Pub Date : 2024-12-01Epub Date: 2024-03-03DOI: 10.1080/15592294.2024.2323751
Ji Ren, Xiuying Chen, Jing Li, Yuxin Zan, Shan Wang, Yujie Tan, Yan Ding
Methylation modifications play pertinent roles in regulating gene expression and various biological processes. The silencing of the demethylase enzyme TET1 can affect the expressions of key oncogenes or tumour suppressor genes, thus contributing to tumour formation. Nonetheless, how TET1 affects the progression of cervical cancer is yet to be elucidated. In this study, we found that the expression of TET1 was significantly downregulated in cervical cancer tissues. Functionally, TET1 knockdown in cervical cancer cells can promote cell proliferation, migration, invasion, cervical xenograft tumour formation and EMT. On the contrary, its overexpression can reverse the aforementioned processes. Moreover, the autophagy level of cervical cancer cells can be enhanced after TET1 knockdown. Mechanistically, methylated DNA immunoprecipitation (MeDIP)-sequencing and MeDIP quantitative real-time PCR revealed that TET1 mediates the methylation of autophagy promoter regions. These findings suggest that TET1 affects the autophagy of cervical cancer cells by altering the methylation levels of NKRF or HIST1H2AK, but the specific mechanism needs to be investigated further.
{"title":"TET1 inhibits the migration and invasion of cervical cancer cells by regulating autophagy.","authors":"Ji Ren, Xiuying Chen, Jing Li, Yuxin Zan, Shan Wang, Yujie Tan, Yan Ding","doi":"10.1080/15592294.2024.2323751","DOIUrl":"10.1080/15592294.2024.2323751","url":null,"abstract":"<p><p>Methylation modifications play pertinent roles in regulating gene expression and various biological processes. The silencing of the demethylase enzyme TET1 can affect the expressions of key oncogenes or tumour suppressor genes, thus contributing to tumour formation. Nonetheless, how TET1 affects the progression of cervical cancer is yet to be elucidated. In this study, we found that the expression of TET1 was significantly downregulated in cervical cancer tissues. Functionally, TET1 knockdown in cervical cancer cells can promote cell proliferation, migration, invasion, cervical xenograft tumour formation and EMT. On the contrary, its overexpression can reverse the aforementioned processes. Moreover, the autophagy level of cervical cancer cells can be enhanced after TET1 knockdown. Mechanistically, methylated DNA immunoprecipitation (MeDIP)-sequencing and MeDIP quantitative real-time PCR revealed that TET1 mediates the methylation of autophagy promoter regions. These findings suggest that TET1 affects the autophagy of cervical cancer cells by altering the methylation levels of NKRF or HIST1H2AK, but the specific mechanism needs to be investigated further.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"19 1","pages":"2323751"},"PeriodicalIF":3.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10913696/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140021233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2023-12-28DOI: 10.1080/15592294.2023.2296275
Guilherme Jeremias, Ana-Belén Muñiz-González, Fernando José Mendes Gonçalves, José-Luis Martínez-Guitarte, Jana Asselman, Joana Luísa Pereira
The establishment of transgenerational effects following chemical exposure is a powerful phenomenon, capable of modulating ecosystem health beyond exposure periods. This study assessed the transgenerational effects occurring due to copper exposure in the invertebrate D. magna at the transcriptional level, while evaluating the role of exposure history on such responses. Thus, daphnids acclimated for several generations in a copper vs. clean medium were then exposed for one generation (F0) to this metal, and monitored for the following non-exposed generations (F1, F2 and F3). Organisms differing in exposure histories showed remarkably different transcriptional profiles at the F0, with naïve organisms being more profoundly affected. These trends were confirmed for F3 treatments, which presented different transcriptional patterns for genes involved in detoxification, oxidative stress, DNA damage repair, circadian clock functioning and epigenetic regulation. Furthermore, regardless of exposure history, a great number of histone modifier genes were always found transcriptionally altered, thus suggesting the involvement of histone modifications in the response of Daphnia to metal exposure. Lastly, remarkably distinct transgenerational transcriptional responses were found between naïve and non-naïve organisms, thereby highlighting the influence of exposure history on gene expression and confirming the capacity of metals to determine transgenerational transcriptional effects across non-exposed generations.
