YouTube® is one of the leading platforms for health information. However, the lack of regulation of content and quality raises concerns about accuracy and reliability. CoMICs (Concise Medical Information Cines) are evidence-based short videos created by medical students and junior doctors and reviewed by experts to ensure clinical accuracy. We performed a systematic review to understand the impact of videos on knowledge and awareness about diabetes and PCOS. We then evaluated the quality of YouTube® videos about diabetes and PCOS using various validated quality assessment tools and compared these with CoMICs videos on the same topics. Quality assessment tools like DISCERN, JAMA benchmark criteria, and global quality scale (GQS) score were employed. Some of the authors of this study also co-authored the creation of some of the CoMICs evaluated. Our study revealed that while videos effectively improve understanding of diabetes and PCOS, there are notable differences in quality and reliability of the videos on YouTube®. For diabetes, CoMICs videos had higher DISCERN scores (CoMICs vs YouTube®: 2.4 vs 1.6), superior reliability (P < 0.01), and treatment quality (P < 0.01) and met JAMA criteria for authorship (100% vs 30.6%) and currency (100% vs 53.1%). For PCOS, CoMICs had higher DISCERN scores (2.9 vs 1.9), reliability (P < 0.01), and treatment quality (P < 0.01); met JAMA criteria for authorship (100% vs 34.0%) and currency (100% vs 54.0%); and had higher GQS scores (4.0 vs 3.0). In conclusion, CoMICs outperformed other similar sources on YouTube® in providing reliable evidence-based medical information which may be used for patient education.
YouTube® 是健康信息的主要平台之一。然而,由于缺乏对内容和质量的监管,人们对其准确性和可靠性产生了担忧。CoMIC(简明医学信息视频)是由医科学生和初级医生制作的基于证据的短视频,并由专家进行审核,以确保临床准确性。我们进行了一项系统性回顾,以了解视频对糖尿病和多囊卵巢综合症知识和认知的影响。然后,我们使用各种经过验证的质量评估工具对 YouTube® 上有关糖尿病和多囊卵巢综合症的视频进行了质量评估,并将其与 CoMICs 上相同主题的视频进行了比较。我们使用了 DISCERN、JAMA 基准标准和全球质量评分 (GQS) 等质量评估工具。本研究的一些作者还与他人共同创作了一些被评估的 CoMICs。我们的研究表明,虽然视频能有效增进人们对糖尿病和多囊卵巢综合症的了解,但 YouTube® 上的视频在质量和可靠性方面存在明显差异。在糖尿病方面,CoMICs 视频的 DISCERN 分数更高(CoMICs vs YouTube®:2.4 vs 1.6),可靠性更高(p
{"title":"Assessment of the quality, content, and reliability of YouTube® videos on diabetes mellitus and polycystic ovary syndrome: a systematic review with cross-sectional analysis comparing peer-reviewed videos.","authors":"Shams Ali Baig, Kashish Malhotra, Anagh Josh Banerjee, Mukunth Kowsik, Khushi Kumar, Fazna Rahman, Syeda Sabbah Batul, Mohammed Faraaz Saiyed, Vardhan Venkatesh, Pranav Viswanath Iyer, Punith Kempegowda","doi":"10.1530/EC-24-0059","DOIUrl":"10.1530/EC-24-0059","url":null,"abstract":"<p><p>YouTube® is one of the leading platforms for health information. However, the lack of regulation of content and quality raises concerns about accuracy and reliability. CoMICs (Concise Medical Information Cines) are evidence-based short videos created by medical students and junior doctors and reviewed by experts to ensure clinical accuracy. We performed a systematic review to understand the impact of videos on knowledge and awareness about diabetes and PCOS. We then evaluated the quality of YouTube® videos about diabetes and PCOS using various validated quality assessment tools and compared these with CoMICs videos on the same topics. Quality assessment tools like DISCERN, JAMA benchmark criteria, and global quality scale (GQS) score were employed. Some of the authors of this study also co-authored the creation of some of the CoMICs evaluated. Our study revealed that while videos effectively improve understanding of diabetes and PCOS, there are notable differences in quality and reliability of the videos on YouTube®. For diabetes, CoMICs videos had higher DISCERN scores (CoMICs vs YouTube®: 2.4 vs 1.6), superior reliability (P < 0.01), and treatment quality (P < 0.01) and met JAMA criteria for authorship (100% vs 30.6%) and currency (100% vs 53.1%). For PCOS, CoMICs had higher DISCERN scores (2.9 vs 1.9), reliability (P < 0.01), and treatment quality (P < 0.01); met JAMA criteria for authorship (100% vs 34.0%) and currency (100% vs 54.0%); and had higher GQS scores (4.0 vs 3.0). In conclusion, CoMICs outperformed other similar sources on YouTube® in providing reliable evidence-based medical information which may be used for patient education.</p>","PeriodicalId":11634,"journal":{"name":"Endocrine Connections","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227060/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141295768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-18Print Date: 2024-07-01DOI: 10.1530/EC-24-0074
Carlijn A Hoekx, Borja Martinez-Tellez, Maaike E Straat, Magdalena M A Verkleij, Mirjam Kemmeren, Sander Kooijman, Martin Uhrbom, Saskia C A de Jager, Patrick C N Rensen, Mariëtte R Boon
Objectives: Cold exposure is linked to cardiometabolic benefits. Cold activates brown adipose tissue (BAT), increases energy expenditure, and induces secretion of the hormones fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15). The cold-induced increase in energy expenditure exhibits a diurnal rhythm in men. Therefore, we aimed to investigate the effect of cold exposure on serum FGF21 and GDF15 levels in humans and whether cold-induced changes in FGF21 and GDF15 levels differ between morning and evening in males and females.
