utilization, and Environmental Effects","volume":"89 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135902226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-02DOI: 10.1080/15567036.2023.2268585
Jie Zhang, Jiaohao Xie, Xin Li, Runze Li, Wenqing Ye, Gezhen Mao
ABSTRACTThe shale gas resources found in deep formations are abundant and represent a crucial area for current and future shale gas development. However, as shale gas exploration and development intensify in China, an increasing number of high-temperature formations are being encountered during drilling, presenting significant challenges to drilling engineering and severely constraining the development of deep shale gas exploration. In this study, the stability of PCM (phase change material) combined with drilling fluid as a coolant was discussed, and the influence of PCM on wellbore temperature field in drilling fluid was considered. A calculation model of temperature field of drilling fluid containing PCM was established, the cooling characteristics of PCM under the influence of different parameters were simulated, and the cooling effect of PCM integrated with drilling fluid on ultra-deep and high-temperature Wells was analyzed. The investigated PCM has a phase change temperature range of 120 ~ 130°C and a latent heat of 264.15 ~ 265.53 kJ/kg. Our results showed that the cooling impact of PCM exhibits an upward trend as the quantity of PCM utilized increases. Assuming the drilling temperature limit is 135°C, after adding 5% PCM to the drilling fluid, the drilling length of the horizontal section increased by approximately 500 m. With 15% PCM added, the horizontal section could be extended by about 1000 m. We conducted a simulation analysis on a well in southern Sichuan, and found that adding 12% PCM had the best cooling effect, reducing the bottom hole temperature by 12.3°C and extending the horizontal section by 700 m. Compared with conventional drilling fluid cooling methods, incorporating PCM as cooling agents within the drilling fluids provided better cooling effects. It effectively addressed the problem of excessive bottom-hole temperatures in deep wells, extended the drilling length of horizontal sections, and prolonged the service life of downhole instruments. Our research lays the groundwork for the future investigation of cooling techniques for high-temperature deep well drilling fluids.KEYWORDS: Drilling fluidtemperature distributionPCM (phase change material)long horizontal wellshigh temperature well cooling Nomenclature c=specific heat capacity, J/(kg·℃)t=time, sz=well depth, mh=Convective heat transfer coefficient, W/(m2·℃)L=latent heat of phase transition, kJ/kgq=volume flow rate of drilling fluid, m3/sQm=internal heat source, W/m3Qa=heat source inside the drill string, W/m3r=radius, mT=temperature,°CTm=phase transition temperature,°CΔT=Phase transition temperature interval,°CGreek Symbols=λ=thermal conductivity, W/(m·℃)ρ=density, kg/m3Subscripts=0.1.2.3.4.i=regions of fluid in drill string, drill string wall, fluid in annulus, borehole wall and formation, respectivelyi=i th layer in the radial directionj=j th layer in the axial directiong=before phase transformation f=at phase transitiony=after phase transformationz=at z position
{"title":"Simulation study of drilling fluid cooling in long horizontal wells based on phase change heat absorption","authors":"Jie Zhang, Jiaohao Xie, Xin Li, Runze Li, Wenqing Ye, Gezhen Mao","doi":"10.1080/15567036.2023.2268585","DOIUrl":"https://doi.org/10.1080/15567036.2023.2268585","url":null,"abstract":"ABSTRACTThe shale gas resources found in deep formations are abundant and represent a crucial area for current and future shale gas development. However, as shale gas exploration and development intensify in China, an increasing number of high-temperature formations are being encountered during drilling, presenting significant challenges to drilling engineering and severely constraining the development of deep shale gas exploration. In this study, the stability of PCM (phase change material) combined with drilling fluid as a coolant was discussed, and the influence of PCM on wellbore temperature field in drilling fluid was considered. A calculation model of temperature field of drilling fluid containing PCM was established, the cooling characteristics of PCM under the influence of different parameters were simulated, and the cooling effect of PCM integrated with drilling fluid on ultra-deep and high-temperature Wells was analyzed. The investigated PCM has a phase change temperature range of 120 ~ 130°C and a latent heat of 264.15 ~ 265.53 kJ/kg. Our results showed that the cooling impact of PCM exhibits an upward trend as