{"title":"History of exposure to copper influences transgenerational gene expression responses in <i>Daphnia magna</i>.","authors":"Guilherme Jeremias, Ana-Belén Muñiz-González, Fernando José Mendes Gonçalves, José-Luis Martínez-Guitarte, Jana Asselman, Joana Luísa Pereira","doi":"10.1080/15592294.2023.2296275","DOIUrl":"10.1080/15592294.2023.2296275","url":null,"abstract":"<p><p>The establishment of transgenerational effects following chemical exposure is a powerful phenomenon, capable of modulating ecosystem health beyond exposure periods. This study assessed the transgenerational effects occurring due to copper exposure in the invertebrate <i>D. magna</i> at the transcriptional level, while evaluating the role of exposure history on such responses. Thus, daphnids acclimated for several generations in a copper vs. clean medium were then exposed for one generation (F0) to this metal, and monitored for the following non-exposed generations (F1, F2 and F3). Organisms differing in exposure histories showed remarkably different transcriptional profiles at the F0, with naïve organisms being more profoundly affected. These trends were confirmed for F3 treatments, which presented different transcriptional patterns for genes involved in detoxification, oxidative stress, DNA damage repair, circadian clock functioning and epigenetic regulation. Furthermore, regardless of exposure history, a great number of histone modifier genes were always found transcriptionally altered, thus suggesting the involvement of histone modifications in the response of <i>Daphnia</i> to metal exposure. Lastly, remarkably distinct transgenerational transcriptional responses were found between naïve and non-naïve organisms, thereby highlighting the influence of exposure history on gene expression and confirming the capacity of metals to determine transgenerational transcriptional effects across non-exposed generations.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"19 1","pages":"2296275"},"PeriodicalIF":3.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761054/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139058236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-05-08DOI: 10.1080/15592294.2024.2349980
Elizabeth S Nakasone, Tyler J Zemla, Ming Yu, She Yu Lin, Fang-Shu Ou, Kelly Carter, Federico Innocenti, Leonard Saltz, William M Grady, Stacey A Cohen
While epigenomic alterations are common in colorectal cancers (CRC), few epigenomic biomarkers that risk-stratify patients have been identified. We thus sought to determine the potential of ZNF331 promoter hypermethylation (mZNF331) as a prognostic and predictive marker in colon cancer. We examined the association of mZNF331 with clinicopathologic features, relapse, survival, and treatment efficacy in patients with stage III colon cancer treated within a randomized adjuvant chemotherapy trial (CALGB/Alliance89803). Residual tumour tissue was available for genomic DNA extraction and methylation analysis for 385 patients. ZNF331 promoter methylation status was determined by bisulphite conversion and fluorescence-based real-time polymerase chain reaction. Kaplan-Meier estimator and Cox proportional hazard models were used to assess the prognostic and predictive role of mZNF331 in this well-annotated dataset, adjusting for clinicopathologic features and standard molecular markers. mZNF331 was observed in 267/385 (69.4%) evaluable cases. Histopathologic features were largely similar between patients with mZNF331 compared to unmethylated ZNF331 (unmZNFF31). There was no significant difference in disease-free or overall survival between patients with mZNF331 versus unmZNF331 colon cancers, even when adjusting for clinicopathologic features and molecular marker status. Similarly, there was no difference in disease-free or overall survival across treatment arms when stratified by ZNF331 methylation status. While ZNF331 promoter hypermethylation is frequently observed in CRC, our current study of a small subset of patients with stage III colon cancer suggests limited applicability as a prognostic marker. Larger studies may provide more insight and clarity into the applicability of mZNF331 as a prognostic and predictive marker.
{"title":"Evaluating the utility of <i>ZNF331</i> promoter methylation as a prognostic and predictive marker in stage III colon cancer: results from CALGB 89803 (Alliance).","authors":"Elizabeth S Nakasone, Tyler J Zemla, Ming Yu, She Yu Lin, Fang-Shu Ou, Kelly Carter, Federico Innocenti, Leonard Saltz, William M Grady, Stacey A Cohen","doi":"10.1080/15592294.2024.2349980","DOIUrl":"10.1080/15592294.2024.2349980","url":null,"abstract":"<p><p>While epigenomic alterations are common in colorectal cancers (CRC), few epigenomic biomarkers that risk-stratify patients have been identified. We thus sought to determine the potential of <i>ZNF331</i> promoter hypermethylation (m<i>ZNF331</i>) as a prognostic and predictive marker in colon cancer. We examined the association of m<i>ZNF331</i> with clinicopathologic features, relapse, survival, and treatment efficacy in patients with stage III colon cancer treated within a randomized adjuvant chemotherapy trial (CALGB/Alliance89803). Residual tumour tissue was available for genomic DNA extraction and methylation analysis for 385 patients. <i>ZNF331</i> promoter methylation status was determined by bisulphite conversion and fluorescence-based real-time polymerase chain reaction. Kaplan-Meier estimator and Cox proportional hazard models were used to assess the prognostic and predictive role of m<i>ZNF331</i> in this well-annotated dataset, adjusting for clinicopathologic features and standard molecular markers. m<i>ZNF331</i> was observed in 267/385 (69.4%) evaluable cases. Histopathologic features were largely similar between patients with m<i>ZNF331</i> compared to unmethylated <i>ZNF331</i> (unm<i>ZNFF31</i>). There was no significant difference in disease-free or overall survival between patients with m<i>ZNF331</i> versus unm<i>ZNF331</i> colon cancers, even when adjusting for clinicopathologic features and molecular marker status. Similarly, there was no difference in disease-free or overall survival across treatment arms when stratified by <i>ZNF331</i> methylation status. While <i>ZNF331</i> promoter hypermethylation is frequently observed in CRC, our current study of a small subset of patients with stage III colon cancer suggests limited applicability as a prognostic marker. Larger studies may provide more insight and clarity into the applicability of m<i>ZNF331</i> as a prognostic and predictive marker.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"19 1","pages":"2349980"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11085945/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140876160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-05-26DOI: 10.1080/15592294.2024.2357518
