Identifying the source of stray gas in drinking water supplies principally relies on comparing the gas composition in affected water supplies with gas samples collected in shows while drilling, produced gases, casing head gases, pipeline gases, and other potential point sources. However, transport dynamics of free and dissolved gas migration in groundwater aquifers can modify both the concentration and the composition of point source stray gases flowing to aquifers and occurring in the groundwater environment. Accordingly, baseline and forensic investigations related to stray gas sources need to address the effects of mixing, dilution, and oxidation reactions in the context of regional and local hydrology. Understanding and interpreting such effects are best addressed by collecting and analyzing multiple samples from baseline groundwater investigations, potential point sources, and impacted water resources. Several case studies presented here illustrate examples of the natural variability in gas composition and concentration data evident when multiple samples are collected from produced gases, casing head gases, and baseline groundwater investigations. Results show that analyses of single samples from either potential contaminant point sources or groundwater and surface water resources may not always be sufficient to document site-specific baseline conditions. Results also demonstrate the need to consistently sample and analyze a variety of baseline groundwater and gas composition screening parameters. A multidisciplinary approach is the best practice for differentiating among the effects of fluid and gas mixing, dilution, and natural attenuation.
{"title":"Factors affecting the variability of stray gas concentration and composition in groundwater","authors":"A. Gorody","doi":"10.1306/EG.12081111013","DOIUrl":"https://doi.org/10.1306/EG.12081111013","url":null,"abstract":"Identifying the source of stray gas in drinking water supplies principally relies on comparing the gas composition in affected water supplies with gas samples collected in shows while drilling, produced gases, casing head gases, pipeline gases, and other potential point sources. However, transport dynamics of free and dissolved gas migration in groundwater aquifers can modify both the concentration and the composition of point source stray gases flowing to aquifers and occurring in the groundwater environment. Accordingly, baseline and forensic investigations related to stray gas sources need to address the effects of mixing, dilution, and oxidation reactions in the context of regional and local hydrology. Understanding and interpreting such effects are best addressed by collecting and analyzing multiple samples from baseline groundwater investigations, potential point sources, and impacted water resources. Several case studies presented here illustrate examples of the natural variability in gas composition and concentration data evident when multiple samples are collected from produced gases, casing head gases, and baseline groundwater investigations. Results show that analyses of single samples from either potential contaminant point sources or groundwater and surface water resources may not always be sufficient to document site-specific baseline conditions. Results also demonstrate the need to consistently sample and analyze a variety of baseline groundwater and gas composition screening parameters. A multidisciplinary approach is the best practice for differentiating among the effects of fluid and gas mixing, dilution, and natural attenuation.","PeriodicalId":11706,"journal":{"name":"Environmental Geosciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1306/EG.12081111013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66169316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Mount Simon Sandstone (Cambrian) has significant potential for use as a reservoir for geologic carbon sequestration in the Midwest region, but lithologic variations within the unit remain poorly understood. Petrophysical heterogeneities controlled by the changes in lithologic and diagenetic character challenge the process of estimating the storage capacity of this reservoir. Geophysical logs from wells across the Midwest region were interpreted to define three lithostratigraphic subunits within the Mount Simon Sandstone: an upper unit that has relatively high gamma-ray (GR) values caused by the admixture of argillaceous material; a middle unit defined by relatively lower GR values that result from a cleaner quartzose sandstone and potentially constitutes the main reservoir and flow unit within the formation (the GR values of this unit also display the lowest amount of vertical variability through the section); and a lowermost unit defined by GR values that, in general, progressively increase with depth toward the base of the formation. This downward increase is caused by the increased nonquartz fraction in the formation as the top of the Precambrian basement is approached. In all three units, but especially in the lowermost one, the admixture of feldspars and the presence of dissolution porosity complicate storage capacity calculation. In addition to quartz overgrowths and compaction phenomena that reduce pore volume, the presence of other diagenetic products further complicates the distribution of porosity and permeability within the unit. Storage capacity was calculated only for the middle unit within the Mount Simon Sandstone using values derived from GR and porosity geophysical logs (sonic, neutron, and density). The range of storage capacity found in this study is primarily controlled by reservoir thickness because the variation in porosity within this middle unit is less than that in the other units. However, an assessment of the vertical distribution of porosity and permeability at each site will be required to determine the best intervals with the best flow and storage properties.
