The functional maturation of the pituitary gland requires adequate cell differentiation and vascular network formation. Although spatiotemporal signaling and transcription factors are known to govern pituitary development, the involvement of primary cilia, nonmoving hair-like organelles, remains unclear. In this study, we uncovered the contribution of primary cilia to cell-type determination and vascular network formation during pituitary development. Homozygous knockout mice lacking a ciliary kinase, Dyrk2-/-, exhibit abnormalities in ciliary structure and pituitary hypoplasia, accompanied by varying degrees of failure in differentiation among all types of hormone-producing cells in the anterior lobe. Aberrations in cell differentiation in Dyrk2-/- mice arise from a decrease in the expression of crucial transcription factors, Lhx4, Lhx3, and Prop1, resulting from the inactivity of Hedgehog (Hh) signaling during the early stages of development. Furthermore, the loss of Dyrk2 results in vascular system abnormalities during the middle to late stages of development. Mechanistically, transcriptome analyses revealed the downregulation of vitronectin-integrin αvβ3-VEGFR2 signaling, essential for orchestrating vascular development. Collectively, our findings demonstrate that primary cilia play a pivotal role as critical regulators of cell survival, cell determination, and angiogenesis during pituitary gland development through the activation of Hh signaling. These findings expand our understanding of the potential link between pituitary dysfunction in human disorders and ciliopathies.
{"title":"Primary Cilia are Required for Cell-Type Determination and Angiogenesis in Pituitary Development.","authors":"Saishu Yoshida, Yousuke Tsuneoka, Takehiro Tsukada, Takashi Nakakura, Akira Kawamura, Wataru Kai, Kiyotsugu Yoshida","doi":"10.1210/endocr/bqae085","DOIUrl":"10.1210/endocr/bqae085","url":null,"abstract":"<p><p>The functional maturation of the pituitary gland requires adequate cell differentiation and vascular network formation. Although spatiotemporal signaling and transcription factors are known to govern pituitary development, the involvement of primary cilia, nonmoving hair-like organelles, remains unclear. In this study, we uncovered the contribution of primary cilia to cell-type determination and vascular network formation during pituitary development. Homozygous knockout mice lacking a ciliary kinase, Dyrk2-/-, exhibit abnormalities in ciliary structure and pituitary hypoplasia, accompanied by varying degrees of failure in differentiation among all types of hormone-producing cells in the anterior lobe. Aberrations in cell differentiation in Dyrk2-/- mice arise from a decrease in the expression of crucial transcription factors, Lhx4, Lhx3, and Prop1, resulting from the inactivity of Hedgehog (Hh) signaling during the early stages of development. Furthermore, the loss of Dyrk2 results in vascular system abnormalities during the middle to late stages of development. Mechanistically, transcriptome analyses revealed the downregulation of vitronectin-integrin αvβ3-VEGFR2 signaling, essential for orchestrating vascular development. Collectively, our findings demonstrate that primary cilia play a pivotal role as critical regulators of cell survival, cell determination, and angiogenesis during pituitary gland development through the activation of Hh signaling. These findings expand our understanding of the potential link between pituitary dysfunction in human disorders and ciliopathies.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nathalie Esser, Stephen M Mongovin, Breanne M Barrow, Sakeneh Zraika
Neprilysin is a ubiquitous peptidase that can modulate glucose homeostasis by cleaving insulinotropic peptides. While global deletion of neprilysin protects mice against high-fat diet (HFD)-induced insulin secretory dysfunction, strategies to ablate neprilysin in a tissue-specific manner are favored to limit off-target effects. Since insulinotropic peptides are produced in the gut, we sought to determine whether gut-specific neprilysin deletion confers beneficial effects on insulin secretion similar to that of global neprilysin deletion in mice fed a HFD. Mice with conditional deletion of neprilysin in enterocytes (NEPGut-/-) were generated by crossing Vil-Cre and floxed neprilysin mice. Neprilysin activity was almost abolished throughout the gut in NEPGut-/- mice, and was similar in plasma, pancreas, and kidney in NEPGut-/- vs control mice. An oral glucose tolerance test was performed at baseline and following 14 weeks of HFD feeding, during which glucose tolerance and glucose-stimulated insulin secretion (GSIS) were assessed. Despite similar body weight gain at 14 weeks, NEPGut-/- displayed lower fasting plasma glucose levels, improved glucose tolerance, and increased GSIS compared to control mice. In conclusion, gut-specific neprilysin deletion recapitulates the enhanced GSIS seen with global neprilysin deletion in HFD-fed mice. Thus, strategies to inhibit neprilysin specifically in the gut may protect against fat-induced glucose intolerance and beta-cell dysfunction.