Wanhong He, Haijun Zhu, Sufen Zhang, Guang Shu, Han Lei, Maonan Wang, Gang Yin, Xiaohua Ni, Qihan Wu
Drug resistance is the primary contributor to the high mortality rate of ovarian cancer (OC). The loss of BRCA1/2 function is linked to drug sensitivity in OC cells. The aim of this study is to enhance the drug sensitivity of OC cells by inducing BRCA1 dysfunction through promoter epigenetic editing. Epigenetic regulatory regions within the BRCA1 promoter, affecting gene expression, were initially discerned through analysis of clinical samples. Subsequently, we designed and rigorously validated epigenetic editing tools. Ultimately, we evaluated the cisplatin and olaparib sensitivity of the OC cells after editing. The BRCA1 promoter contains two CpG-rich regions, with methylation of the region covering the transcription start site (TSS) strongly correlating with transcription and influencing OC development, prognosis, and homologous recombination (HR) defects. Targeting this region in OC cells using our designed epigenetic editing tools led to substantial and persistent DNA methylation changes, accompanied by significant reductions in H3K27ac histone modifications. This resulted in a notable suppression of BRCA1 expression and a decrease in HR repair capacity. Consequently, edited OC cells exhibited heightened sensitivity to cisplatin and olaparib, leading to increased apoptosis rates. Epigenetic inactivation of the BRCA1 promoter can enhance cisplatin and olaparib sensitivity of OC cells through a reduction in HR repair capacity, indicating the potential utility of epigenetic editing technology in sensitization therapy for OC.
{"title":"Epigenetic editing of <i>BRCA1</i> promoter increases cisplatin and olaparib sensitivity of ovarian cancer cells.","authors":"Wanhong He, Haijun Zhu, Sufen Zhang, Guang Shu, Han Lei, Maonan Wang, Gang Yin, Xiaohua Ni, Qihan Wu","doi":"10.1080/15592294.2024.2357518","DOIUrl":"10.1080/15592294.2024.2357518","url":null,"abstract":"<p><p>Drug resistance is the primary contributor to the high mortality rate of ovarian cancer (OC). The loss of <i>BRCA1</i>/2 function is linked to drug sensitivity in OC cells. The aim of this study is to enhance the drug sensitivity of OC cells by inducing <i>BRCA1</i> dysfunction through promoter epigenetic editing. Epigenetic regulatory regions within the <i>BRCA1</i> promoter, affecting gene expression, were initially discerned through analysis of clinical samples. Subsequently, we designed and rigorously validated epigenetic editing tools. Ultimately, we evaluated the cisplatin and olaparib sensitivity of the OC cells after editing. The <i>BRCA1</i> promoter contains two CpG-rich regions, with methylation of the region covering the transcription start site (TSS) strongly correlating with transcription and influencing OC development, prognosis, and homologous recombination (HR) defects. Targeting this region in OC cells using our designed epigenetic editing tools led to substantial and persistent DNA methylation changes, accompanied by significant reductions in H3K27ac histone modifications. This resulted in a notable suppression of <i>BRCA1</i> expression and a decrease in HR repair capacity. Consequently, edited OC cells exhibited heightened sensitivity to cisplatin and olaparib, leading to increased apoptosis rates. Epigenetic inactivation of the <i>BRCA1</i> promoter can enhance cisplatin and olaparib sensitivity of OC cells through a reduction in HR repair capacity, indicating the potential utility of epigenetic editing technology in sensitization therapy for OC.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"19 1","pages":"2357518"},"PeriodicalIF":3.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11135871/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141154354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-07-14DOI: 10.1080/15592294.2024.2374988
Chunxiao Bu, Zhilong Wang, Xianping Lv, Yanteng Zhao
Early detection is crucial for increasing the survival rate of gastric cancer (GC). We aimed to identify a methylated cell-free DNA (cfDNA) marker panel for detecting GC. The differentially methylated CpGs (DMCs) were selected from datasets of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The selected DMCs were validated and further selected in tissue samples (40 gastric cancer and 36 healthy white blood cell samples) and in a quarter sample volume of plasma samples (37 gastric cancer, 12 benign gastric disease, and 43 healthy individuals). The marker combination selected was then evaluated in a normal sample volume of plasma samples (35 gastric cancer, 39 control diseases, and 40 healthy individuals) using real-time methylation-specific PCR (MSP). The analysis of the results compared methods based on 2-ΔΔCt values and Ct values. In the results, 30 DMCs were selected through bioinformatics methods, and then 5 were selected for biological validation. The marker combination of two fragments of IRF4 (IRF4-1 and IRF4-2) and one of ZEB2 was selected due to its good performance. The Ct-based method was selected for its good results and practical advantages. The assay, IRF4-1 and IRF4-2 in one fluorescence channel and ZEB2 in another, obtained 74.3% sensitivity for the GC group at any stage, at 92.4% specificity. In conclusion, the panel of IRF4 and ZEB2 in plasma cfDNA demonstrates good diagnostic performance and application potential in clinical settings.