{"title":"Reservoir characterization and lithostratigraphic division of the Mount Simon Sandstone (Cambrian): Implications for estimations of geologic sequestration storage capacity","authors":"C. Medina, J. Rupp","doi":"10.1306/EG.07011111005","DOIUrl":"https://doi.org/10.1306/EG.07011111005","url":null,"abstract":"The Mount Simon Sandstone (Cambrian) has significant potential for use as a reservoir for geologic carbon sequestration in the Midwest region, but lithologic variations within the unit remain poorly understood. Petrophysical heterogeneities controlled by the changes in lithologic and diagenetic character challenge the process of estimating the storage capacity of this reservoir. Geophysical logs from wells across the Midwest region were interpreted to define three lithostratigraphic subunits within the Mount Simon Sandstone: an upper unit that has relatively high gamma-ray (GR) values caused by the admixture of argillaceous material; a middle unit defined by relatively lower GR values that result from a cleaner quartzose sandstone and potentially constitutes the main reservoir and flow unit within the formation (the GR values of this unit also display the lowest amount of vertical variability through the section); and a lowermost unit defined by GR values that, in general, progressively increase with depth toward the base of the formation. This downward increase is caused by the increased nonquartz fraction in the formation as the top of the Precambrian basement is approached. In all three units, but especially in the lowermost one, the admixture of feldspars and the presence of dissolution porosity complicate storage capacity calculation. In addition to quartz overgrowths and compaction phenomena that reduce pore volume, the presence of other diagenetic products further complicates the distribution of porosity and permeability within the unit. Storage capacity was calculated only for the middle unit within the Mount Simon Sandstone using values derived from GR and porosity geophysical logs (sonic, neutron, and density). The range of storage capacity found in this study is primarily controlled by reservoir thickness because the variation in porosity within this middle unit is less than that in the other units. However, an assessment of the vertical distribution of porosity and permeability at each site will be required to determine the best intervals with the best flow and storage properties.","PeriodicalId":11706,"journal":{"name":"Environmental Geosciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2012-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1306/EG.07011111005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66166306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Susquehanna River Basin drains 27,510 mi2 (71,251 km2), covering parts of New York, Pennsylvania, and Maryland, and provides 50% of the freshwater inflow to the Chesapeake Bay. The Susquehanna River Basin Commission (SRBC) is a federal-interstate compact agency regulating surface and groundwater withdrawals, diversions, and consumptive uses of water, including those associated with natural gas development. Although specific black gas-bearing shale formations are already identified, including the Marcellus, Utica, Antes, Burket, Geneseo, Mandata, Middlesex, Needmore, and Rhinestreet, the SRBC regulatory activity is applicable to any and all gas-bearing formations (Figure 1). The SRBC does not regulate wastewater discharges or pollution incidents because these are already regulated by member jurisdictions of SRBC. Figure 1 Area in the Susquehanna River Basin containing natural gas shale formations, with locations of SRBC-approved water withdrawals for natural gas well development. As a water resource …
{"title":"Susquehanna River Basin Commission research related to natural gas development","authors":"D. Heicher","doi":"10.1306/EG.09211111010","DOIUrl":"https://doi.org/10.1306/EG.09211111010","url":null,"abstract":"The Susquehanna River Basin drains 27,510 mi2 (71,251 km2), covering parts of New York, Pennsylvania, and Maryland, and provides 50% of the freshwater inflow to the Chesapeake Bay. The Susquehanna River Basin Commission (SRBC) is a federal-interstate compact agency regulating surface and groundwater withdrawals, diversions, and consumptive uses of water, including those associated with natural gas development. Although specific black gas-bearing shale formations are already identified, including the Marcellus, Utica, Antes, Burket, Geneseo, Mandata, Middlesex, Needmore, and Rhinestreet, the SRBC regulatory activity is applicable to any and all gas-bearing formations (Figure 1). The SRBC does not regulate wastewater discharges or pollution incidents because these are already regulated by member jurisdictions of SRBC.\u0000\u0000\u0000\u0000Figure 1 \u0000Area in the Susquehanna River Basin containing natural gas shale formations, with locations of SRBC-approved water withdrawals for natural gas well development.\u0000\u0000\u0000\u0000As a water resource …","PeriodicalId":11706,"journal":{"name":"Environmental Geosciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66167673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kristin M. Carter, J. Harper, Katherine W. Schmid, J. Kostelnik