Method: In this randomized cross-over study, serum FGF21 and GDF15 levels were measured in healthy lean males (n = 12) and females (n = 12) before, during, and after 90 min of stable cold exposure in the morning (07:45 h) and evening (19:45 h) with a 1-day washout period in between.
Results: Cold exposure increased FGF21 levels in the evening compared to the morning both in males (+61% vs -13%; P < 0.001) and in females (+58% vs +8%; P < 0.001). In contrast, cold exposure did not significantly modify serum GDF15 levels, and no diurnal variation was found. Changes in FGF21 and GDF15 levels did not correlate with changes in cold-induced energy expenditure in the morning and evening.
Conclusion: Cold exposure increased serum FGF21 levels in the evening, but not in the morning, in both males and females. GDF15 levels were not affected by cold exposure. Thus, this study suggests that the timing of cold exposure may influence cold-induced changes in FGF21 levels but not GDF15 levels and seems to be independent of changes in energy expenditure.
{"title":"Cold exposure increases circulating fibroblast growth factor 21 in the evening in males and females.","authors":"Carlijn A Hoekx, Borja Martinez-Tellez, Maaike E Straat, Magdalena M A Verkleij, Mirjam Kemmeren, Sander Kooijman, Martin Uhrbom, Saskia C A de Jager, Patrick C N Rensen, Mariëtte R Boon","doi":"10.1530/EC-24-0074","DOIUrl":"10.1530/EC-24-0074","url":null,"abstract":"<p><strong>Objectives: </strong>Cold exposure is linked to cardiometabolic benefits. Cold activates brown adipose tissue (BAT), increases energy expenditure, and induces secretion of the hormones fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15). The cold-induced increase in energy expenditure exhibits a diurnal rhythm in men. Therefore, we aimed to investigate the effect of cold exposure on serum FGF21 and GDF15 levels in humans and whether cold-induced changes in FGF21 and GDF15 levels differ between morning and evening in males and females.</p><p><strong>Method: </strong>In this randomized cross-over study, serum FGF21 and GDF15 levels were measured in healthy lean males (n = 12) and females (n = 12) before, during, and after 90 min of stable cold exposure in the morning (07:45 h) and evening (19:45 h) with a 1-day washout period in between.</p><p><strong>Results: </strong>Cold exposure increased FGF21 levels in the evening compared to the morning both in males (+61% vs -13%; P < 0.001) and in females (+58% vs +8%; P < 0.001). In contrast, cold exposure did not significantly modify serum GDF15 levels, and no diurnal variation was found. Changes in FGF21 and GDF15 levels did not correlate with changes in cold-induced energy expenditure in the morning and evening.</p><p><strong>Conclusion: </strong>Cold exposure increased serum FGF21 levels in the evening, but not in the morning, in both males and females. GDF15 levels were not affected by cold exposure. Thus, this study suggests that the timing of cold exposure may influence cold-induced changes in FGF21 levels but not GDF15 levels and seems to be independent of changes in energy expenditure.</p>","PeriodicalId":11634,"journal":{"name":"Endocrine Connections","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227058/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-13Print Date: 2024-07-01DOI: 10.1530/EC-24-0170
Irfan Vardarli, Susanne Tan, Rainer Görges, Bernhard K Krämer, Ken Herrmann, Christoph Brochhausen
Objective: The management of thyroid nodules with indeterminate cytology (ITN) is still a challenge. To evaluate the performance of commercial molecular tests for ITN, we performed this comprehensive meta-analysis.
Methods: We performed an electronic search using PubMed/Medline, Embase, and the Cochrane Library. Studies assessing the diagnostic accuracy of Afirma gene expression classifier (GEC), Afirma gene sequencing classifier (GSC), ThyroSeq v2 (TSv2), or ThyroSeq v3 (TSv3) in patients with ITN (only Bethesda category III or IV) were selected; Statistical analyses were performed by using Stata.