{"title":"A dual-gene panel of two fragments of methylated IRF4 and one of ZEB2 in plasma cell-free DNA for gastric cancer detection.","authors":"Chunxiao Bu, Zhilong Wang, Xianping Lv, Yanteng Zhao","doi":"10.1080/15592294.2024.2374988","DOIUrl":"10.1080/15592294.2024.2374988","url":null,"abstract":"<p><p>Early detection is crucial for increasing the survival rate of gastric cancer (GC). We aimed to identify a methylated cell-free DNA (cfDNA) marker panel for detecting GC. The differentially methylated CpGs (DMCs) were selected from datasets of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The selected DMCs were validated and further selected in tissue samples (40 gastric cancer and 36 healthy white blood cell samples) and in a quarter sample volume of plasma samples (37 gastric cancer, 12 benign gastric disease, and 43 healthy individuals). The marker combination selected was then evaluated in a normal sample volume of plasma samples (35 gastric cancer, 39 control diseases, and 40 healthy individuals) using real-time methylation-specific PCR (MSP). The analysis of the results compared methods based on 2<sup>-ΔΔCt</sup> values and Ct values. In the results, 30 DMCs were selected through bioinformatics methods, and then 5 were selected for biological validation. The marker combination of two fragments of IRF4 (IRF4-1 and IRF4-2) and one of ZEB2 was selected due to its good performance. The Ct-based method was selected for its good results and practical advantages. The assay, IRF4-1 and IRF4-2 in one fluorescence channel and ZEB2 in another, obtained 74.3% sensitivity for the GC group at any stage, at 92.4% specificity. In conclusion, the panel of IRF4 and ZEB2 in plasma cfDNA demonstrates good diagnostic performance and application potential in clinical settings.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"19 1","pages":"2374988"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249030/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141616158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-07-06DOI: 10.1080/15592294.2024.2374979
Yee Hoon Foong, Blake Caldwell, Joanne L Thorvaldsen, Christopher Krapp, Clementina A Mesaros, Wanding Zhou, Rahul M Kohli, Marisa S Bartolomei
TET1/2/3 dioxygenases iteratively demethylate 5-methylcytosine, beginning with the formation of 5-hydroxymethylcytosine (5hmC). The post-mitotic brain maintains higher levels of 5hmC than most peripheral tissues, and TET1 ablation studies have underscored the critical role of TET1 in brain physiology. However, deletion of Tet1 precludes the disentangling of the catalytic and non-catalytic functions of TET1. Here, we dissect these functions of TET1 by comparing adult cortex of Tet1 wildtype (Tet1 WT), a novel Tet1 catalytically dead mutant (Tet1 HxD), and Tet1 knockout (Tet1 KO) mice. Using DNA methylation array, we uncover that Tet1 HxD and KO mutations perturb the methylation status of distinct subsets of CpG sites. Gene ontology (GO) analysis on specific differential 5hmC regions indicates that TET1's catalytic activity is linked to neuronal-specific functions. RNA-Seq further shows that Tet1 mutations predominantly impact the genes that are associated with alternative splicing. Lastly, we performed High-performance Liquid Chromatography Mass-Spectrometry lipidomics on WT and mutant cortices and uncover accumulation of lysophospholipids lysophosphatidylethanolamine and lysophosphatidylcholine in Tet1 HxD cortex. In summary, we show that Tet1 HxD does not completely phenocopy Tet1 KO, providing evidence that TET1 modulates distinct cortical functions through its catalytic and non-catalytic roles.