Pennsylvania is not only the birthplace of the modern petroleum industry but also the focus of the modern Marcellus Shale gas play. For more than 150 yr, Pennsylvania has experienced a rich history of oil and gas exploration and production, witnessed the advent of modern petroleum regulations, and now sits deep in the heart of the largest domestic shale gas play the United States has ever seen. Although a known source rock for decades, the Marcellus Shale was not considered a viable gas reservoir until Range Resources Corporation (Range) discovered the play with its completion of the Renz No. 1 well in Washington County in October 2004. Using horizontal drilling and hydraulic fracturing techniques used by operators working the Barnett Shale gas play, Range has gone on to complete hundreds of horizontal shale gas wells in Washington County alone. Other operators have followed suit in counties from one corner of the state to the other, and as of June 2011, the Commonwealth has issued nearly 6500 Marcellus Shale gas well permits. Based on publicly reported well completion and production data, an average Marcellus Shale gas well requires 2.9 million gal of water during the hydraulic fracturing process and produces 1.3 mmcf gas/day. Furthermore, the U.S. Energy Information Administration has estimated that as of mid-2011, daily Marcellus Shale gas production in Pennsylvania exceeds 2.8 bcf. Because of the level of drilling activity and production associated with the Marcellus play, Pennsylvania has become the nexus of shale gas production and water management issues.
{"title":"Unconventional natural gas resources in Pennsylvania: The backstory of the modern Marcellus Shale play","authors":"Kristin M. Carter, J. Harper, Katherine W. Schmid, J. Kostelnik","doi":"10.1306/EG.09281111008","DOIUrl":"https://doi.org/10.1306/EG.09281111008","url":null,"abstract":"Pennsylvania is not only the birthplace of the modern petroleum industry but also the focus of the modern Marcellus Shale gas play. For more than 150 yr, Pennsylvania has experienced a rich history of oil and gas exploration and production, witnessed the advent of modern petroleum regulations, and now sits deep in the heart of the largest domestic shale gas play the United States has ever seen. Although a known source rock for decades, the Marcellus Shale was not considered a viable gas reservoir until Range Resources Corporation (Range) discovered the play with its completion of the Renz No. 1 well in Washington County in October 2004. Using horizontal drilling and hydraulic fracturing techniques used by operators working the Barnett Shale gas play, Range has gone on to complete hundreds of horizontal shale gas wells in Washington County alone. Other operators have followed suit in counties from one corner of the state to the other, and as of June 2011, the Commonwealth has issued nearly 6500 Marcellus Shale gas well permits. Based on publicly reported well completion and production data, an average Marcellus Shale gas well requires 2.9 million gal of water during the hydraulic fracturing process and produces 1.3 mmcf gas/day. Furthermore, the U.S. Energy Information Administration has estimated that as of mid-2011, daily Marcellus Shale gas production in Pennsylvania exceeds 2.8 bcf. Because of the level of drilling activity and production associated with the Marcellus play, Pennsylvania has become the nexus of shale gas production and water management issues.","PeriodicalId":11706,"journal":{"name":"Environmental Geosciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1306/EG.09281111008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66167762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Engle, C. Bern, R. Healy, J. Sams, J. Zupancic, K. Schroeder
One method to beneficially use water produced from coalbed methane (CBM) extraction is subsurface drip irrigation (SDI) of croplands. In SDI systems, treated CBM water (injectate) is supplied to the soil at depth, with the purpose of preventing the buildup of detrimental salts near the surface. The technology is expanding within the Powder River Basin, but little research has been published on its environmental impacts. This article reports on initial results from tracking water and solutes from the injected CBM-produced waters at an SDI system in Johnson County, Wyoming. In the first year of SDI operation, soil moisture significantly increased in the SDI areas, but well water levels increased only modestly, suggesting that most of the water added was stored in the vadose zone or lost to