Results: Seventy-one samples (GEC, n = 38; GSC, n = 16; TSv2, n = 9; TSv3, n = 8) in 53 studies, involving 6490 fine needle aspirations (FNAs) with ITN cytology with molecular diagnostics (GEC, GSC, TSv2, or TSv3), were included in the study. The meta-analysis showed the following pooled estimates: sensitivity 0.95 (95% CI: 0.94-0.97), specificity 0.35 (0.28-0.43), positive likelihood ratio (LR+) 1.5 (1.3-1.6), and negative likelihood ratio (LR-) 0.13 (0.09-0.19), with the best performance for TSv3 (area under the ROC curve 0.95 (0.93-0.96), followed by TSv2 (0.90 (0.87-0.92)), GSC (0.86 (0.82-0.88)), and GEC (0.82 (0.78-0.85)); the best rule-out property was observed for GSC (LR-, 0.07 (0.02-0.19)), followed by TSv3 (0.11 (0.05-0.24)) and GEC (0.16 (0.10-0.28), and the best rule-in was observed for TSv2 (LR+, 2,9 (1.4-4.6)), followed by GSC (1.9 (1.6-2.4)). A meta-regression analysis revealed that study design, Bethesda category, and type of molecular test were independent factors.
Conclusion: We showed that in patients with ITN, TSv3 has the best molecular diagnostic performance, followed by TSv2, GSC, and GEC. As regards rule-out malignancy, GSC, and rule-in, TSV2 is superior to other tests.
{"title":"Diagnostic accuracy of Afirma gene expression classifier, Afirma gene sequencing classifier, ThyroSeq v2 and ThyroSeq v3 for indeterminate (Bethesda III and IV) thyroid nodules: a meta-analysis.","authors":"Irfan Vardarli, Susanne Tan, Rainer Görges, Bernhard K Krämer, Ken Herrmann, Christoph Brochhausen","doi":"10.1530/EC-24-0170","DOIUrl":"10.1530/EC-24-0170","url":null,"abstract":"<p><strong>Objective: </strong>The management of thyroid nodules with indeterminate cytology (ITN) is still a challenge. To evaluate the performance of commercial molecular tests for ITN, we performed this comprehensive meta-analysis.</p><p><strong>Methods: </strong>We performed an electronic search using PubMed/Medline, Embase, and the Cochrane Library. Studies assessing the diagnostic accuracy of Afirma gene expression classifier (GEC), Afirma gene sequencing classifier (GSC), ThyroSeq v2 (TSv2), or ThyroSeq v3 (TSv3) in patients with ITN (only Bethesda category III or IV) were selected; Statistical analyses were performed by using Stata.</p><p><strong>Results: </strong>Seventy-one samples (GEC, n = 38; GSC, n = 16; TSv2, n = 9; TSv3, n = 8) in 53 studies, involving 6490 fine needle aspirations (FNAs) with ITN cytology with molecular diagnostics (GEC, GSC, TSv2, or TSv3), were included in the study. The meta-analysis showed the following pooled estimates: sensitivity 0.95 (95% CI: 0.94-0.97), specificity 0.35 (0.28-0.43), positive likelihood ratio (LR+) 1.5 (1.3-1.6), and negative likelihood ratio (LR-) 0.13 (0.09-0.19), with the best performance for TSv3 (area under the ROC curve 0.95 (0.93-0.96), followed by TSv2 (0.90 (0.87-0.92)), GSC (0.86 (0.82-0.88)), and GEC (0.82 (0.78-0.85)); the best rule-out property was observed for GSC (LR-, 0.07 (0.02-0.19)), followed by TSv3 (0.11 (0.05-0.24)) and GEC (0.16 (0.10-0.28), and the best rule-in was observed for TSv2 (LR+, 2,9 (1.4-4.6)), followed by GSC (1.9 (1.6-2.4)). A meta-regression analysis revealed that study design, Bethesda category, and type of molecular test were independent factors.</p><p><strong>Conclusion: </strong>We showed that in patients with ITN, TSv3 has the best molecular diagnostic performance, followed by TSv2, GSC, and GEC. As regards rule-out malignancy, GSC, and rule-in, TSV2 is superior to other tests.</p>","PeriodicalId":11634,"journal":{"name":"Endocrine Connections","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227067/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141070724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Invasive pituitary neuroendocrine tumors (PitNETs) are the most prevalent types of intracranial and neuroendocrine tumors. Their aggressive growth and difficulty in complete resection result in a high recurrence rate. Cystine transporter solute carrier family 7 member 11 (SLC7A11) is overexpressed in various cancers, which contributes to tumor growth, progression, and metastasis by promoting cystine uptake and glutathione biosynthesis. We identified SLC7A11 as an invasive biomarker based on three Gene Expression Omnibus cohorts. This study aimed to investigate the role of SLC7A11 in invasive PitNETs. Cell proliferation was assessed using CCK-8 and colony formation assays, while cell apoptosis was estimated with flow cytometry. Wound healing assays and transwell assays were utilized to evaluate migration and invasion ability. Our findings demonstrated that SLC7A11 was markedly upregulated in invasive PitNETs, and was associated with the invasiveness of PitNETs. Knockdown of SLC7A11 could largely suppress tumor cell proliferation, migration, and invasion, while inducing apoptosis. Furthermore, SLC7A11 depletion was implicated in regulating epithelial-mesenchymal transition and inactivating the PI3K/AKT signaling pathway. These insights suggest SLC7A11 as a potential therapeutic target for invasive PitNETs.