{"title":"TET1 displays catalytic and non-catalytic functions in the adult mouse cortex.","authors":"Yee Hoon Foong, Blake Caldwell, Joanne L Thorvaldsen, Christopher Krapp, Clementina A Mesaros, Wanding Zhou, Rahul M Kohli, Marisa S Bartolomei","doi":"10.1080/15592294.2024.2374979","DOIUrl":"10.1080/15592294.2024.2374979","url":null,"abstract":"<p><p>TET1/2/3 dioxygenases iteratively demethylate 5-methylcytosine, beginning with the formation of 5-hydroxymethylcytosine (5hmC). The post-mitotic brain maintains higher levels of 5hmC than most peripheral tissues, and TET1 ablation studies have underscored the critical role of TET1 in brain physiology. However, deletion of <i>Tet1</i> precludes the disentangling of the catalytic and non-catalytic functions of TET1. Here, we dissect these functions of TET1 by comparing adult cortex of <i>Tet1</i> wildtype (<i>Tet1</i> WT), a novel <i>Tet1</i> catalytically dead mutant (<i>Tet1</i> HxD), and <i>Tet1</i> knockout (<i>Tet1</i> KO) mice. Using DNA methylation array, we uncover that <i>Tet1</i> HxD and KO mutations perturb the methylation status of distinct subsets of CpG sites. Gene ontology (GO) analysis on specific differential 5hmC regions indicates that TET1's catalytic activity is linked to neuronal-specific functions. RNA-Seq further shows that <i>Tet1</i> mutations predominantly impact the genes that are associated with alternative splicing. Lastly, we performed High-performance Liquid Chromatography Mass-Spectrometry lipidomics on WT and mutant cortices and uncover accumulation of lysophospholipids lysophosphatidylethanolamine and lysophosphatidylcholine in <i>Tet1</i> HxD cortex. In summary, we show that <i>Tet1</i> HxD does not completely phenocopy <i>Tet1</i> KO, providing evidence that TET1 modulates distinct cortical functions through its catalytic and non-catalytic roles.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"19 1","pages":"2374979"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229741/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141544646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2023-12-21DOI: 10.1080/15592294.2023.2294516
Thu N A Doan, James M Cowley, Aaron L Phillips, Jessica F Briffa, Shalem Y Leemaqz, Rachel A Burton, Tania Romano, Mary E Wlodek, Tina Bianco-Miotto
Altered epigenetic mechanisms have been previously reported in growth restricted offspring whose mothers experienced environmental insults during pregnancy in both human and rodent studies. We previously reported changes in the expression of the DNA methyltransferase Dnmt3a and the imprinted genes Cdkn1c (Cyclin-dependent kinase inhibitor 1C) and Kcnq1 (Potassium voltage-gated channel subfamily Q member 1) in the kidney tissue of growth restricted rats whose mothers had uteroplacental insufficiency induced on day 18 of gestation, at both embryonic day 20 (E20) and postnatal day 1 (PN1). To determine the mechanisms responsible for changes in the expression of these imprinted genes, we investigated DNA methylation of KvDMR1, an imprinting control region (ICR) that includes the promoter of the antisense long non-coding RNA Kcnq1ot1 (Kcnq1 opposite strand/antisense transcript 1). Kcnq1ot1 expression decreased by 51% in growth restricted offspring compared to sham at PN1. Interestingly, there was a negative correlation between Kcnq1ot1 and Kcnq1 in the E20 growth restricted group (Spearman's ρ = 0.014). No correlation was observed between Kcnq1ot1 and Cdkn1c expression in either group at any time point. Additionally, there was a 11.25% decrease in the methylation level at one CpG site within KvDMR1 ICR. This study, together with others in the literature, supports that long non-coding RNAs may mediate changes seen in tissues of growth restricted offspring.