evapotranspiration. The injectate has lower concentrations of most inorganic constituents relative to ambient groundwater at the site but exhibits a high sodium adsorption ratio. Changes in groundwater chemistry during the same period of SDI operation were small; the increase in groundwater-specific conductance relative to pre-SDI conditions was observed in a single well. Conversely, groundwater samples collected beneath another SDI field showed decreased concentrations of several constituents since the SDI operation. Groundwater-specific conductance at the 12 other wells showed no significant changes. Major controls on and compositional variability of groundwater, surface water, and soil water chemistry are discussed in detail. Findings from this research provide an understanding of water and salt dynamics associated with SDI systems using CBM-produced water.
{"title":"Tracking solutes and water from subsurface drip irrigation application of coalbed methane–produced waters, Powder River Basin, Wyoming","authors":"M. Engle, C. Bern, R. Healy, J. Sams, J. Zupancic, K. Schroeder","doi":"10.1306/EG.03031111004","DOIUrl":"https://doi.org/10.1306/EG.03031111004","url":null,"abstract":"One method to beneficially use water produced from coalbed methane (CBM) extraction is subsurface drip irrigation (SDI) of croplands. In SDI systems, treated CBM water (injectate) is supplied to the soil at depth, with the purpose of preventing the buildup of detrimental salts near the surface. The technology is expanding within the Powder River Basin, but little research has been published on its environmental impacts. This article reports on initial results from tracking water and solutes from the injected CBM-produced waters at an SDI system in Johnson County, Wyoming. In the first year of SDI operation, soil moisture significantly increased in the SDI areas, but well water levels increased only modestly, suggesting that most of the water added was stored in the vadose zone or lost to evapotranspiration. The injectate has lower concentrations of most inorganic constituents relative to ambient groundwater at the site but exhibits a high sodium adsorption ratio. Changes in groundwater chemistry during the same period of SDI operation were small; the increase in groundwater-specific conductance relative to pre-SDI conditions was observed in a single well. Conversely, groundwater samples collected beneath another SDI field showed decreased concentrations of several constituents since the SDI operation. Groundwater-specific conductance at the 12 other wells showed no significant changes. Major controls on and compositional variability of groundwater, surface water, and soil water chemistry are discussed in detail. Findings from this research provide an understanding of water and salt dynamics associated with SDI systems using CBM-produced water.","PeriodicalId":11706,"journal":{"name":"Environmental Geosciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1306/EG.03031111004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66163854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Goodarzi, A. Settari, M. Zoback, David William Keith
With almost 200 coal-burning power plants in the region, the Ohio River Valley is an important region to evaluate potential formations for carbon dioxide (CO2) storage. In this study, we consider whether injection-induced stress changes affect the viability of the Rose Run Sandstone, considered as a potential effective storage unit. Our study uses a coupled geomechanical and reservoir simulator that couples fluid flow to induced stress and strain in all the significant stratigraphic units from the surface to the crystalline basement. The pressure and stress variations were modeled during CO2 injection, focusing on injection from a single well. The model uses a constant pressure condition on the boundary of the system. Both reservoir and surface deformation were simulated, and the possibility of reaching shear failure in the reservoir was tested. Carbon dioxide injection in the Rose Run Sandstone aquifer is not likely to cause any significant surface deformation. To consider the potential of increasing injectivity, simulation of a static fracture with a half-length of 300 m (984.3 ft) was considered. As the modeling shows that, with constant injection rate, the fracture can propagate beyond the propped length, a dynamic fracture propagation was also studied. This was achieved by allowing the fracture to grow as a function of a propagation criteria based on effective stress. Because of the favorable stress state of the Rose Run Sandstone, the propagation is primarily in the lateral direction, and no upward fracture propagation through the cap rock has been observed in the model. Finally, we demonstrate that dynamic fracture propagation significantly increases the possible injection rates, and its modeling is useful for determining optimal injection rates.