{"title":"SLC7A11 promotes EMT and metastasis in invasive pituitary neuroendocrine tumors by activating the PI3K/AKT signaling pathway.","authors":"Shikai Gui, Wanli Yu, Jiabao Xie, Lunshan Peng, Yuanyuan Xiong, Zhen Song, Haitao Luo, Juexian Xiao, Shengtao Yuan, Zujue Cheng","doi":"10.1530/EC-24-0097","DOIUrl":"10.1530/EC-24-0097","url":null,"abstract":"<p><p>Invasive pituitary neuroendocrine tumors (PitNETs) are the most prevalent types of intracranial and neuroendocrine tumors. Their aggressive growth and difficulty in complete resection result in a high recurrence rate. Cystine transporter solute carrier family 7 member 11 (SLC7A11) is overexpressed in various cancers, which contributes to tumor growth, progression, and metastasis by promoting cystine uptake and glutathione biosynthesis. We identified SLC7A11 as an invasive biomarker based on three Gene Expression Omnibus cohorts. This study aimed to investigate the role of SLC7A11 in invasive PitNETs. Cell proliferation was assessed using CCK-8 and colony formation assays, while cell apoptosis was estimated with flow cytometry. Wound healing assays and transwell assays were utilized to evaluate migration and invasion ability. Our findings demonstrated that SLC7A11 was markedly upregulated in invasive PitNETs, and was associated with the invasiveness of PitNETs. Knockdown of SLC7A11 could largely suppress tumor cell proliferation, migration, and invasion, while inducing apoptosis. Furthermore, SLC7A11 depletion was implicated in regulating epithelial-mesenchymal transition and inactivating the PI3K/AKT signaling pathway. These insights suggest SLC7A11 as a potential therapeutic target for invasive PitNETs.</p>","PeriodicalId":11634,"journal":{"name":"Endocrine Connections","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227052/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140897175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01Epub Date: 2024-04-01DOI: 10.1530/EC-23-0285
Jonathan Hazlehurst, Bernard Khoo, Carolina Brito Lobato, Ibiyemi Ilesanmi, Sally Abbott, Tin Chan, Sanesh Pillai, Kate Maslin, Sanjay Purkayastha, Barbara McGowan, Rob Andrews, Tricia M-M Tan
Post bariatric hypoglycaemia (PBH) is typically a post-prandial hypoglycaemia occurring about 2-4 hours after eating in people who have undergone bariatric surgery. PBH develops relatively late after surgery and often after discharge from post-surgical follow-up by bariatric teams, leading to variability in diagnosis and management in non-specialist centres.
Aim: to improve and standardise clinical practice in the diagnosis and management of PBH.
Objectives: (1) to undertake an up-to-date review of the current literature; (2) to formulate practical and evidence-based guidance with regards on the diagnosis and treatment of PBH; (3) to recommend future avenues for research in this condition.
Method: A scoping review was undertaken after an extensive literature search. A consensus on the guidance and confidence in the recommendations was reached by the steering group authors prior to review by key stakeholders.
Outcome: We make pragmatic recommendations for the practical diagnosis and management of PBH including criteria for diagnosis and recognition, as well as recommendations for research areas that should be explored.
{"title":"Society for Endocrinology guidelines for the diagnosis and management of post-bariatric hypoglycaemia.","authors":"Jonathan Hazlehurst, Bernard Khoo, Carolina Brito Lobato, Ibiyemi Ilesanmi, Sally Abbott, Tin Chan, Sanesh Pillai, Kate Maslin, Sanjay Purkayastha, Barbara McGowan, Rob Andrews, Tricia M-M Tan","doi":"10.1530/EC-23-0285","DOIUrl":"10.1530/EC-23-0285","url":null,"abstract":"<p><p>Post bariatric hypoglycaemia (PBH) is typically a post-prandial hypoglycaemia occurring about 2-4 hours after eating in people who have undergone bariatric surgery. PBH develops relatively late after surgery and often after discharge from post-surgical follow-up by bariatric teams, leading to variability in diagnosis and management in non-specialist centres.</p><p><strong>Aim: </strong>to improve and standardise clinical practice in the diagnosis and management of PBH.</p><p><strong>Objectives: </strong>(1) to undertake an up-to-date review of the current literature; (2) to formulate practical and evidence-based guidance with regards on the diagnosis and treatment of PBH; (3) to recommend future avenues for research in this condition.</p><p><strong>Method: </strong>A scoping review was undertaken after an extensive literature search. A consensus on the guidance and confidence in the recommendations was reached by the steering group authors prior to review by key stakeholders.</p><p><strong>Outcome: </strong>We make pragmatic recommendations for the practical diagnosis and management of PBH including criteria for diagnosis and recognition, as well as recommendations for research areas that should be explored.</p>","PeriodicalId":11634,"journal":{"name":"Endocrine Connections","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11046333/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140058964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: Previous studies have suggested that body mass index (BMI) should be considered when assessing the relationship between fatty liver (FL) and osteoporosis. The aim of this study was to investigate future fracture events in people with FL, focusing on the effect of BMI in both sexes.