{"title":"Imprinted gene alterations in the kidneys of growth restricted offspring may be mediated by a long non-coding RNA.","authors":"Thu N A Doan, James M Cowley, Aaron L Phillips, Jessica F Briffa, Shalem Y Leemaqz, Rachel A Burton, Tania Romano, Mary E Wlodek, Tina Bianco-Miotto","doi":"10.1080/15592294.2023.2294516","DOIUrl":"10.1080/15592294.2023.2294516","url":null,"abstract":"<p><p>Altered epigenetic mechanisms have been previously reported in growth restricted offspring whose mothers experienced environmental insults during pregnancy in both human and rodent studies. We previously reported changes in the expression of the DNA methyltransferase <i>Dnmt3a</i> and the imprinted genes <i>Cdkn1c</i> (Cyclin-dependent kinase inhibitor 1C) and <i>Kcnq1</i> (Potassium voltage-gated channel subfamily Q member 1) in the kidney tissue of growth restricted rats whose mothers had uteroplacental insufficiency induced on day 18 of gestation, at both embryonic day 20 (E20) and postnatal day 1 (PN1). To determine the mechanisms responsible for changes in the expression of these imprinted genes, we investigated DNA methylation of KvDMR1, an imprinting control region (ICR) that includes the promoter of the antisense long non-coding RNA <i>Kcnq1ot1</i> (<i>Kcnq1</i> opposite strand/antisense transcript 1). <i>Kcnq1ot1</i> expression decreased by 51% in growth restricted offspring compared to sham at PN1. Interestingly, there was a negative correlation between <i>Kcnq1ot1</i> and <i>Kcnq1</i> in the E20 growth restricted group (Spearman's <i>ρ =</i> 0.014). No correlation was observed between <i>Kcnq1ot1</i> and <i>Cdkn1c</i> expression in either group at any time point. Additionally, there was a 11.25% decrease in the methylation level at one CpG site within KvDMR1 ICR. This study, together with others in the literature, supports that long non-coding RNAs may mediate changes seen in tissues of growth restricted offspring.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"19 1","pages":"2294516"},"PeriodicalIF":3.7,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761017/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138828839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-10-17DOI: 10.1080/15592294.2024.2413815
Elizabeth W Diemer, Johanna Tuhkanen, Sara Sammallahti, Kati Heinonen, Alexander Neumann, Sonia L Robinson, Matthew Suderman, Jianping Jin, Christian M Page, Ruby Fore, Sheryl L Rifas-Shiman, Emily Oken, Patrice Perron, Luigi Bouchard, Marie France Hivert, Katri Räikköne, Jari Lahti, Edwina H Yeung, Weihua Guan, Sunni L Mumford, Maria C Magnus, Siri Håberg, Wenche Nystad, Christine L Parr, Stephanie J London, Janine F Felix, Henning Tiemeier
Low maternal vitamin D concentrations during pregnancy have been associated with a range of offspring health outcomes. DNA methylation is one mechanism by which the maternal vitamin D status during pregnancy could impact offspring's health in later life. We aimed to evaluate whether maternal vitamin D insufficiency during pregnancy was conditionally associated with DNA methylation in the offspring cord blood. Maternal vitamin D insufficiency (plasma 25-hydroxy vitamin D 75 nmol/L) during pregnancy and offspring cord blood DNA methylation, assessed using Illumina Infinium 450k or Illumina EPIC Beadchip, was collected for 3738 mother-child pairs in 7 cohorts as part of the Pregnancy and Childhood Epigenetics (PACE) consortium. Associations between maternal vitamin D and offspring DNA methylation, adjusted for fetal sex, maternal smoking, maternal age, maternal pre-pregnancy or early pregnancy BMI, maternal education, gestational age at measurement of 25(OH)D, parity, and cell type composition, were estimated using robust linear regression in each cohort, and a fixed-effects meta-analysis was conducted. The prevalence of vitamin D insufficiency ranged from 44.3% to 78.5% across cohorts. Across 364,678 CpG sites, none were associated with maternal vitamin D insufficiency at an epigenome-wide significant level after correcting for multiple testing using Bonferroni correction or a less conservative Benjamini-Hochberg False Discovery Rate approach (FDR, p > 0.05). In this epigenome-wide association study, we did not find convincing evidence of a conditional association of vitamin D insufficiency with offspring DNA methylation at any measured CpG site.