{"title":"A coupled geomechanical reservoir simulation analysis of carbon dioxide storage in a saline aquifer in the Ohio River Valley","authors":"S. Goodarzi, A. Settari, M. Zoback, David William Keith","doi":"10.1306/EG.04061111002","DOIUrl":"https://doi.org/10.1306/EG.04061111002","url":null,"abstract":"With almost 200 coal-burning power plants in the region, the Ohio River Valley is an important region to evaluate potential formations for carbon dioxide (CO2) storage. In this study, we consider whether injection-induced stress changes affect the viability of the Rose Run Sandstone, considered as a potential effective storage unit. Our study uses a coupled geomechanical and reservoir simulator that couples fluid flow to induced stress and strain in all the significant stratigraphic units from the surface to the crystalline basement. The pressure and stress variations were modeled during CO2 injection, focusing on injection from a single well. The model uses a constant pressure condition on the boundary of the system. Both reservoir and surface deformation were simulated, and the possibility of reaching shear failure in the reservoir was tested. Carbon dioxide injection in the Rose Run Sandstone aquifer is not likely to cause any significant surface deformation. To consider the potential of increasing injectivity, simulation of a static fracture with a half-length of 300 m (984.3 ft) was considered. As the modeling shows that, with constant injection rate, the fracture can propagate beyond the propped length, a dynamic fracture propagation was also studied. This was achieved by allowing the fracture to grow as a function of a propagation criteria based on effective stress. Because of the favorable stress state of the Rose Run Sandstone, the propagation is primarily in the lateral direction, and no upward fracture propagation through the cap rock has been observed in the model. Finally, we demonstrate that dynamic fracture propagation significantly increases the possible injection rates, and its modeling is useful for determining optimal injection rates.","PeriodicalId":11706,"journal":{"name":"Environmental Geosciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1306/EG.04061111002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66164217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael M. Spacil, J. Rodgers, J. W. Castle, W. Chao
A by-product of petroleum extraction, produced waters (PWs) containing selenium (Se), arsenic (As), and low-molecular-weight organics (LMWOs) may be generated. Pilot-scale constructed wetland treatment systems (CWTSs) were designed and built to evaluate the removal of these constituents from simulated fresh PW (SFPW). Study objectives were to characterize a fresh PW and determine the constituents of concern (COC); formulate an SFPW; design and build a pilot-scale CWTS for SFPW; and measure performance (i.e., COC removal rates and extents). The treatment goals for this study were to decrease Se concentration in SFPW from approximately 50 g/L to less than 5 g/L via microbial reduction; decrease As concentration in SFPW from approximately 20 g/L to less than 5 g/L via iron coprecipitation; and decrease LMWO concentration in SFPW from approximately 25 mg/L to less than 1 mg/L via biodegradation. To determine COC removal rates and extents and environmental factors, measurements included analysis of Se, As, LMWOs, dissolved oxygen, conductivity, pH, oxidation-reduction potential, alkalinity, hardness, and temperature. Mean outflow Se concentrations ranged from less than 1 to 47.1 g/L. Mean outflow As concentrations ranged from 5.7 to 9.5 g/L, and the mean outflow LMWO concentrations were less than 1 mg/L for all treatments and the untreated control. Organic carbon amendments had a significant effect on Se removal and no effect on As or LMWO removal. This pilot-scale study illustrates that CWTSs can enhance Se removal from SFPW and that removal can be achieved to meet stringent discharge limits. More research is needed to advance the techniques of As removal in CWTSs designed to simultaneously target Se.