Methods: This retrospective cohort study from 2011 to 2019 enrolled 941 people, including 441 women and 500 men, aged 50 years or older who underwent liver imaging (ultrasound, computed tomography, or magnetic resonance image) and dual-energy X-ray absorptiometry (DXA, for bone mineral density measurements). The study examined predictors of osteoporosis in both sexes, and the effect of different ranges of BMI (18.5-24, 24-27, and ≥27 kg/m2 in women; 18.5-24, 24-27, 27-30 and ≥30 kg/m2 in men) on the risk of future fractures in FL patients.
Results: The average follow-up period was 5.3 years for women and 4.2 years for men. Multivariate analysis identified age and BMI as independent risk factors for osteoporosis in both sexes. Each unit increase in BMI decreased the risk of osteoporosis by ≥10%. In both women and men with FL, a BMI of 24-27 kg/m2 offered protection against future fractures, compared to those without FL and with a BMI of 18.5-24 kg/m2.
Conclusion: The protective effect of a higher BMI against future fractures in middle-aged and elderly women and men with FL is not uniform and decreases beyond certain BMI ranges.
{"title":"Optimal body mass index for protecting middle-aged and elderly patients with fatty liver from future fractures.","authors":"Hsiao-Yun Yeh, Hung-Ta Hondar Wu, Hsiao-Chin Shen, Tzu-Hao Li, Ying-Ying Yang, Kuei-Chuan Lee, Yi-Hsuan Lin, Chia-Chang Huang, Ming-Chih Hou","doi":"10.1530/EC-24-0089","DOIUrl":"10.1530/EC-24-0089","url":null,"abstract":"<p><strong>Objective: </strong>Previous studies have suggested that body mass index (BMI) should be considered when assessing the relationship between fatty liver (FL) and osteoporosis. The aim of this study was to investigate future fracture events in people with FL, focusing on the effect of BMI in both sexes.</p><p><strong>Methods: </strong>This retrospective cohort study from 2011 to 2019 enrolled 941 people, including 441 women and 500 men, aged 50 years or older who underwent liver imaging (ultrasound, computed tomography, or magnetic resonance image) and dual-energy X-ray absorptiometry (DXA, for bone mineral density measurements). The study examined predictors of osteoporosis in both sexes, and the effect of different ranges of BMI (18.5-24, 24-27, and ≥27 kg/m2 in women; 18.5-24, 24-27, 27-30 and ≥30 kg/m2 in men) on the risk of future fractures in FL patients.</p><p><strong>Results: </strong>The average follow-up period was 5.3 years for women and 4.2 years for men. Multivariate analysis identified age and BMI as independent risk factors for osteoporosis in both sexes. Each unit increase in BMI decreased the risk of osteoporosis by ≥10%. In both women and men with FL, a BMI of 24-27 kg/m2 offered protection against future fractures, compared to those without FL and with a BMI of 18.5-24 kg/m2.</p><p><strong>Conclusion: </strong>The protective effect of a higher BMI against future fractures in middle-aged and elderly women and men with FL is not uniform and decreases beyond certain BMI ranges.</p>","PeriodicalId":11634,"journal":{"name":"Endocrine Connections","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11227054/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141179364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-12Print Date: 2024-05-01DOI: 10.1530/EC-23-0558
Maria Houborg Petersen, Jacob Volmer Stidsen, Martin Eisemann de Almeida, Emil Kleis Wentorf, Kurt Jensen, Niels Ørtenblad, Kurt Højlund
Aim: We investigated whether a high-intensity interval training (HIIT) protocol could restore beta-cell function in type 2 diabetes compared with sedentary obese and lean individuals.
Materials and methods: In patients with type 2 diabetes, and age-matched, glucose-tolerant obese and lean controls, we examined the effect of 8 weeks of supervised HIIT combining rowing and cycling on the acute (first-phase) and second-phase insulin responses, beta-cell function adjusted for insulin sensitivity (disposition index), and serum free fatty acid (FFA) levels using the Botnia clamp (1-h IVGTT followed by 3-h hyperinsulinemic-euglycemic clamp).
Results: At baseline, patients with type 2 diabetes had reduced insulin sensitivity (~40%), acute insulin secretion (~13-fold), and disposition index (>35-fold), whereas insulin-suppressed serum FFA was higher (⁓2.5-fold) compared with controls (all P < 0.05). The HIIT protocol increased insulin sensitivity in all groups (all P < 0.01). In patients with type 2 diabetes, this was accompanied by a large (>200%) but variable improvement in the disposition index (P < 0.05). Whereas insulin sensitivity improved to the degree seen in controls at baseline, the disposition index remained markedly lower in patients with type 2 diabetes after HIIT (all P < 0.001). In controls, HIIT increased the disposition index by ~20-30% (all P < 0.05). In all groups, the second-phase insulin responses and insulin-suppressed FFA levels were reduced in response to HIIT (all P < 0.05). No group differences were seen in these HIIT-induced responses.