{"title":"Gut-specific Neprilysin Deletion Protects Against Fat-induced Insulin Secretory Dysfunction in Male Mice.","authors":"Nathalie Esser, Stephen M Mongovin, Breanne M Barrow, Sakeneh Zraika","doi":"10.1210/endocr/bqae080","DOIUrl":"10.1210/endocr/bqae080","url":null,"abstract":"<p><p>Neprilysin is a ubiquitous peptidase that can modulate glucose homeostasis by cleaving insulinotropic peptides. While global deletion of neprilysin protects mice against high-fat diet (HFD)-induced insulin secretory dysfunction, strategies to ablate neprilysin in a tissue-specific manner are favored to limit off-target effects. Since insulinotropic peptides are produced in the gut, we sought to determine whether gut-specific neprilysin deletion confers beneficial effects on insulin secretion similar to that of global neprilysin deletion in mice fed a HFD. Mice with conditional deletion of neprilysin in enterocytes (NEPGut-/-) were generated by crossing Vil-Cre and floxed neprilysin mice. Neprilysin activity was almost abolished throughout the gut in NEPGut-/- mice, and was similar in plasma, pancreas, and kidney in NEPGut-/- vs control mice. An oral glucose tolerance test was performed at baseline and following 14 weeks of HFD feeding, during which glucose tolerance and glucose-stimulated insulin secretion (GSIS) were assessed. Despite similar body weight gain at 14 weeks, NEPGut-/- displayed lower fasting plasma glucose levels, improved glucose tolerance, and increased GSIS compared to control mice. In conclusion, gut-specific neprilysin deletion recapitulates the enhanced GSIS seen with global neprilysin deletion in HFD-fed mice. Thus, strategies to inhibit neprilysin specifically in the gut may protect against fat-induced glucose intolerance and beta-cell dysfunction.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11242446/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141476230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Harendran Elangovan, Rebecca A Stokes, Jeremy Keane, Sarinder Chahal, Caroline Samer, Miguel Agoncillo, Josephine Yu, Jennifer Chen, Michael Downes, Ronald M Evans, Christopher Liddle, Jenny E Gunton
Vitamin D signals through the vitamin D receptor (VDR) to induce its end-organ effects. Hepatic stellate cells control development of liver fibrosis in response to stressors and vitamin D signaling decreases fibrogenesis. VDR expression in hepatocytes is low in healthy liver, and the role of VDR in hepatocyte proliferation is unclear. Hepatocyte-VDR null mice (hVDR) were used to assess the role of VDR and vitamin D signaling in hepatic regeneration. hVDR mice have impaired liver regeneration and impaired hepatocyte proliferation associated with significant differential changes in bile salts. Notably, mice lacking hepatocyte VDR had significant increases in expression of conjugated bile acids after partial hepatectomy, consistent with failure to normalize hepatic function by the 14-day time point tested. Real-time PCR of hVDR and control livers showed significant changes in expression of cell-cycle genes including cyclins D1 and E1 and cyclin-dependent kinase 2. Gene expression profiling of hepatocytes treated with vitamin D or control showed regulation of groups of genes involved in liver proliferation, hepatitis, liver hyperplasia/hyperproliferation, and liver necrosis/cell death. Together, these studies demonstrate an important functional role for VDR in hepatocytes during liver regeneration. Combined with the known profibrotic effects of impaired VDR signaling in stellate cells, the studies provide a mechanism whereby vitamin D deficiency would both reduce hepatocyte proliferation and permit fibrosis, leading to significant liver compromise.