孕期母体维生素 D 浓度低与一系列后代健康结果有关。DNA 甲基化是孕期母体维生素 D 状态影响后代健康的一种机制。我们的目的是评估孕期母体维生素 D 不足是否与后代脐带血中的 DNA 甲基化有条件性关联。作为妊娠与儿童表观遗传学(PACE)联盟的一部分,我们收集了7个队列中3738对母子的妊娠期母体维生素D不足(血浆25-羟基维生素D≤75 nmol/L)与子代脐带血DNA甲基化的关系,并使用Illumina Infinium 450k或Illumina EPIC Beadchip进行了评估。在每个队列中使用稳健线性回归估算了母体维生素 D 与后代 DNA 甲基化之间的关系,并对胎儿性别、母体吸烟、母体年龄、母体孕前或孕早期体重指数、母体受教育程度、测量 25(OH)D 时的胎龄、奇偶性和细胞类型组成进行了调整,还进行了固定效应荟萃分析。各队列中维生素 D 不足的发生率从 44.3% 到 78.5% 不等。在 364,678 个 CpG 位点中,在使用 Bonferroni 校正或不太保守的 Benjamini-Hochberg 错误发现率方法(FDR,p > 0.05)进行多重检验校正后,没有一个位点与孕产妇维生素 D 不足有全表观基因组显著相关性。在这项全表观基因组关联研究中,我们没有发现令人信服的证据表明维生素 D 不足与后代 DNA 甲基化在任何测量的 CpG 位点上存在条件性关联。
{"title":"Epigenome-wide meta-analysis of prenatal vitamin D insufficiency and cord blood DNA methylation.","authors":"Elizabeth W Diemer, Johanna Tuhkanen, Sara Sammallahti, Kati Heinonen, Alexander Neumann, Sonia L Robinson, Matthew Suderman, Jianping Jin, Christian M Page, Ruby Fore, Sheryl L Rifas-Shiman, Emily Oken, Patrice Perron, Luigi Bouchard, Marie France Hivert, Katri Räikköne, Jari Lahti, Edwina H Yeung, Weihua Guan, Sunni L Mumford, Maria C Magnus, Siri Håberg, Wenche Nystad, Christine L Parr, Stephanie J London, Janine F Felix, Henning Tiemeier","doi":"10.1080/15592294.2024.2413815","DOIUrl":"10.1080/15592294.2024.2413815","url":null,"abstract":"<p><p>Low maternal vitamin D concentrations during pregnancy have been associated with a range of offspring health outcomes. DNA methylation is one mechanism by which the maternal vitamin D status during pregnancy could impact offspring's health in later life. We aimed to evaluate whether maternal vitamin D insufficiency during pregnancy was conditionally associated with DNA methylation in the offspring cord blood. Maternal vitamin D insufficiency (plasma 25-hydroxy vitamin D <math><mo>≤</mo></math> 75 nmol/L) during pregnancy and offspring cord blood DNA methylation, assessed using Illumina Infinium 450k or Illumina EPIC Beadchip, was collected for 3738 mother-child pairs in 7 cohorts as part of the Pregnancy and Childhood Epigenetics (PACE) consortium. Associations between maternal vitamin D and offspring DNA methylation, adjusted for fetal sex, maternal smoking, maternal age, maternal pre-pregnancy or early pregnancy BMI, maternal education, gestational age at measurement of 25(OH)D, parity, and cell type composition, were estimated using robust linear regression in each cohort, and a fixed-effects meta-analysis was conducted. The prevalence of vitamin D insufficiency ranged from 44.3% to 78.5% across cohorts. Across 364,678 CpG sites, none were associated with maternal vitamin D insufficiency at an epigenome-wide significant level after correcting for multiple testing using Bonferroni correction or a less conservative Benjamini-Hochberg False Discovery Rate approach (FDR, <i>p</i> > 0.05). In this epigenome-wide association study, we did not find convincing evidence of a conditional association of vitamin D insufficiency with offspring DNA methylation at any measured CpG site.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"19 1","pages":"2413815"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487971/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gametogenetin binding protein 2 (GGNBP2) was indispensable in normal spermatids for transformation into mature spermatozoa in mice, and when Gametogenetin binding protein 2 is bound to BRCC36 and RAD51, the complex participates in repairing DNA double-strand breaks (DSB) during the meiotic progression of spermatocytes. Ggnbp2 knockout resulted in the up-regulation of H2AK119ubi and down-regulation of H2BK120ubi in GC-2 cells (mouse spermatogonia-derived cell line) and postnatal day 18 testis lysate. Our results also demonstrated that Gametogenetin binding protein 2 inducedASXL1 to activate the deubiquitinating enzyme BAP1 in deubiquitinating H2A, while Gametogenetin binding protein 2 knockout disrupted the interaction between ASXL1 and BAP1, resulting in BAP1 localization change. Furthermore, the Gametogenetin binding protein 2 deletion reduced H2B ubiquitination by affecting E2 enzymes and E3 ligase binding. Gametogenetin binding protein 2 regulated H2A and H2B ubiquitination levels and controlled H3K27 and H3K79 methylation by PRC2 subunits and histone H3K79 methyltransferase. Altogether, our results suggest that Ggnbp2 knockout increased DNA damage response by promoting H2A ubiquitination and H3K27trimethylation (H3K27me3) and reduced nucleosome stability by decreasing H2B ubiquitination and H3K79 dimethylation (H3K79me2), revealing new mechanisms of epigenetic phenomenon during spermatogenesis. Gametogenetin binding protein 2 seems critical in regulating histone modification and chromatin structure in spermatogenesis.