Conclusion: HIIT combining rowing and cycling induced a large but variable increase in beta-cell function adjusted for insulin sensitivity in type 2 diabetes, but the disposition index remained severely impaired compared to controls, suggesting that this defect is less reversible in response to exercise training than insulin resistance.
{"title":"High-intensity interval training combining rowing and cycling improves but does not restore beta-cell function in type 2 diabetes.","authors":"Maria Houborg Petersen, Jacob Volmer Stidsen, Martin Eisemann de Almeida, Emil Kleis Wentorf, Kurt Jensen, Niels Ørtenblad, Kurt Højlund","doi":"10.1530/EC-23-0558","DOIUrl":"10.1530/EC-23-0558","url":null,"abstract":"<p><strong>Aim: </strong>We investigated whether a high-intensity interval training (HIIT) protocol could restore beta-cell function in type 2 diabetes compared with sedentary obese and lean individuals.</p><p><strong>Materials and methods: </strong>In patients with type 2 diabetes, and age-matched, glucose-tolerant obese and lean controls, we examined the effect of 8 weeks of supervised HIIT combining rowing and cycling on the acute (first-phase) and second-phase insulin responses, beta-cell function adjusted for insulin sensitivity (disposition index), and serum free fatty acid (FFA) levels using the Botnia clamp (1-h IVGTT followed by 3-h hyperinsulinemic-euglycemic clamp).</p><p><strong>Results: </strong>At baseline, patients with type 2 diabetes had reduced insulin sensitivity (~40%), acute insulin secretion (~13-fold), and disposition index (>35-fold), whereas insulin-suppressed serum FFA was higher (⁓2.5-fold) compared with controls (all P < 0.05). The HIIT protocol increased insulin sensitivity in all groups (all P < 0.01). In patients with type 2 diabetes, this was accompanied by a large (>200%) but variable improvement in the disposition index (P < 0.05). Whereas insulin sensitivity improved to the degree seen in controls at baseline, the disposition index remained markedly lower in patients with type 2 diabetes after HIIT (all P < 0.001). In controls, HIIT increased the disposition index by ~20-30% (all P < 0.05). In all groups, the second-phase insulin responses and insulin-suppressed FFA levels were reduced in response to HIIT (all P < 0.05). No group differences were seen in these HIIT-induced responses.</p><p><strong>Conclusion: </strong>HIIT combining rowing and cycling induced a large but variable increase in beta-cell function adjusted for insulin sensitivity in type 2 diabetes, but the disposition index remained severely impaired compared to controls, suggesting that this defect is less reversible in response to exercise training than insulin resistance.</p><p><strong>Trial registration: </strong>ClinicalTrials.gov (NCT03500016).</p>","PeriodicalId":11634,"journal":{"name":"Endocrine Connections","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11046351/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140184053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chronic inflammation induced by obesity plays a crucial role in the pathogenesis of insulin resistance. The infiltration of macrophages into adipose tissues contributes to adipose tissue inflammation and insulin resistance. Kaempferol, a flavonoid present in various vegetables and fruits, has been shown to possess remarkable anti-inflammatory properties. In this study, we used leptin receptor-deficient obese mice (db/db) as an insulin-resistant model and investigated the effects of kaempferol treatment on obesity-induced insulin resistance. Our findings revealed that the administration of kaempferol (50 mg/kg/day, for 6 weeks) significantly reduced body weight, fat mass, and adipocyte size. Moreover, it effectively ameliorated abnormal glucose tolerance and insulin resistance in db/db mice. In the adipose tissue of obese mice treated with kaempferol, we observed a reduction in macrophage infiltration and a downregulation of mRNA expression of M1 marker genes TNF-α and IL-1β, accompanied by an upregulation of Arg1 and IL-10 mRNA expression. Additionally, kaempferol treatment significantly inhibited the STING/NLRP3 signaling pathway in adipose tissue. In vitro experiments, we further discovered that kaempferol treatment suppressed LPS-induced inflammation through the activation of NLRP3/caspase 1 signaling in RAW 264.7 macrophages. Our results suggest that kaempferol may effectively alleviate inflammation and insulin resistance in the adipose tissue of db/db mice by modulating the STING/NLRP3 signaling pathway.