维生素 D 通过维生素 D 受体(VDR)发出信号,诱导其终端器官效应。肝星状细胞控制着肝纤维化的发展,以应对压力因素,而维生素 D 信号可减少纤维化的发生。然而,健康肝脏中肝细胞的 VDR 表达量很低,VDR 在肝细胞增殖中的作用也不清楚。肝细胞-VDR无效小鼠(hVDR)被用来评估VDR和维生素D信号在肝再生中的作用。值得注意的是,缺乏肝细胞 VDR 的小鼠在部分肝切除术后共轭胆汁酸的表达显著增加,这与测试的 14 天时间点未能使肝功能恢复正常相一致。对 hVDR 和对照组肝脏进行的实时 PCR 检测显示,细胞周期基因(包括细胞周期蛋白 D1 和 E1 以及细胞周期蛋白依赖性激酶 2)的表达发生了显著变化。用维生素 D 或对照组处理的肝细胞的基因表达谱分析显示,涉及肝脏增殖、肝炎、肝脏增生/过度增殖和肝脏坏死/细胞死亡的基因组受到调控。这些研究共同证明了 VDR 在肝脏再生过程中在肝细胞中的重要功能作用。结合已知的星状细胞中 VDR 信号传导受损的促纤维化效应,这些研究提供了一种机制,即缺乏维生素 D 会减少肝细胞增殖并导致纤维化,从而导致肝脏严重受损。
{"title":"Vitamin D Receptor Regulates Liver Regeneration After Partial Hepatectomy in Male Mice.","authors":"Harendran Elangovan, Rebecca A Stokes, Jeremy Keane, Sarinder Chahal, Caroline Samer, Miguel Agoncillo, Josephine Yu, Jennifer Chen, Michael Downes, Ronald M Evans, Christopher Liddle, Jenny E Gunton","doi":"10.1210/endocr/bqae077","DOIUrl":"10.1210/endocr/bqae077","url":null,"abstract":"<p><p>Vitamin D signals through the vitamin D receptor (VDR) to induce its end-organ effects. Hepatic stellate cells control development of liver fibrosis in response to stressors and vitamin D signaling decreases fibrogenesis. VDR expression in hepatocytes is low in healthy liver, and the role of VDR in hepatocyte proliferation is unclear. Hepatocyte-VDR null mice (hVDR) were used to assess the role of VDR and vitamin D signaling in hepatic regeneration. hVDR mice have impaired liver regeneration and impaired hepatocyte proliferation associated with significant differential changes in bile salts. Notably, mice lacking hepatocyte VDR had significant increases in expression of conjugated bile acids after partial hepatectomy, consistent with failure to normalize hepatic function by the 14-day time point tested. Real-time PCR of hVDR and control livers showed significant changes in expression of cell-cycle genes including cyclins D1 and E1 and cyclin-dependent kinase 2. Gene expression profiling of hepatocytes treated with vitamin D or control showed regulation of groups of genes involved in liver proliferation, hepatitis, liver hyperplasia/hyperproliferation, and liver necrosis/cell death. Together, these studies demonstrate an important functional role for VDR in hepatocytes during liver regeneration. Combined with the known profibrotic effects of impaired VDR signaling in stellate cells, the studies provide a mechanism whereby vitamin D deficiency would both reduce hepatocyte proliferation and permit fibrosis, leading to significant liver compromise.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250209/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141534033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sheida Shadani, Kyna Conn, Zane B Andrews, Claire J Foldi
The resurgence of interest in psychedelics as treatments for psychiatric disorders necessitates a better understanding of potential sex differences in response to these substances. Sex as a biological variable (SABV) has been historically neglected in medical research, posing limits to our understanding of treatment efficacy. Human studies have provided insights into the efficacy of psychedelics across various diagnoses and aspects of cognition, yet sex-specific effects remain unclear, making it difficult to draw strong conclusions about sex-dependent differences in response to psychedelic treatments. Compounding this further, animal studies used to understand biological mechanisms of psychedelics predominantly use one sex and present mixed neurobiological and behavioral outcomes. Studies that do include both sexes often do not investigate sex differences further, which may hinder the translation of findings to the clinic. In reviewing sex differences in responses to psychedelics, we will highlight the direct interaction between estrogen (the most extensively studied steroid hormone) and the serotonin system (central to the mechanism of action of psychedelics), and the potential that estrogen-serotonin interactions may influence the efficacy of psychedelics in female participants. Estrogen influences serotonin neurotransmission by affecting its synthesis and release, as well as modulating the sensitivity and responsiveness of serotonin receptor subtypes in the brain. This could potentially influence the efficacy of psychedelics in females by modifying their therapeutic efficacy across menstrual cycles and developmental stages. Investigating this interaction in the context of psychedelic research could aid in the advancement of therapeutic outcomes, especially for conditions with sex-specific prevalence.