{"title":"GGNBP2 regulates histone ubiquitination and methylation in spermatogenesis.","authors":"Kaimin Guo, Yin Cao, Zhiyi Zhao, Jiantao Zhao, Lingyun Liu, Hongliang Wang","doi":"10.1080/15592294.2024.2381849","DOIUrl":"10.1080/15592294.2024.2381849","url":null,"abstract":"<p><p>Gametogenetin binding protein 2 (GGNBP2) was indispensable in normal spermatids for transformation into mature spermatozoa in mice, and when Gametogenetin binding protein 2 is bound to BRCC36 and RAD51, the complex participates in repairing DNA double-strand breaks (DSB) during the meiotic progression of spermatocytes. Ggnbp2 knockout resulted in the up-regulation of H2A<sub>K119ubi</sub> and down-regulation of H2B<sub>K120ubi</sub> in GC-2 cells (mouse spermatogonia-derived cell line) and postnatal day 18 testis lysate. Our results also demonstrated that Gametogenetin binding protein 2 inducedASXL1 to activate the deubiquitinating enzyme BAP1 in deubiquitinating H2A, while Gametogenetin binding protein 2 knockout disrupted the interaction between ASXL1 and BAP1, resulting in BAP1 localization change. Furthermore, the Gametogenetin binding protein 2 deletion reduced H2B ubiquitination by affecting E2 enzymes and E3 ligase binding. Gametogenetin binding protein 2 regulated H2A and H2B ubiquitination levels and controlled H3<sub>K27</sub> and H3<sub>K79</sub> methylation by PRC2 subunits and histone H3K79 methyltransferase. Altogether, our results suggest that Ggnbp2 knockout increased DNA damage response by promoting H2A ubiquitination and H3<sub>K27</sub>trimethylation (H3<sub>K27me3</sub>) and reduced nucleosome stability by decreasing H2B ubiquitination and H3K79 dimethylation (H3<sub>K79me2</sub>), revealing new mechanisms of epigenetic phenomenon during spermatogenesis. Gametogenetin binding protein 2 seems critical in regulating histone modification and chromatin structure in spermatogenesis.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"19 1","pages":"2381849"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734887/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-02-18DOI: 10.1080/15592294.2024.2318519
Daniel M Sapozhnikov, Moshe Szyf
Transgenerational epigenetic inheritance in mammals remains a controversial phenomenon. A recent study by Takahashi et al. provides evidence for this mode of inheritance in mice by using a CRISPR/Cas9-based epigenetic editing technique to modify DNA methylation levels at specific promoters and then demonstrating the inheritance of the gain in methylation in offspring. In this technical commentary, we argue that the method used in the original study inherently amplifies the likelihood of genetic changes that thereafter lead to the heritability of epigenetic changes. We provide evidence that genetic changes from multiple sources do indeed occur in these experiments and explore several avenues by which these changes could be causal to the apparent inheritance of epigenetic changes. We conclude a genetic basis of inheritance cannot be ruled out and thus transgenerational epigenetic inheritance has not been adequately established by the original study.
哺乳动物的跨代表观遗传仍然是一个有争议的现象。Takahashi 等人最近的一项研究通过使用基于 CRISPR/Cas9 的表观遗传编辑技术改变特定启动子的 DNA 甲基化水平,然后证明甲基化增量在后代中的遗传性,为小鼠的这种遗传模式提供了证据。在这篇技术评论中,我们认为原始研究中使用的方法本质上放大了遗传变化的可能性,从而导致了表观遗传变化的遗传性。我们提供的证据表明,在这些实验中确实发生了多种来源的遗传变化,并探讨了这些变化可能导致表观遗传变化明显遗传的几种途径。我们的结论是,不能排除遗传的遗传基础,因此,原始研究没有充分证实表观遗传的跨代遗传性。
{"title":"Genetic confounds of transgenerational epigenetic inheritance in mice.","authors":"Daniel M Sapozhnikov, Moshe Szyf","doi":"10.1080/15592294.2024.2318519","DOIUrl":"10.1080/15592294.2024.2318519","url":null,"abstract":"<p><p>Transgenerational epigenetic inheritance in mammals remains a controversial phenomenon. A recent study by Takahashi et al. provides evidence for this mode of inheritance in mice by using a CRISPR/Cas9-based epigenetic editing technique to modify DNA methylation levels at specific promoters and then demonstrating the inheritance of the gain in methylation in offspring. In this technical commentary, we argue that the method used in the original study inherently amplifies the likelihood of genetic changes that thereafter lead to the heritability of epigenetic changes. We provide evidence that genetic changes from multiple sources do indeed occur in these experiments and explore several avenues by which these changes could be causal to the apparent inheritance of epigenetic changes. We conclude a genetic basis of inheritance cannot be ruled out and thus transgenerational epigenetic inheritance has not been adequately established by the original study.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"19 1","pages":"2318519"},"PeriodicalIF":2.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10878023/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139899588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}