{"title":"Kaempferol alleviates adipose tissue inflammation and insulin resistance in db/db mice by inhibiting the STING/NLRP3 signaling pathway.","authors":"Huiyuan Zhai, Dongxu Wang, Yong Wang, Hongwei Gu, Juan Jv, Liangliang Yuan, Chao Wang, Leiyao Chen","doi":"10.1530/EC-23-0379","DOIUrl":"10.1530/EC-23-0379","url":null,"abstract":"<p><p>Chronic inflammation induced by obesity plays a crucial role in the pathogenesis of insulin resistance. The infiltration of macrophages into adipose tissues contributes to adipose tissue inflammation and insulin resistance. Kaempferol, a flavonoid present in various vegetables and fruits, has been shown to possess remarkable anti-inflammatory properties. In this study, we used leptin receptor-deficient obese mice (db/db) as an insulin-resistant model and investigated the effects of kaempferol treatment on obesity-induced insulin resistance. Our findings revealed that the administration of kaempferol (50 mg/kg/day, for 6 weeks) significantly reduced body weight, fat mass, and adipocyte size. Moreover, it effectively ameliorated abnormal glucose tolerance and insulin resistance in db/db mice. In the adipose tissue of obese mice treated with kaempferol, we observed a reduction in macrophage infiltration and a downregulation of mRNA expression of M1 marker genes TNF-α and IL-1β, accompanied by an upregulation of Arg1 and IL-10 mRNA expression. Additionally, kaempferol treatment significantly inhibited the STING/NLRP3 signaling pathway in adipose tissue. In vitro experiments, we further discovered that kaempferol treatment suppressed LPS-induced inflammation through the activation of NLRP3/caspase 1 signaling in RAW 264.7 macrophages. Our results suggest that kaempferol may effectively alleviate inflammation and insulin resistance in the adipose tissue of db/db mice by modulating the STING/NLRP3 signaling pathway.</p>","PeriodicalId":11634,"journal":{"name":"Endocrine Connections","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11046349/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140101303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: Patients with growth hormone deficiency (GHD) with inadequate growth hormone levels are often correlated with nonalcoholic fatty liver disease (NAFLD). However, the potential mechanism of how GHD influences liver function remains obscure. In the present study, we aim to perform hepatic metabolomics in Lewis dwarf rats, which were the standard congenital isolated GH-deficient rat, to evaluate the characterizations of hepatic metabolic profiles and explore their relations with liver functions.
Methods: Lewis dwarf homozygous (dw/dw) rats at 37 weeks (five females and five males), and Lewis dwarf heterozygous (dw/+) rats at 37 weeks (five females and five males) were analyzed in our study. Body lengths and weights, liver weights, serum alanine transaminase (ALT), and serum aspartate transaminase (AST) were measured. ELISA and RT-qPCR were used to assess IGF-1 levels in serum and liver, respectively. The non-targeted metabolomics was performed in the livers of dw/+ and dw/dw rats. Differential metabolites were selected according to the coefficient of variation (CV), variable importance in the projection (VIP) > 1, and P < 0.05. Hierarchical clustering of differential metabolites was conducted, and the KEGG database was used for metabolic pathway analysis.
Results: The body weights, body lengths, liver weights, and IGF-1 levels in the serum and liver of dw/dw rats were significantly decreased compared with dw/+ rats. Dw/dw rats exhibited more obvious hepatic steatosis accompanied by higher serum ALT and AST levels. Hepatic metabolomics showed that a total of 88 differential metabolites in positive ion mode, and 51 metabolites in negative ion mode were identified. Among them, lysophosphatidylcholine (LPC) 16:2, LPC 18:3, LPC 22:6, fatty acid esters of hydroxy fatty acids (FAHFA)18:1 were significantly decreased, while palmitoyl acid, dehydrocholic acid, and 7-ketolithocholic acid were significantly increased in dw/dw rats compared with dw/+ rats. These seven differential metabolites were significantly associated with phenotypes of rats. Finally, KEGG pathway analysis showed that the arginine and proline metabolism pathway and bile secretion pathway were mainly clustered.
Conclusion: Lewis dw/dw rats with congenital isolated growth hormone deficiency (IGHD) showed liver steatosis and abnormal liver function, which could be potentially associated with the distinctive hepatic metabolic profiles.