{"title":"Potential Differences in Psychedelic Actions Based on Biological Sex.","authors":"Sheida Shadani, Kyna Conn, Zane B Andrews, Claire J Foldi","doi":"10.1210/endocr/bqae083","DOIUrl":"10.1210/endocr/bqae083","url":null,"abstract":"<p><p>The resurgence of interest in psychedelics as treatments for psychiatric disorders necessitates a better understanding of potential sex differences in response to these substances. Sex as a biological variable (SABV) has been historically neglected in medical research, posing limits to our understanding of treatment efficacy. Human studies have provided insights into the efficacy of psychedelics across various diagnoses and aspects of cognition, yet sex-specific effects remain unclear, making it difficult to draw strong conclusions about sex-dependent differences in response to psychedelic treatments. Compounding this further, animal studies used to understand biological mechanisms of psychedelics predominantly use one sex and present mixed neurobiological and behavioral outcomes. Studies that do include both sexes often do not investigate sex differences further, which may hinder the translation of findings to the clinic. In reviewing sex differences in responses to psychedelics, we will highlight the direct interaction between estrogen (the most extensively studied steroid hormone) and the serotonin system (central to the mechanism of action of psychedelics), and the potential that estrogen-serotonin interactions may influence the efficacy of psychedelics in female participants. Estrogen influences serotonin neurotransmission by affecting its synthesis and release, as well as modulating the sensitivity and responsiveness of serotonin receptor subtypes in the brain. This could potentially influence the efficacy of psychedelics in females by modifying their therapeutic efficacy across menstrual cycles and developmental stages. Investigating this interaction in the context of psychedelic research could aid in the advancement of therapeutic outcomes, especially for conditions with sex-specific prevalence.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11259856/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141563024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Supriya Jagga, Ashleigh Hughes, Niusha Manoochehri Arash, Melissa Sorsby, Daniel J Brooks, Paola Divieti Pajevic, Eva S Liu
Osteocytes are embedded in lacunae and connected by canaliculi (lacuno-canalicular network, LCN). Bones from mice with X-linked hypophosphatemia (Hyp), which have impaired production of 1,25 dihydroxyvitamin D (1,25D) and hypophosphatemia, have abnormal LCN structure that is improved by treatment with 1,25D or an anti-FGF23 targeting antibody, supporting roles for 1,25D and phosphate in regulating LCN remodeling. Bones from mice lacking the vitamin D receptor (VDR) in osteocytes (Vdrf/f;Dmp1Cre+) and mice lacking the sodium phosphate transporter 2a (Npt2aKO), which have low serum phosphate with high serum 1,25D, have impaired LCN organization, demonstrating that osteocyte-specific actions of 1,25D and hypophosphatemia regulate LCN remodeling. In osteoclasts, nuclear factor of activated T cells cytoplasmic 1 (NFATc1) is critical for stimulating bone resorption. Since osteocytes also resorb matrix, we hypothesize that NFATc1 plays a role in 1,25D and phosphate-mediated LCN remodeling. Consistent with this, 1,25D and phosphate suppress Nfatc1 mRNA expression in IDG-SW3 osteocytes, and knockdown of Nfatc1 expression in IDG-SW3 cells blocks 1,25D- and phosphate-mediated suppression of matrix resorption gene expression and 1,25D- and phosphate-mediated suppression of RANKL-induced acidification of the osteocyte microenvironment. To determine the role of NFATc1 in 1,25D- and phosphate-mediated LCN remodeling in vivo, histomorphometric analyses of tibiae from mice lacking osteocyte-specific Nfatc1 in Vdrf/f;Dmp1Cre+ and Npt2aKO mice were performed, demonstrating that bones from these mice have decreased lacunar size and expression of matrix resorption genes, and improved canalicular structure compared to Vdrf/f;Dmp1Cre+ and Npt2aKO control. This study demonstrates that NFATc1 is necessary for 1,25D- and phosphate-mediated regulation of LCN remodeling.