the quantity of PCM utilized increases. Assuming the drilling temperature limit is 135°C, after adding 5% PCM to the drilling fluid, the drilling length of the horizontal section increased by approximately 500 m. With 15% PCM added, the horizontal section could be extended by about 1000 m. We conducted a simulation analysis on a well in southern Sichuan, and found that adding 12% PCM had the best cooling effect, reducing the bottom hole temperature by 12.3°C and extending the horizontal section by 700 m. Compared with conventional drilling fluid cooling methods, incorporating PCM as cooling agents within the drilling fluids provided better cooling effects. It effectively addressed the problem of excessive bottom-hole temperatures in deep wells, extended the drilling length of horizontal sections, and prolonged the service life of downhole instruments. Our research lays the groundwork for the future investigation of cooling techniques for high-temperature deep well drilling fluids.KEYWORDS: Drilling fluidtemperature distributionPCM (phase change material)long horizontal wellshigh temperature well cooling Nomenclature c=specific heat capacity, J/(kg·℃)t=time, sz=well depth, mh=Convective heat transfer coefficient, W/(m2·℃)L=latent heat of phase transition, kJ/kgq=volume flow rate of drilling fluid, m3/sQm=internal heat source, W/m3Qa=heat source inside the drill string, W/m3r=radius, mT=temperature,°CTm=phase transition temperature,°CΔT=Phase transition temperature interval,°CGreek Symbols=λ=thermal conductivity, W/(m·℃)ρ=density, kg/m3Subscripts=0.1.2.3.4.i=regions of fluid in drill string, drill string wall, fluid in annulus, borehole wall and formation, respectivelyi=i th layer in the radial directionj=j th layer in the axial directiong=before phase transformation f=at phase transitiony=after phase transformationz=at z position","PeriodicalId":11580,"journal":{"name":"Energy Sources, Part A: Recovery, Utilization, and Environmental Effects","volume":"2023 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135902459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-02DOI: 10.1080/15567036.2023.2268571
Surajit Sannigrahi
ABSTRACTDue to different financial restrictions, extending the existing power grid to remote locations like desert camps is not practically possible, forcing the camp owner to utilize expensive and ecologically hazardous diesel generators (DiG). In this regard, renewable sources based hybrid microgrid could be a viable approach toward reliable and sustainable electrification of these desert camps. However, optimum designing and proper energy management of such a system can be a challenging task. In these terms, this study presents a novel model based on the multi-objective PSO (MOPSO) algorithm for optimal design and energy management of a hybrid microgrid employing solar photovoltaic (PV) and wind turbine (WT), battery, and DiG for electrification of Thar desert camp in Jaisalmer, India. To address techno-eco-environmental aspects, objectives such as Dump Energy (DE), Installation and Operation Cost (IOC), and Reduction of Pollutant Emission (RPE) are considered. The optimal configuration of PV, WT, battery, and DiG are determined based on the maximization of RPE and minimization of both DE and IOC. The proposed model is formulated taking into account the seasonal load variation of a typical camp and the stochastic behavior of renewable energy sources. Moreover, electric vehicles (EVs) charging facility for the tourists staying in these camps is also included while modeling the microgrid system. Furthermore, three distinct system configurations are carefully analyzed over a 10-year period based on technical, environmental and economic indicators. The optimum configuration obtained is the hybrid PV/WT/DiG/battery system with 62 kW PV, 76 kW WT, 350 kWh battery and a 117 kW DiG. According to simulation findings, this system has an operational cost of 323.7 × 104 $ and a pollutant emission of 2034.3 tons, which is 33.67% and 63.32% less than that of the DiG-only configuration, respectively. Moreover, as compared to PV/WT/DiG system, PV/WT/DiG/battery system can reduce dump energy by 81.40%, highlighting the necessity of battery for fully utilizing renewable energy. Overall, this analysis suggests that the utilization of renewable energy sources along with the battery is the optimal planning solution for the camp owner to maximize their potential benefits. Moreover, the proposed technique can be effectively used to optimally design hybrid renewable energy system for other remote locations.KEYWORDS: Hybrid microgrid systemelectric vehiclesrenewable energy sourcesbattery storage systemdesert campmulti-phase planning Nomenclature Nmod=Number of PV modulesFF=Fill factorV; I=Voltage/Current of PV module.VMPP; IMPP=Voltage/Current at maximum power pointV0; IS=Open circuit voltage/Short circuit currentKI; KV=Temperature coefficient of current/voltageTC=PV cell TemperatureT; T0=Ambient/Nominal operating temparaturePtPV=Power output of PV at tth timePsssi=PV power at sith state of solar irradiancePrated=Rated power of WTvws=Wind Speedvci; vr; vco=Cut-in/rate