{"title":"Performance of a pilot-scale constructed wetland treatment system for selenium, arsenic, and low-molecular-weight organics in simulated fresh produced water","authors":"Michael M. Spacil, J. Rodgers, J. W. Castle, W. Chao","doi":"10.1306/EG.01281110020","DOIUrl":"https://doi.org/10.1306/EG.01281110020","url":null,"abstract":"A by-product of petroleum extraction, produced waters (PWs) containing selenium (Se), arsenic (As), and low-molecular-weight organics (LMWOs) may be generated. Pilot-scale constructed wetland treatment systems (CWTSs) were designed and built to evaluate the removal of these constituents from simulated fresh PW (SFPW). Study objectives were to characterize a fresh PW and determine the constituents of concern (COC); formulate an SFPW; design and build a pilot-scale CWTS for SFPW; and measure performance (i.e., COC removal rates and extents). The treatment goals for this study were to decrease Se concentration in SFPW from approximately 50 g/L to less than 5 g/L via microbial reduction; decrease As concentration in SFPW from approximately 20 g/L to less than 5 g/L via iron coprecipitation; and decrease LMWO concentration in SFPW from approximately 25 mg/L to less than 1 mg/L via biodegradation. To determine COC removal rates and extents and environmental factors, measurements included analysis of Se, As, LMWOs, dissolved oxygen, conductivity, pH, oxidation-reduction potential, alkalinity, hardness, and temperature. Mean outflow Se concentrations ranged from less than 1 to 47.1 g/L. Mean outflow As concentrations ranged from 5.7 to 9.5 g/L, and the mean outflow LMWO concentrations were less than 1 mg/L for all treatments and the untreated control. Organic carbon amendments had a significant effect on Se removal and no effect on As or LMWO removal. This pilot-scale study illustrates that CWTSs can enhance Se removal from SFPW and that removal can be achieved to meet stringent discharge limits. More research is needed to advance the techniques of As removal in CWTSs designed to simultaneously target Se.","PeriodicalId":11706,"journal":{"name":"Environmental Geosciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1306/EG.01281110020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66163475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Using a process-based approach, a pilot-scale constructed wetland system was designed and built for treating water produced from an oil field in sub-Saharan Africa. The characteristics of the oil field-produced water were compared with water quality guidelines for irrigating crops and watering livestock to identify constituents of concern (COC) requiring treatment. The COC identified in the produced water include oil, grease, and metals (Zn, Ni, Fe, Mn). A pilot-scale constructed wetland treatment system was then designed and built based on biogeochemical pathways (i.e., sorption, oxidation, and reduction) for transferring and transforming the identified COC to achieve target concentrations meeting water quality guidelines. The pilot-scale treatment system consisted of three series of wetland cells, with four cells in each series. Two series of subsurface flow wetland cells were constructed with each cell having a two-layer hydrosoil of pea gravel and medium-size gravel planted with Phragmites australis. In addition, a series of free water surface wetland cells was constructed, with each cell containing sandy hydrosoil and planted with Typha latifolia. The design allows adjustment of parameters (i.e., hydraulic retention time and organic content of the hydrosoil) to promote the conditions needed to achieve treatment of COC through the identified biogeochemical pathways. This study provides an example of the design and construction of a pilot-scale wetland treatment system using a process-based approach.