{"title":"NFATc1 Is Required for Vitamin D- and Phosphate-Mediated Regulation of Osteocyte Lacuno-Canalicular Remodeling.","authors":"Supriya Jagga, Ashleigh Hughes, Niusha Manoochehri Arash, Melissa Sorsby, Daniel J Brooks, Paola Divieti Pajevic, Eva S Liu","doi":"10.1210/endocr/bqae087","DOIUrl":"10.1210/endocr/bqae087","url":null,"abstract":"<p><p>Osteocytes are embedded in lacunae and connected by canaliculi (lacuno-canalicular network, LCN). Bones from mice with X-linked hypophosphatemia (Hyp), which have impaired production of 1,25 dihydroxyvitamin D (1,25D) and hypophosphatemia, have abnormal LCN structure that is improved by treatment with 1,25D or an anti-FGF23 targeting antibody, supporting roles for 1,25D and phosphate in regulating LCN remodeling. Bones from mice lacking the vitamin D receptor (VDR) in osteocytes (Vdrf/f;Dmp1Cre+) and mice lacking the sodium phosphate transporter 2a (Npt2aKO), which have low serum phosphate with high serum 1,25D, have impaired LCN organization, demonstrating that osteocyte-specific actions of 1,25D and hypophosphatemia regulate LCN remodeling. In osteoclasts, nuclear factor of activated T cells cytoplasmic 1 (NFATc1) is critical for stimulating bone resorption. Since osteocytes also resorb matrix, we hypothesize that NFATc1 plays a role in 1,25D and phosphate-mediated LCN remodeling. Consistent with this, 1,25D and phosphate suppress Nfatc1 mRNA expression in IDG-SW3 osteocytes, and knockdown of Nfatc1 expression in IDG-SW3 cells blocks 1,25D- and phosphate-mediated suppression of matrix resorption gene expression and 1,25D- and phosphate-mediated suppression of RANKL-induced acidification of the osteocyte microenvironment. To determine the role of NFATc1 in 1,25D- and phosphate-mediated LCN remodeling in vivo, histomorphometric analyses of tibiae from mice lacking osteocyte-specific Nfatc1 in Vdrf/f;Dmp1Cre+ and Npt2aKO mice were performed, demonstrating that bones from these mice have decreased lacunar size and expression of matrix resorption genes, and improved canalicular structure compared to Vdrf/f;Dmp1Cre+ and Npt2aKO control. This study demonstrates that NFATc1 is necessary for 1,25D- and phosphate-mediated regulation of LCN remodeling.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492278/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141723301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The inhibition of hepatic macrophage and Kupfer cell recruitment and activation is a potential strategy for treating insulin resistance and nonalcoholic steatohepatitis (NASH). Cenicriviroc (CVC), a dual C-C chemokine receptor 2 (CCR2) and CCR5 antagonist, has shown antifibrotic activity in murine models of NASH and has been evaluated in clinical trials on patients with NASH. This study investigated the effects of CVC on macrophage infiltration and polarization in a lipotoxic model of NASH. C57BL/6 mice were fed a high-cholesterol, high-fat (CL) diet or a CL diet containing 0.015% CVC (CL + CVC) for 12 weeks. Macrophage recruitment and activation were assayed by immunohistochemistry and flow cytometry. CVC supplementation attenuated excessive hepatic lipid accumulation and peroxidation and alleviated glucose intolerance and hyperinsulinemia in the mice that were fed the CL diet. Flow cytometry analysis revealed that compared with the CL group, mice fed the CL + CVC diet had fewer M1-like macrophages, more M2-like macrophages, and fewer T cell counts, indicating that CVC caused an M2-dominant shift of macrophages in the liver. Similarly, CVC decreased lipopolysaccharide-stimulated M1-like macrophage activation, whereas it increased interleukin-4-induced M2-type macrophage polarization in vitro. In addition, CVC attenuated hepatic fibrosis by repressing hepatic stellate cell activation. Lastly, CVC reversed insulin resistance as well as steatosis, inflammation, and fibrosis of the liver in mice with pre-existing NASH. In conclusion, CVC prevented and reversed hepatic steatosis, insulin resistance, inflammation, and fibrogenesis in the liver of NASH mice via M2 macrophage polarization.