{"title":"Design and optimal energy management of a stand-alone PV/WT/Diesel/battery system with EV charging facility for Thar desert camp: a case study","authors":"Surajit Sannigrahi","doi":"10.1080/15567036.2023.2268571","DOIUrl":"https://doi.org/10.1080/15567036.2023.2268571","url":null,"abstract":"ABSTRACTDue to different financial restrictions, extending the existing power grid to remote locations like desert camps is not practically possible, forcing the camp owner to utilize expensive and ecologically hazardous diesel generators (DiG). In this regard, renewable sources based hybrid microgrid could be a viable approach toward reliable and sustainable electrification of these desert camps. However, optimum designing and proper energy management of such a system can be a challenging task. In these terms, this study presents a novel model based on the multi-objective PSO (MOPSO) algorithm for optimal design and energy management of a hybrid microgrid employing solar photovoltaic (PV) and wind turbine (WT), battery, and DiG for electrification of Thar desert camp in Jaisalmer, India. To address techno-eco-environmental aspects, objectives such as Dump Energy (DE), Installation and Operation Cost (IOC), and Reduction of Pollutant Emission (RPE) are considered. The optimal configuration of PV, WT, battery, and DiG are determined based on the maximization of RPE and minimization of both DE and IOC. The proposed model is formulated taking into account the seasonal load variation of a typical camp and the stochastic behavior of renewable energy sources. Moreover, electric vehicles (EVs) charging facility for the tourists staying in these camps is also included while modeling the microgrid system. Furthermore, three distinct system configurations are carefully analyzed over a 10-year period based on technical, environmental and economic indicators. The optimum configuration obtained is the hybrid PV/WT/DiG/battery system with 62 kW PV, 76 kW WT, 350 kWh battery and a 117 kW DiG. According to simulation findings, this system has an operational cost of 323.7 × 104 $ and a pollutant emission of 2034.3 tons, which is 33.67% and 63.32% less than that of the DiG-only configuration, respectively. Moreover, as compared to PV/WT/DiG system, PV/WT/DiG/battery system can reduce dump energy by 81.40%, highlighting the necessity of battery for fully utilizing renewable energy. Overall, this analysis suggests that the utilization of renewable energy sources along with the battery is the optimal planning solution for the camp owner to maximize their potential benefits. Moreover, the proposed technique can be effectively used to optimally design hybrid renewable energy system for other remote locations.KEYWORDS: Hybrid microgrid systemelectric vehiclesrenewable energy sourcesbattery storage systemdesert campmulti-phase planning Nomenclature Nmod=Number of PV modulesFF=Fill factorV; I=Voltage/Current of PV module.VMPP; IMPP=Voltage/Current at maximum power pointV0; IS=Open circuit voltage/Short circuit currentKI; KV=Temperature coefficient of current/voltageTC=PV cell TemperatureT; T0=Ambient/Nominal operating temparaturePtPV=Power output of PV at tth timePsssi=PV power at sith state of solar irradiancePrated=Rated power of WTvws=Wind Speedvci; vr; vco=Cut-in/rate","PeriodicalId":11580,"journal":{"name":"Energy Sources, Part A: Recovery, Utilization, and Environmental Effects","volume":"80 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135902588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-02DOI: 10.1080/15567036.2023.2275711
Senthurselvi S, Chellapandian Kannan