{"title":"Biogeochemical process approach to the design and construction of a pilot-scale wetland treatment system for an oil field-produced water","authors":"Minh Pham, J. W. Castle, J. Rodgers","doi":"10.1306/EG.03101111003","DOIUrl":"https://doi.org/10.1306/EG.03101111003","url":null,"abstract":"Using a process-based approach, a pilot-scale constructed wetland system was designed and built for treating water produced from an oil field in sub-Saharan Africa. The characteristics of the oil field-produced water were compared with water quality guidelines for irrigating crops and watering livestock to identify constituents of concern (COC) requiring treatment. The COC identified in the produced water include oil, grease, and metals (Zn, Ni, Fe, Mn). A pilot-scale constructed wetland treatment system was then designed and built based on biogeochemical pathways (i.e., sorption, oxidation, and reduction) for transferring and transforming the identified COC to achieve target concentrations meeting water quality guidelines. The pilot-scale treatment system consisted of three series of wetland cells, with four cells in each series. Two series of subsurface flow wetland cells were constructed with each cell having a two-layer hydrosoil of pea gravel and medium-size gravel planted with Phragmites australis. In addition, a series of free water surface wetland cells was constructed, with each cell containing sandy hydrosoil and planted with Typha latifolia. The design allows adjustment of parameters (i.e., hydraulic retention time and organic content of the hydrosoil) to promote the conditions needed to achieve treatment of COC through the identified biogeochemical pathways. This study provides an example of the design and construction of a pilot-scale wetland treatment system using a process-based approach.","PeriodicalId":11706,"journal":{"name":"Environmental Geosciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1306/EG.03101111003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66163506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We evaluated the geochemical transformations that would likely occur after injecting CO2 into a sandstone formation using The Geochemist's Workbench, with the intent of simulating CO2 solution and mineral storage mechanisms. We used a hypothetical reservoir intended to closely resemble the Lamotte Sandstone in southwest Missouri, a reservoir rock found at about 600-m (1970-ft) depth, well above the recommended depth for CO2 sequestration of 800 m (2625 ft). In the absence of specific water chemistry and lithology data for this formation at the proposed injection site, the model considered two best estimates of each input parameter. Carbon dioxide (CO2) sequestered in the dissolved phase was found to range between 76.74 and 76.80 g/kg free water, and the pH dropped from 7.7 to 4.8 after a 10-yr injection period. During a 50-yr postinjection interval with no additional CO2(g) added, the model predicted the pH to rise from 4.8 to 5.3 and various minerals to precipitate, among them magnesite, nontronite-Mg, and gibbsite, as well as smaller amounts of siderite and dolomite. Magnesite, siderite, and dolomite contribute to removal of carbon. In general, the model is very flexible, allowing the user to incorporate variations in temperature, pressure, water chemistry, solid-phase mineralogy, and kinetics. Modeling steps are described here as well as the results, which are all based in 1 kg of free water. To determine the total sequestration potential, transport modeling is needed, in addition to the geochemical modeling presented here.
{"title":"Modeling carbon sequestration geochemical reactions for a proposed site in Springfield, Missouri","authors":"L. Nondorf, M. Gutiérrez, Thomas G. Plymate","doi":"10.1306/EG.09141010014","DOIUrl":"https://doi.org/10.1306/EG.09141010014","url":null,"abstract":"We evaluated the geochemical transformations that would likely occur after injecting CO2 into a sandstone formation using The Geochemist's Workbench, with the intent of simulating CO2 solution and mineral storage mechanisms. We used a hypothetical reservoir intended to closely resemble the Lamotte Sandstone in southwest Missouri, a reservoir rock found at about 600-m (1970-ft) depth, well above the recommended depth for CO2 sequestration of 800 m (2625 ft). In the absence of specific water chemistry and lithology data for this formation at the proposed injection site, the model considered two best estimates of each input parameter. Carbon dioxide (CO2) sequestered in the dissolved phase was found to range between 76.74 and 76.80 g/kg free water, and the pH dropped from 7.7 to 4.8 after a 10-yr injection period. During a 50-yr postinjection interval with no additional CO2(g) added, the model predicted the pH to rise from 4.8 to 5.3 and various minerals to precipitate, among them magnesite, nontronite-Mg, and gibbsite, as well as smaller amounts of siderite and dolomite. Magnesite, siderite, and dolomite contribute to removal of carbon. In