{"title":"The distinct hepatic metabolic profile and relation with impaired liver function in congenital isolated growth hormone-deficient rats.","authors":"Xiaonan Guo, Wenjing Hu, Xiaorui Lyu, Hanyuan Xu, Huijuan Zhu, Hui Pan, Linjie Wang, Hongbo Yang, Fengying Gong","doi":"10.1530/EC-23-0462","DOIUrl":"10.1530/EC-23-0462","url":null,"abstract":"<p><strong>Objective: </strong>Patients with growth hormone deficiency (GHD) with inadequate growth hormone levels are often correlated with nonalcoholic fatty liver disease (NAFLD). However, the potential mechanism of how GHD influences liver function remains obscure. In the present study, we aim to perform hepatic metabolomics in Lewis dwarf rats, which were the standard congenital isolated GH-deficient rat, to evaluate the characterizations of hepatic metabolic profiles and explore their relations with liver functions.</p><p><strong>Methods: </strong>Lewis dwarf homozygous (dw/dw) rats at 37 weeks (five females and five males), and Lewis dwarf heterozygous (dw/+) rats at 37 weeks (five females and five males) were analyzed in our study. Body lengths and weights, liver weights, serum alanine transaminase (ALT), and serum aspartate transaminase (AST) were measured. ELISA and RT-qPCR were used to assess IGF-1 levels in serum and liver, respectively. The non-targeted metabolomics was performed in the livers of dw/+ and dw/dw rats. Differential metabolites were selected according to the coefficient of variation (CV), variable importance in the projection (VIP) > 1, and P < 0.05. Hierarchical clustering of differential metabolites was conducted, and the KEGG database was used for metabolic pathway analysis.</p><p><strong>Results: </strong>The body weights, body lengths, liver weights, and IGF-1 levels in the serum and liver of dw/dw rats were significantly decreased compared with dw/+ rats. Dw/dw rats exhibited more obvious hepatic steatosis accompanied by higher serum ALT and AST levels. Hepatic metabolomics showed that a total of 88 differential metabolites in positive ion mode, and 51 metabolites in negative ion mode were identified. Among them, lysophosphatidylcholine (LPC) 16:2, LPC 18:3, LPC 22:6, fatty acid esters of hydroxy fatty acids (FAHFA)18:1 were significantly decreased, while palmitoyl acid, dehydrocholic acid, and 7-ketolithocholic acid were significantly increased in dw/dw rats compared with dw/+ rats. These seven differential metabolites were significantly associated with phenotypes of rats. Finally, KEGG pathway analysis showed that the arginine and proline metabolism pathway and bile secretion pathway were mainly clustered.</p><p><strong>Conclusion: </strong>Lewis dw/dw rats with congenital isolated growth hormone deficiency (IGHD) showed liver steatosis and abnormal liver function, which could be potentially associated with the distinctive hepatic metabolic profiles.</p>","PeriodicalId":11634,"journal":{"name":"Endocrine Connections","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11046350/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140140095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Svjatoslavs Kistkins, Othmar Moser, Vitālijs Ankudovičs, Dmitrijs Bliznuks, Timurs Mihailovs, Sergejs Lobanovs, Harald Sourij, Andreas F. H. Pfeiffer, Valdis Pirags
The increasing prevalence of "diabesity," a combination of type 2 diabetes and obesity, poses a significant global health challenge. Unhealthy lifestyle factors, including poor diet, sedentary behavior, and high stress levels, combined with genetic and epigenetic factors, contribute to the diabesity epidemic. Diabesity leads to various significant complications such as cardiovascular diseases, stroke, and certain cancers. Incretin-based therapies, such as GLP-1 receptor agonists and dual hormone therapies, have shown promising results in improving glycemic control and inducing weight loss. However, these therapies also come with certain disadvantages, including withdrawal effects. This review aims to provide insights into the cross-interactions of insulin, glucagon, and GLP-1, revealing the complex hormonal dynamics during fasting and postprandial states, impacting glucose homeostasis, energy expenditure, and other metabolic functions. Understanding these hormonal interactions may offer novel hypotheses in the development of "anti-diabesity" treatment strategies. The article also explores the question of the antagonism of insulin and glucagon, providing insights into the potential synergy and hormonal overlaps between these hormones.
{"title":"From classical dualistic antagonism to hormone synergy: potential of overlapping action of glucagon, insulin and GLP-1 for the treatment of diabesity","authors":"Svjatoslavs Kistkins, Othmar Moser, Vitālijs Ankudovičs, Dmitrijs Bliznuks, Timurs Mihailovs, Sergejs Lobanovs, Harald Sourij, Andreas F. H. Pfeiffer, Valdis Pirags","doi":"10.1530/ec-23-0529","DOIUrl":"https://doi.org/10.1530/ec-23-0529","url":null,"abstract":"<p>The increasing prevalence of \"diabesity,\" a combination of type 2 diabetes and obesity, poses a significant global health challenge. Unhealthy lifestyle factors, including poor diet, sedentary behavior, and high stress levels, combined with genetic and epigenetic factors, contribute to the diabesity epidemic. Diabesity leads to various significant complications such as cardiovascular diseases, stroke, and certain cancers. Incretin-based therapies, such as GLP-1 receptor agonists and dual hormone therapies, have shown promising results in improving glycemic control and inducing weight loss. However, these therapies also come with certain disadvantages, including withdrawal effects. This review aims to provide insights into the cross-interactions of insulin, glucagon, and GLP-1, revealing the complex hormonal dynamics during fasting and postprandial states, impacting glucose homeostasis, energy expenditure, and other metabolic functions. Understanding these hormonal interactions may offer novel hypotheses in the development of \"anti-diabesity\" treatment strategies. The article also explores the question of the antagonism of insulin and glucagon, providing insights into the potential synergy and hormonal overlaps between these hormones.</p>","PeriodicalId":11634,"journal":{"name":"Endocrine Connections","volume":"1 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140596879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}