{"title":"Cenicriviroc Suppresses and Reverses Steatohepatitis by Regulating Macrophage Infiltration and M2 Polarization in Mice.","authors":"Guanliang Chen, Yanwen Yu, Yuqin Zhu, Mayumi Nagashimada, Yajiao Wang, Naoto Nagata, Liang Xu","doi":"10.1210/endocr/bqae069","DOIUrl":"10.1210/endocr/bqae069","url":null,"abstract":"<p><p>The inhibition of hepatic macrophage and Kupfer cell recruitment and activation is a potential strategy for treating insulin resistance and nonalcoholic steatohepatitis (NASH). Cenicriviroc (CVC), a dual C-C chemokine receptor 2 (CCR2) and CCR5 antagonist, has shown antifibrotic activity in murine models of NASH and has been evaluated in clinical trials on patients with NASH. This study investigated the effects of CVC on macrophage infiltration and polarization in a lipotoxic model of NASH. C57BL/6 mice were fed a high-cholesterol, high-fat (CL) diet or a CL diet containing 0.015% CVC (CL + CVC) for 12 weeks. Macrophage recruitment and activation were assayed by immunohistochemistry and flow cytometry. CVC supplementation attenuated excessive hepatic lipid accumulation and peroxidation and alleviated glucose intolerance and hyperinsulinemia in the mice that were fed the CL diet. Flow cytometry analysis revealed that compared with the CL group, mice fed the CL + CVC diet had fewer M1-like macrophages, more M2-like macrophages, and fewer T cell counts, indicating that CVC caused an M2-dominant shift of macrophages in the liver. Similarly, CVC decreased lipopolysaccharide-stimulated M1-like macrophage activation, whereas it increased interleukin-4-induced M2-type macrophage polarization in vitro. In addition, CVC attenuated hepatic fibrosis by repressing hepatic stellate cell activation. Lastly, CVC reversed insulin resistance as well as steatosis, inflammation, and fibrosis of the liver in mice with pre-existing NASH. In conclusion, CVC prevented and reversed hepatic steatosis, insulin resistance, inflammation, and fibrogenesis in the liver of NASH mice via M2 macrophage polarization.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141305727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C-type natriuretic peptide (CNP) plays a crucial role in enhancing endochondral bone growth and holds promise as a therapeutic agent for impaired skeletal growth. To overcome CNP's short half-life, we explored the potential of dampening its clearance system. Neprilysin (NEP) is an endopeptidase responsible for catalyzing the degradation of CNP. Thus, we investigated the effects of NEP inhibition on skeletal growth by administering sacubitril, a NEP inhibitor, to C57BL/6 mice. Remarkably, we observed a dose-dependent skeletal overgrowth phenotype in mice treated with sacubitril. Histological analysis of the growth plate revealed a thickening of the hypertrophic and proliferative zones, mirroring the changes induced by CNP administration. The promotion of skeletal growth observed in wild-type mice treated with sacubitril was nullified by the knockout of cartilage-specific natriuretic peptide receptor B (NPR-B). Notably, sacubitril promoted skeletal growth in mice only at 3 to 4 weeks of age, a period when endogenous CNP and NEP expression was higher in the lumbar vertebrae. Additionally, sacubitril facilitated endochondral bone growth in organ culture experiments using tibial explants from fetal mice. These findings suggest that NEP inhibition significantly promotes skeletal growth via the CNP/NPR-B pathway, warranting further investigations for potential applications in people with short stature.