general, the model is very flexible, allowing the user to incorporate variations in temperature, pressure, water chemistry, solid-phase mineralogy, and kinetics. Modeling steps are described here as well as the results, which are all based in 1 kg of free water. To determine the total sequestration potential, transport modeling is needed, in addition to the geochemical modeling presented here.","PeriodicalId":11706,"journal":{"name":"Environmental Geosciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2011-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1306/EG.09141010014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66167048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Bowen, R. Ochoa, N. D. Wilkens, J. Brophy, T. Lovell, N. Fischietto, C. Medina, J. Rupp
The Cambrian Mount Simon Sandstone is the major target reservoir for ongoing geologic carbon dioxide (CO2) sequestration demonstrations throughout the midwest United States. The potential CO2 reservoir capacity, reactivity, and ultimate fate of injected CO2 depend on textural and compositional properties determined by depositional and diagenetic histories that vary vertically and laterally across the formation. Effective and efficient prediction and use of the available pore space requires detailed knowledge of the depositional and diagenetic textures and mineralogy, how these variables control the petrophysical character of the reservoir, and how they vary spatially. Here, we summarize the reservoir characteristics of the Mount Simon Sandstone based on examination of geophysical logs, cores, cuttings, and analysis of more than 150 thin sections. These samples represent different parts of the formation and depth ranges of more than 9000 ft (2743 m) across the Illinois Basin and surrounding areas. This work demonstrates that overall reservoir quality and, specifically, porosity do not exhibit a simple relationship with depth, but vary both laterally and with depth because of changes in the primary depositional facies, framework composition (i.e., feldspar concentration), and diverse diagenetic modifications. Diagenetic processes that have been significant in modifying the reservoir include formation of iron oxide grain coatings, chemical compaction, feldspar precipitation and dissolution, multiple generations of quartz overgrowth cementation, clay mineral precipitation, and iron oxide cementation. These variables provide important inputs for calculating CO2 capacity potential, modeling reactivity, and are also an important baseline for comparisons after CO2 injection.
{"title":"Depositional and diagenetic variability within the Cambrian Mount Simon Sandstone: Implications for carbon dioxide sequestration","authors":"B. Bowen, R. Ochoa, N. D. Wilkens, J. Brophy, T. Lovell, N. Fischietto, C. Medina, J. Rupp","doi":"10.1306/EG.07271010012","DOIUrl":"https://doi.org/10.1306/EG.07271010012","url":null,"abstract":"The Cambrian Mount Simon Sandstone is the major target reservoir for ongoing geologic carbon dioxide (CO2) sequestration demonstrations throughout the midwest United States. The potential CO2 reservoir capacity, reactivity, and ultimate fate of injected CO2 depend on textural and compositional properties determined by depositional and diagenetic histories that vary vertically and laterally across the formation. Effective and efficient prediction and use of the available pore space requires detailed knowledge of the depositional and diagenetic textures and mineralogy, how these variables control the petrophysical character of the reservoir, and how they vary spatially. Here, we summarize the reservoir characteristics of the Mount Simon Sandstone based on examination of geophysical logs, cores, cuttings, and analysis of more than 150 thin sections. These samples represent different parts of the formation and depth ranges of more than 9000 ft (2743 m) across the Illinois Basin and surrounding areas. This work demonstrates that overall reservoir quality and, specifically, porosity do not exhibit a simple relationship with depth, but vary both laterally and with depth because of changes in the primary depositional facies, framework composition (i.e., feldspar concentration), and diverse diagenetic modifications. Diagenetic processes that have been significant in modifying the reservoir include formation of iron oxide grain coatings, chemical compaction, feldspar precipitation and dissolution, multiple generations of quartz overgrowth cementation, clay mineral precipitation, and iron oxide cementation. These variables provide important inputs for calculating CO2 capacity potential, modeling reactivity, and are also an important baseline for comparisons after CO2 injection.","PeriodicalId":11706,"journal":{"name":"Environmental Geosciences","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2011-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1306/EG.07271010012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66166595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}