ABSTRACTFeAlSiO4 -H3 and ZnAlSiO4-H1 are synthesized through the facile method without an autoclave. Tetraethylenepentamine (TEPA) is a structure-directing agent. FT-IR, XRD, BET, TPD, TGA, and TEM confirmed the framework, crystallinity, porosity, acidity, thermal stability (above 600°C), and surface morphology respectively. BET analysis revealed that two distinct pore widths (FeAlSiO4-H3: 13.79 nm, ZnAlSiO4-H1: 11.65 nm) are based on the metal ion substitution The acidity (FeAlSiO4 -H3:6.576 and ZnAlSiO4-H1:13.836 cm3/g STP). In ZnAlSiO4 – H1, 7 template molecules form a linear complex with 6 Zn2+ions which is oriented vertically to create cylindrical pores. In FeAlSiO4-H3, 8 template molecules are formed a linear complex with 7 Fe2+ which is positioned in a cross-sectional way to produce slit pores. The catalytic cracking of polypropylene has been carried out over FeAlSiO4 and ZnAlSiO4 and observed that the conversion is 100%. H3 type pore has produced higher selectivity of jet fuel (90%) than the H1 type pore (86%) at 0.5 g catalyst dosage. In addition to that, H3 type has produced diesel (3.8%) and H1 type has produced petrol (10.1%) as a minor product. The synthesized aviation fuels are equivalent to JET A-1 fuel and are characterized by FT-IR, HPLC, and GC-MS.KEYWORDS: Waste plasticH3 and H1 pore typemetal ion-TEPA orientationpore mechanismhydrocarbon Disclosure statementNo potential conflict of interest was reported by the author(s).Supplementary materialSupplemental data for this article can be accessed online at https://doi.org/10.1080/15567036.2023.2275711Additional informationNotes on contributorsSenthurselvi SSenthurselvi S, a Research scholar in the Department of Chemistry at Manonmaniam Sundaranar University, Tirunelveli. Her main area of study is the green catalytic process for turning waste plastic into aviation fuel. In National and International conferences, she has participated and delivered more than 10 papers, and won one award for best poster. Two research papers were published in her work.Chellapandian KannanChellapandian Kannan presently works as a professor and chair of the School of Physical Sciences at Manonmaniam Sundaranar University in Tirunelveli. His teaching and research career spans over 22 years. His areas of expertise include environmental science, green catalysis, and nanoporous solid acid production. He has published over 85 research articles in reputale publications. Two patents were granted and one book was published. Under his guidance 12 Ph. D were awarded.
{"title":"An innovative mechanism of creating H1 and H3 pore types in AlSiO <sub>4</sub> and its catalytic application to convert waste plastic into aviation fuel","authors":"Senthurselvi S, Chellapandian Kannan","doi":"10.1080/15567036.2023.2275711","DOIUrl":"https://doi.org/10.1080/15567036.2023.2275711","url":null,"abstract":"ABSTRACTFeAlSiO4 -H3 and ZnAlSiO4-H1 are synthesized through the facile method without an autoclave. Tetraethylenepentamine (TEPA) is a structure-directing agent. FT-IR, XRD, BET, TPD, TGA, and TEM confirmed the framework, crystallinity, porosity, acidity, thermal stability (above 600°C), and surface morphology respectively. BET analysis revealed that two distinct pore widths (FeAlSiO4-H3: 13.79 nm, ZnAlSiO4-H1: 11.65 nm) are based on the metal ion substitution The acidity (FeAlSiO4 -H3:6.576 and ZnAlSiO4-H1:13.836 cm3/g STP). In ZnAlSiO4 – H1, 7 template molecules form a linear complex with 6 Zn2+ions which is oriented vertically to create cylindrical pores. In FeAlSiO4-H3, 8 template molecules are formed a linear complex with 7 Fe2+ which is positioned in a cross-sectional way to produce slit pores. The catalytic cracking of polypropylene has been carried out over FeAlSiO4 and ZnAlSiO4 and observed that the conversion is 100%. H3 type pore has produced higher selectivity of jet fuel (90%) than the H1 type pore (86%) at 0.5 g catalyst dosage. In addition to that, H3 type has produced diesel (3.8%) and H1 type has produced petrol (10.1%) as a minor product. The synthesized aviation fuels are equivalent to JET A-1 fuel and are characterized by FT-IR, HPLC, and GC-MS.KEYWORDS: Waste plasticH3 and H1 pore typemetal ion-TEPA orientationpore mechanismhydrocarbon Disclosure statementNo potential conflict of interest was reported by the author(s).Supplementary materialSupplemental data for this article can be accessed online at https://doi.org/10.1080/15567036.2023.2275711Additional informationNotes on contributorsSenthurselvi SSenthurselvi S, a Research scholar in the Department of Chemistry at Manonmaniam Sundaranar University, Tirunelveli. Her main area of study is the green catalytic process for turning waste plastic into aviation fuel. In National and International conferences, she has participated and delivered more than 10 papers, and won one award for best poster. Two research papers were published in her work.Chellapandian KannanChellapandian Kannan presently works as a professor and chair of the School of Physical Sciences at Manonmaniam Sundaranar University in Tirunelveli. His teaching and research career spans over 22 years. His areas of expertise include environmental science, green catalysis, and nanoporous solid acid production. He has published over 85 research articles in reputale publications. Two patents were granted and one book was published. Under his