{"title":"Neprilysin Inhibition Promotes Skeletal Growth via the CNP/NPR-B Pathway.","authors":"Takuro Hakata, Yohei Ueda, Takafumi Yamashita, Ichiro Yamauchi, Daisuke Kosugi, Taku Sugawa, Haruka Fujita, Kentaro Okamoto, Toshihito Fujii, Daisuke Taura, Akihiro Yasoda, Haruhiko Akiyama, Nobuya Inagaki","doi":"10.1210/endocr/bqae058","DOIUrl":"10.1210/endocr/bqae058","url":null,"abstract":"<p><p>C-type natriuretic peptide (CNP) plays a crucial role in enhancing endochondral bone growth and holds promise as a therapeutic agent for impaired skeletal growth. To overcome CNP's short half-life, we explored the potential of dampening its clearance system. Neprilysin (NEP) is an endopeptidase responsible for catalyzing the degradation of CNP. Thus, we investigated the effects of NEP inhibition on skeletal growth by administering sacubitril, a NEP inhibitor, to C57BL/6 mice. Remarkably, we observed a dose-dependent skeletal overgrowth phenotype in mice treated with sacubitril. Histological analysis of the growth plate revealed a thickening of the hypertrophic and proliferative zones, mirroring the changes induced by CNP administration. The promotion of skeletal growth observed in wild-type mice treated with sacubitril was nullified by the knockout of cartilage-specific natriuretic peptide receptor B (NPR-B). Notably, sacubitril promoted skeletal growth in mice only at 3 to 4 weeks of age, a period when endogenous CNP and NEP expression was higher in the lumbar vertebrae. Additionally, sacubitril facilitated endochondral bone growth in organ culture experiments using tibial explants from fetal mice. These findings suggest that NEP inhibition significantly promotes skeletal growth via the CNP/NPR-B pathway, warranting further investigations for potential applications in people with short stature.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140944561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emily A McGlade, Jiude Mao, Kalli K Stephens, Andrew M Kelleher, Lisette A Maddison, Miranda L Bernhardt, Francesco J DeMayo, John P Lydon, Wipawee Winuthayanon
The epithelial cell lining of the oviduct plays an important role in oocyte pickup, sperm migration, preimplantation embryo development, and embryo transport. The oviduct epithelial cell layer comprises ciliated and nonciliated secretory cells. The ciliary function has been shown to support gamete and embryo movement in the oviduct, yet secretory cell function has not been well characterized. Therefore, our goal was to generate a secretory cell-specific Cre recombinase mouse model to study the role of the oviductal secretory cells. A knock-in mouse model, Ovgp1Cre:eGFP, was created by expressing Cre from the endogenous Ovgp1 (oviductal glycoprotein 1) locus, with enhanced green fluorescent protein (eGFP) as a reporter. EGFP signals were strongly detected in the secretory epithelial cells of the oviducts at estrus in adult Ovgp1Cre:eGFP mice. Signals were also detected in the ovarian stroma, uterine stroma, vaginal epithelial cells, epididymal epithelial cells, and elongated spermatids. To validate recombinase activity, progesterone receptor (PGR) expression was ablated using the Ovgp1Cre:eGFP; Pgrf/f mouse model. Surprisingly, the deletion was restricted to the epithelial cells of the uterotubal junction (UTJ) region of Ovgp1Cre:eGFP; Pgrf/f oviducts. Deletion of Pgr in the epithelial cells of the UTJ region had no effect on female fecundity. In summary, we found that eGFP signals were likely specific to secretory epithelial cells in all regions of the oviduct. However, due to a potential target-specific Cre activity, validation of appropriate recombination and expression of the gene(s) of interest is absolutely required to confirm efficient deletion when generating conditional knockout mice using the Ovgp1Cre:eGFP line.
