Liping Wei, Kexin Zhou, Qian Rao, Hui-qiang Li, Ping Yang
Methylisothiazolinone (MIT) is a commonly used bactericide in wastewater treatment. Residual MIT in wastewater can lead to high environmental risks and toxicity. In this work, an emerging material MXenes has been introduced into the heterogeneous electro-Fenton catalysts to degrade MIT. Ti3C2Tx@Fe3O4, V2CTx@Fe3O4, and Mo2CTx@Fe3O4 were assessed as catalysts for MIT removal. The reasons for the differences among the three catalyst effects were analyzed according to different characterization results. Mo2CTx@Fe3O4 exhibited the best catalytic activity for MIT degradation. At pH = 3, the removal rate of MIT and corresponding chemical oxygen demand of catalyst Mo2CTx@Fe3O4 were 93.41% and 62.46% after 120 min. Among the three catalysts, Mo2CTx@Fe3O4 had larger surface area and porosity. Mo2CTx@Fe3O4 had the highest surface iron content, which meant that Fe3O4 was more easily loaded on the surface of Mo2CTX. What is more, Mo2CTX had the strongest ability to accelerate the regeneration of Fe2+. The durability of Mo2CTx@Fe3O4 was also evaluated. After four cycles, the removal efficiency of MIT only decreased from 92.51% to 89%. This work supports the development of heterogeneous electro-Fenton catalysts and the degradation of MIT.
{"title":"Introducing MXenes into the Heterogeneous Catalyst: Synthesizing Mo<sub>2</sub>CT<sub>x</sub>@Fe<sub>3</sub>O<sub>4</sub> with Excellent Recoverability to Degrade Methylisothiazolinone in the Electro-Fenton System","authors":"Liping Wei, Kexin Zhou, Qian Rao, Hui-qiang Li, Ping Yang","doi":"10.1089/ees.2023.0078","DOIUrl":"https://doi.org/10.1089/ees.2023.0078","url":null,"abstract":"Methylisothiazolinone (MIT) is a commonly used bactericide in wastewater treatment. Residual MIT in wastewater can lead to high environmental risks and toxicity. In this work, an emerging material MXenes has been introduced into the heterogeneous electro-Fenton catalysts to degrade MIT. Ti3C2Tx@Fe3O4, V2CTx@Fe3O4, and Mo2CTx@Fe3O4 were assessed as catalysts for MIT removal. The reasons for the differences among the three catalyst effects were analyzed according to different characterization results. Mo2CTx@Fe3O4 exhibited the best catalytic activity for MIT degradation. At pH = 3, the removal rate of MIT and corresponding chemical oxygen demand of catalyst Mo2CTx@Fe3O4 were 93.41% and 62.46% after 120 min. Among the three catalysts, Mo2CTx@Fe3O4 had larger surface area and porosity. Mo2CTx@Fe3O4 had the highest surface iron content, which meant that Fe3O4 was more easily loaded on the surface of Mo2CTX. What is more, Mo2CTX had the strongest ability to accelerate the regeneration of Fe2+. The durability of Mo2CTx@Fe3O4 was also evaluated. After four cycles, the removal efficiency of MIT only decreased from 92.51% to 89%. This work supports the development of heterogeneous electro-Fenton catalysts and the degradation of MIT.","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135860768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparison Study on FeS-Activated Peroxymonosulfate, Persulfate, and Hydrogen Peroxide for Allura Red AC Decoloration","authors":"Haijun Li, Yuhang Fu, Min Wang, L. Dong, Na Liu","doi":"10.1089/ees.2023.0070","DOIUrl":"https://doi.org/10.1089/ees.2023.0070","url":null,"abstract":"","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84730666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of Metal Additives (Fe, Zn, and Sn) on the Co-Pyrolysis of Rice Husk and Cow Manure","authors":"Wen Qiu, Ying Liu, Jiacheng Liu, G. Fan, Guangsen Song, Q. Cheng","doi":"10.1089/ees.2023.0030","DOIUrl":"https://doi.org/10.1089/ees.2023.0030","url":null,"abstract":"","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"70 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78096533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Persulfate/Peroxide Oxidation Activated by Ferrous Ions Using Methylene Blue: Development of a Screening Technique for the Production of Radicals","authors":"Shardula Gawankar, S. Masten","doi":"10.1089/ees.2023.0085","DOIUrl":"https://doi.org/10.1089/ees.2023.0085","url":null,"abstract":"","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"86 5 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91117394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhongcheng Du, Mingyu Yang, Yifan Yang, Xiaolei Zhang, Huihui Chen, H. Ngo, Qiang Liu
{"title":"Sulfur-Modified Biochar Efficiently Removes Cr(VI) from Water by Sorption and Reduction","authors":"Zhongcheng Du, Mingyu Yang, Yifan Yang, Xiaolei Zhang, Huihui Chen, H. Ngo, Qiang Liu","doi":"10.1089/ees.2023.0046","DOIUrl":"https://doi.org/10.1089/ees.2023.0046","url":null,"abstract":"","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"246 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80611145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quality Assurance and Quality Control in Microplastics Processing and Enumeration","authors":"M. Košuth, Claire B. Simmerman, M. Simcik","doi":"10.1089/ees.2023.0063","DOIUrl":"https://doi.org/10.1089/ees.2023.0063","url":null,"abstract":"","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"38 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73192946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alisa D. Bealessio, Weijue Chen, Krysta J. Krippaehne, Riley A. Murnane, M. Hyman, L. Semprini
{"title":"Alcohol-Dependent Cometabolic Degradation of Chlorinated Aliphatic Hydrocarbons and 1,4-Dioxane by Rhodococcus rhodochrous strain ATCC 21198","authors":"Alisa D. Bealessio, Weijue Chen, Krysta J. Krippaehne, Riley A. Murnane, M. Hyman, L. Semprini","doi":"10.1089/ees.2023.0058","DOIUrl":"https://doi.org/10.1089/ees.2023.0058","url":null,"abstract":"","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"98 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87713687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessment of Air Quality Monitoring Network for Adequacy in Representation of Urban PM2.5 and Coverage Efficiency: A Case Study of Delhi, India","authors":"Sheelu Verghese, A. Nema","doi":"10.1089/ees.2023.0029","DOIUrl":"https://doi.org/10.1089/ees.2023.0029","url":null,"abstract":"","PeriodicalId":11777,"journal":{"name":"Environmental Engineering Science","volume":"56 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85839213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}