guidance 12 Ph. D were awarded.","PeriodicalId":11580,"journal":{"name":"Energy Sources, Part A: Recovery, Utilization, and Environmental Effects","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135949560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ABSTRACTIn China, residential buildings have a high-volume ratio and density, which limit the amount of buried U-tube space available, thereby hindering the application of traditional ground-source heat pump systems (GSHPs). Due to the imbalance in heat transfer, the operating efficiency of GSHPs decreases annually in severe cold zones. To alleviate these issues, we assessed the feasibility of medium-depth U-tube GSHPs. An experimental platform in Fuxin City, China, was established, and a simulation model was designed with TRNSYS software. The area affected by the heating load was analyzed, and the proposed system was compared with solar-soil and medium-depth casing pipe GSHPs. The proposed system was found to be stable and efficient for long-term operations, delivering not only the lowest equivalent annual cost but also a 4.61% improvement in heating (compared to solar-soil GSHPs), an 81.54% improvement in cooling, and a 23.08% improvement in emission reductions (compared to medium-depth casing pipe GSHPs).The application of a special U-shaped pipe elbow and a dual-temperature switching valve allowed heat exchange conversion between the heating and cooling conditions. The results of the simulation model demonstrated that dual-temperature operation resulted in greater cooling performance and cheaper operating costs than did the single-temperature system.KEYWORDS: Medium-depth GSHPsU-tubegeothermal energydual-temperaturesevere cold zones Nomenclature COPr=Rated coefficient of performance of heat pump unitsEERr=Rated energy efficiency ratio of heat pump unitsTin,r=Rated water inlet temperature of heat pump unitsttop=Temperature on top of storagetsurface=Surface temperature of storage volumeΔt=Thermal gradient of storage volumeλ=Thermal conductivityN=NumberD=DistanceH=Depthϕ=DiameterCi=Investment costr=Discount ratet=Life cycleCm=Management costMEC=Major equipment costDC=Drilling costBC=Backfill costCBC=Comprehensive borehole costf=Unit feeV=VolumeEC=Excavation costh=Excavation height of V-shaped channelsn=Number of boreholes in a single rowAOAC=Additional occupied area costA=Land areaOC=Operation costP=Total energy consumptionε=Estimate indexQ˙=Rated capacityP˙=Rated powerV˙=Rated flowH˙=Rated headAc=Area of collectorsηc=Collector efficiencyηL=Rate of heat loss rateECI=Energy conservation indexERI=Emission reduction indexEI=Economy indexηe=Rate of energy conservationG=Annual cumulative reductionSubscripts=hp=heat pumps=storagef=fillp=pipeb=boreholel=layero=outeri=innerex=excavationt=transactiong=green landel=electricityH=heatingC=coolingsp=Single-speed pumpc=collectorh=heat storageO=outer pipeI=inner pipesys=systemCO2=carbon dioxide emissionSO2=sulfur dioxide emissiondust=dust emissionAcronyms=GSHPs=Ground source heat pump systemTRNSYS=Transient system simulation toolGDP=Gross domestic producttce=Ton of standard coal equivalenttCO2=Ton carbon dioxideHVAC=Heating, ventilation and air-conditioningTp=Temperature penaltyCOP=Coefficient of performanceEE
{"title":"Feasibility of a medium-depth U-tube ground-source heat pump system in a severe cold zone in China","authors":"Tingting Zuo, Xiangli Li, Lifan Wang, Cang Tong, Shiwei Xue, Zhijie Zhang","doi":"10.1080/15567036.2023.2274506","DOIUrl":"https://doi.org/10.1080/15567036.2023.2274506","url":null,"abstract":"ABSTRACTIn China, residential buildings have a high-volume ratio and density, which limit the amount of buried U-tube space available, thereby hindering the application of traditional ground-source heat pump systems (GSHPs). Due to the imbalance in heat transfer, the operating efficiency of GSHPs decreases annually in severe cold zones. To alleviate these issues, we assessed the feasibility of medium-depth U-tube GSHPs. An experimental platform in Fuxin City, China, was established, and a simulation model was designed with TRNSYS software. The area affected by the heating load was analyzed, and the proposed system was compared with solar-soil and medium-depth casing pipe GSHPs. The proposed system was found to be stable and efficient for long-term operations, delivering not only the lowest equivalent annual cost but also a 4.61% improvement in heating (compared to solar-soil GSHPs), an 81.54% improvement in cooling, and a 23.08% improvement in emission reductions (compared to medium-depth casing pipe GSHPs).The application of a special U-shaped pipe elbow and a dual-temperature switching valve allowed heat exchange conversion between