{"title":"Generation of Oviductal Glycoprotein 1 Cre Mouse Model for the Study of Secretory Epithelial Cells of the Oviduct.","authors":"Emily A McGlade, Jiude Mao, Kalli K Stephens, Andrew M Kelleher, Lisette A Maddison, Miranda L Bernhardt, Francesco J DeMayo, John P Lydon, Wipawee Winuthayanon","doi":"10.1210/endocr/bqae070","DOIUrl":"10.1210/endocr/bqae070","url":null,"abstract":"<p><p>The epithelial cell lining of the oviduct plays an important role in oocyte pickup, sperm migration, preimplantation embryo development, and embryo transport. The oviduct epithelial cell layer comprises ciliated and nonciliated secretory cells. The ciliary function has been shown to support gamete and embryo movement in the oviduct, yet secretory cell function has not been well characterized. Therefore, our goal was to generate a secretory cell-specific Cre recombinase mouse model to study the role of the oviductal secretory cells. A knock-in mouse model, Ovgp1Cre:eGFP, was created by expressing Cre from the endogenous Ovgp1 (oviductal glycoprotein 1) locus, with enhanced green fluorescent protein (eGFP) as a reporter. EGFP signals were strongly detected in the secretory epithelial cells of the oviducts at estrus in adult Ovgp1Cre:eGFP mice. Signals were also detected in the ovarian stroma, uterine stroma, vaginal epithelial cells, epididymal epithelial cells, and elongated spermatids. To validate recombinase activity, progesterone receptor (PGR) expression was ablated using the Ovgp1Cre:eGFP; Pgrf/f mouse model. Surprisingly, the deletion was restricted to the epithelial cells of the uterotubal junction (UTJ) region of Ovgp1Cre:eGFP; Pgrf/f oviducts. Deletion of Pgr in the epithelial cells of the UTJ region had no effect on female fecundity. In summary, we found that eGFP signals were likely specific to secretory epithelial cells in all regions of the oviduct. However, due to a potential target-specific Cre activity, validation of appropriate recombination and expression of the gene(s) of interest is absolutely required to confirm efficient deletion when generating conditional knockout mice using the Ovgp1Cre:eGFP line.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11210311/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141445927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: \"Impact of Ghrelin on Islet Size in Nonpregnant and Pregnant Female Mice\".","authors":"","doi":"10.1210/endocr/bqae073","DOIUrl":"https://doi.org/10.1210/endocr/bqae073","url":null,"abstract":"","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":"165 7","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212662/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141467007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leukocyte cell-derived chemotaxin 2 (LECT2) is a protein initially isolated as a neutrophil chemotactic factor. We previously found that LECT2 is an obesity-associated hepatokine that senses liver fat and induces skeletal muscle insulin resistance. In addition, hepatocyte-derived LECT2 activates macrophage proinflammatory activity by reinforcing the lipopolysaccharide (LPS)-induced c-Jun N-terminal kinase signaling. Based on these findings, we examined the effect of LECT2 deletion on nonalcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/NASH) caused by bacterial translocation. We created the bacterial translocation-mediated NAFLD/NASH model using LECT2 knockout mice (LECT2 KO) with 28 times a low-dose LPS injection under high-fat diet feeding conditions. LECT2 deletion exacerbated steatosis and significantly reduced p38 phosphorylation in the liver. In addition, LECT2 deletion increased macrophage infiltration with decreased M1/M2 ratios. LECT2 might contribute to protecting against lipid accumulation and macrophage activation in the liver under pathological conditions, which might be accomplished via p38 phosphorylation. This study provides novel aspects of LECT2 in the bacterial translocation-mediated NAFLD/NASH model.
{"title":"LECT2 Deletion Exacerbates Liver Steatosis and Macrophage Infiltration in a Male Mouse Model of LPS-mediated NASH.","authors":"Ryota Tanida, Hisanori Goto, Hiroaki Takayama, Yujiro Nakano, Hein Ko Oo, Cynthia Monserrat Galicia-Medina, Kenta Takahashi, Kiyo-Aki Ishii, Arman Syah Goli, Takashi Matsuzaka, Kenichi Harada, Toshinari Takamura","doi":"10.1210/endocr/bqae059","DOIUrl":"10.1210/endocr/bqae059","url":null,"abstract":"<p><p>Leukocyte cell-derived chemotaxin 2 (LECT2) is a protein initially isolated as a neutrophil chemotactic factor. We previously found that LECT2 is an obesity-associated hepatokine that senses liver fat and induces skeletal muscle insulin resistance. In addition, hepatocyte-derived LECT2 activates macrophage proinflammatory activity by reinforcing the lipopolysaccharide (LPS)-induced c-Jun N-terminal kinase signaling. Based on these findings, we examined the effect of LECT2 deletion on nonalcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/NASH) caused by bacterial translocation. We created the bacterial translocation-mediated NAFLD/NASH model using LECT2 knockout mice (LECT2 KO) with 28 times a low-dose LPS injection under high-fat diet feeding conditions. LECT2 deletion exacerbated steatosis and significantly reduced p38 phosphorylation in the liver. In addition, LECT2 deletion increased macrophage infiltration with decreased M1/M2 ratios. LECT2 might contribute to protecting against lipid accumulation and macrophage activation in the liver under pathological conditions, which might be accomplished via p38 phosphorylation. This study provides novel aspects of LECT2 in the bacterial translocation-mediated NAFLD/NASH model.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":4.8,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}