the heating and cooling conditions. The results of the simulation model demonstrated that dual-temperature operation resulted in greater cooling performance and cheaper operating costs than did the single-temperature system.KEYWORDS: Medium-depth GSHPsU-tubegeothermal energydual-temperaturesevere cold zones Nomenclature COPr=Rated coefficient of performance of heat pump unitsEERr=Rated energy efficiency ratio of heat pump unitsTin,r=Rated water inlet temperature of heat pump unitsttop=Temperature on top of storagetsurface=Surface temperature of storage volumeΔt=Thermal gradient of storage volumeλ=Thermal conductivityN=NumberD=DistanceH=Depthϕ=DiameterCi=Investment costr=Discount ratet=Life cycleCm=Management costMEC=Major equipment costDC=Drilling costBC=Backfill costCBC=Comprehensive borehole costf=Unit feeV=VolumeEC=Excavation costh=Excavation height of V-shaped channelsn=Number of boreholes in a single rowAOAC=Additional occupied area costA=Land areaOC=Operation costP=Total energy consumptionε=Estimate indexQ˙=Rated capacityP˙=Rated powerV˙=Rated flowH˙=Rated headAc=Area of collectorsηc=Collector efficiencyηL=Rate of heat loss rateECI=Energy conservation indexERI=Emission reduction indexEI=Economy indexηe=Rate of energy conservationG=Annual cumulative reductionSubscripts=hp=heat pumps=storagef=fillp=pipeb=boreholel=layero=outeri=innerex=excavationt=transactiong=green landel=electricityH=heatingC=coolingsp=Single-speed pumpc=collectorh=heat storageO=outer pipeI=inner pipesys=systemCO2=carbon dioxide emissionSO2=sulfur dioxide emissiondust=dust emissionAcronyms=GSHPs=Ground source heat pump systemTRNSYS=Transient system simulation toolGDP=Gross domestic producttce=Ton of standard coal equivalenttCO2=Ton carbon dioxideHVAC=Heating, ventilation and air-conditioningTp=Temperature penaltyCOP=Coefficient of performanceEE","PeriodicalId":11580,"journal":{"name":"Energy Sources, Part A: Recovery, Utilization, and Environmental Effects","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135949818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ABSTRACTDeep and ultra-deep drilling technology development is critical to the exploitation of ultra-deep oil and gas deposits. As the number of ultra-deep wells increases, the bottom hole temperature of certain ultra-deep wells approaches 250°C. The high-temperature and high-pressure environment can influence the stability and longevity of drilling instruments, as well as the density, rheology, and stability of drilling fluid, making wellbore stability difficult to maintain. Problems such as high torque and high friction affect the safety of downhole drilling and drilling efficiency. Adding lubricant to drilling fluid is an effective way. In this study, choline chloride (ChCl) and polyethylene glycol (PEG) were used to synthesize a deep eutectic solvent (DES), and an environmentally friendly water-based drilling fluid lubricant DES/G was prepared by compounding the DES with graphene (G). Infrared spectrum, particle size analysis, and electron microscope tests were used to characterize the structure of the lubricant. At the same time, the effect of lubricant was evaluated by extreme pressure lubricity tester and friction and wear tester, and the adhesion coefficient of filter cake was tested. At temperatures below 200°C, DES/G demonstrated a significant enhancement in the lubricating properties of drilling fluids and filter cakes. The adhesion coefficient was controlled within 0.1, and the reduction rate was exceeding 30%. With increasing dosage of the lubricant, DES/G consistently maintained a low adhesion coefficient value of 0.03803 to 0.06253 (at 180°C) and 0.0414 to 0.07337 (at 200°C). Furthermore, it exhibited higher values of reduction rate, reaching a maximum of 64%. The lubricant can increase lubricating performance by adsorbing on the metal surface to generate a strong lubricating coating and converting the sliding friction between drilling tools to rolling friction.KEYWORDS: Deep eutectic solventgraphenelubricantdrilling fluidcholine chloride AcknowledgementsWe would like to thank the Financial Support of Scientific Research and Technology Development Projects of China National Petroleum Corporation Limited (2022ZG06) and the National Natural Science Foundation of China (52274011) and basic theory and method of safe and efficient drilling and completion engineering in high-temperature and high-pressure oil gas (U19B6003-05) for this work.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe work was supported by the National Natural Science Foundation of China [52274011]; Scientific research and technology development projects of China National Petroleum Corporation Limited [2022ZG06].
{"title":"Deep eutectic solvent modified graphene as a lubricant for water-based drilling fluid","authors":"Fengbao Liu, Jinsheng Sun, Zhilei Zhang, Yuan Geng, Xinyu Zhou, Wen Yue, Yuxiu An","doi":"10.1080/15567036.2023.2274960","DOIUrl":"https://doi.org/10.1080/15567036.2023.2274960","url":null,"abstract":"ABSTRACTDeep and ultra-deep drilling technology development is critical to the exploitation of ultra-deep oil and gas deposits. As the number of ultra-deep wells increases, the bottom hole temperature of certain ultra-deep wells approaches 250°C. The high-temperature and high-pressure environment can influence the stability and longevity of drilling instruments, as well as the density, rheology, and stability of drilling fluid, making wellbore stability difficult to maintain. Problems such as high torque and high friction affect the safety of downhole drilling and drilling efficiency. Adding lubricant to drilling fluid is an effective way. In this study, choline chloride (ChCl) and polyethylene glycol (PEG) were used to synthesize a deep eutectic solvent (DES), and an environmentally friendly water-based drilling fluid lubricant DES/G was prepared by compounding the DES with graphene (G). Infrared spectrum, particle size analysis, and electron microscope tests were used to characterize the structure of the lubricant. At the same time, the effect of lubricant was evaluated by extreme pressure lubricity tester and friction and wear tester, and the adhesion coefficient of filter cake was tested. At temperatures below 200°C, DES/G demonstrated a significant enhancement in the lubricating properties of drilling fluids and filter cakes. The adhesion coefficient was controlled within 0.1, and the reduction rate was exceeding 30%. With increasing dosage of the lubricant, DES/G consistently maintained a low adhesion coefficient value of 0.03803 to 0.06253 (at 180°C) and 0.0414 to 0.07337 (at 200°C). Furthermore, it exhibited higher values of reduction rate, reaching a maximum of 64%. The lubricant can increase lubricating performance by adsorbing on the metal surface to generate a strong lubricating coating and converting the sliding friction between drilling tools to rolling friction.KEYWORDS: Deep eutectic solventgraphenelubricantdrilling fluidcholine chloride AcknowledgementsWe would like to thank the Financial Support of Scientific Research and Technology Development Projects of China National Petroleum Corporation Limited (2022ZG06) and the National Natural Science Foundation of China (52274011) and basic theory and method of safe and efficient drilling and completion engineering in high-temperature and high-pressure oil gas (U19B6003-05) for this work.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe work was supported by the National Natural Science Foundation of China [52274011]; Scientific research and technology development projects of China National Petroleum Corporation Limited [2022ZG06].","PeriodicalId":11580,"journal":{"name":"Energy Sources, Part A: Recovery, Utilization, and Environmental Effects","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135949013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-02DOI: 10.1080/15567036.2023.2276380
Madiha Bencekri, Donggyun Ku, Doyun Lee, Yee Van Fan, Jiří Jaromír Klemeš, Petar Sabev Varbanov, Seungjae Lee
ABSTRACTTransportation significantly contributes to carbon emissions, prompting the need for effective mitigation policies. This study addresses the knowledge gaps in assessing the effectiveness of transport carbon policies and offers the lack of a holistic comparative overview. The study used a model composed of a mixed-effects meta-regression and carbon elasticity to investigate policies, like shared bikes, mobility hubs, low emission zones, congestion pricing, electric vehicles, and hydrogen vehicles. This model included seven control variables: year, GDP, implementation costs, geographic scale, environmental benefits, and transport share of energy consumption and carbon emissions. Mobility hubs and electric vehicles ranked are top effective policies with carbon elasticities of 3.73 and 3.72, effect sizes of 127.47 and 86.73, and confidence intervals of [65.55, 107.93] and [106.17, 148.78], respectively. Followed by the low emission zone of 16.3 carbon elasticity, proving its cost-effectiveness, effect size of 10.16, and a confidence interval of [−2.48, 22.80]. Congestion pricing, despite having the highest effect size of 873.39, its confidence interval [−354.01, 2100.80] is wide, indicating the uncertainty of this effect. Shared bikes and hydrogen vehicles ranked lowest, suggesting a need for deeper life cycle-based analysis. Although this model displayed high accuracy, the findings’ interpretation should consider the inherent data limitations.KEYWORDS: Carbon elasticitycarbon policymeta-analysispolicy efficiencytransport policy AcknowledgementsThis work was supported by the Basic Study and Interdisciplinary R&D Foundation Fund of the University of Seoul (2023) for Seungjae Lee. And, This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2019K1A4A7A03112460) for Madiha Bencekri. The co-authors would like to acknowledge the support from SPIL, funded as project No.CZ.02.1.01/0.0/0.0/15_003/0000456, by Czech Republic Operational Programme Research and Development, Education, Priority 1: Strengthening capacity for quality research” and to express our gratitude to the late Prof Jiří Jaromír Klemeš. His contributions and unwavering support were invaluable to the success of our collaborationDisclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThe work was supported by the National Research Foundation of Korea [NRF-2019K1A4A7A03112460].Notes on contributorsMadiha BencekriMadiha Bencekri, a Ph.D. candidate in the Department of Transportation Engineering and Smart Cities. Ex-public officer at the regional metropolitan government of Casablanca, Morocco.Donggyun KuDonggyun Ku is a doctor from the Department of Transportation Engineering at the University of Seoul in Korea. Ex-researcher at the University of Cambridge. Current researcher at the Gyeonggi Research Institute, Korea.Doyun LeeDoyun Lee, a master student in the Gra
{"title":"The elasticity and efficiency of carbon reduction strategies in transportation","authors":"Madiha Bencekri, Donggyun Ku, Doyun Lee, Yee Van Fan, Jiří Jaromír Klemeš, Petar Sabev Varbanov, Seungjae Lee","doi":"10.1080/15567036.2023.2276380","DOIUrl":"https://doi.org/10.1080/15567036.2023.2276380","url":null,"abstract":"ABSTRACTTransportation significantly contributes to carbon emissions, prompting the need for effective mitigation policies. This study addresses the knowledge gaps in assessing the effectiveness of transport carbon policies and offers the lack of a holistic comparative overview. The study used a model composed of a mixed-effects meta-regression and carbon elasticity to investigate policies, like shared bikes, mobility hubs, low emission zones, congestion pricing, electric vehicles, and hydrogen vehicles. This model included seven control variables: year, GDP, implementation costs, geographic scale, environmental benefits, and transport share of energy consumption and carbon emissions. Mobility hubs and electric vehicles ranked are top effective policies with carbon elasticities of 3.73 and 3.72, effect sizes of 127.47 and 86.73, and confidence intervals of [65.55, 107.93] and [106.17, 148.78], respectively. Followed by the low emission zone of 16.3 carbon elasticity, proving its cost-effectiveness, effect size of 10.16, and a confidence interval of [−2.48, 22.80]. Congestion pricing, despite having the highest effect size of 873.39, its confidence interval [−354.01, 2100.80] is wide, indicating the uncertainty of this effect. Shared bikes and hydrogen vehicles ranked lowest, suggesting a need for deeper life cycle-based analysis. Although this model displayed high accuracy, the findings’ interpretation should consider the inherent data limitations.KEYWORDS: Carbon elasticitycarbon policymeta-analysispolicy efficiencytransport policy AcknowledgementsThis work was supported by the Basic Study and Interdisciplinary R&D Foundation Fund of the University of Seoul (2023) for Seungjae Lee. And, This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2019K1A4A7A03112460) for Madiha Bencekri. The co-authors would like to acknowledge the support from SPIL, funded as project No.CZ.02.1.01/0.0/0.0/15_003/0000456, by Czech Republic Operational Programme Research and Development, Education, Priority 1: Strengthening capacity for quality research” and to express our gratitude to the late Prof Jiří Jaromír Klemeš. His contributions and unwavering support were invaluable to the success of our collaborationDisclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThe work was supported by the National Research Foundation of Korea [NRF-2019K1A4A7A03112460].Notes on contributorsMadiha BencekriMadiha Bencekri, a Ph.D. candidate in the Department of Transportation Engineering and Smart Cities. Ex-public officer at the regional metropolitan government of Casablanca, Morocco.Donggyun KuDonggyun Ku is a doctor from the Department of Transportation Engineering at the University of Seoul in Korea. Ex-researcher at the University of Cambridge. Current researcher at the Gyeonggi Research Institute, Korea.Doyun LeeDoyun Lee, a master student in the Gra","PeriodicalId":11580,"journal":{"name":"Energy Sources, Part A: Recovery, Utilization, and Environmental Effects","volume":"89 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135949016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}