Pub Date : 2021-09-01Epub Date: 2021-07-20DOI: 10.5620/eaht.2021015
Seong Yong Jang, Myeong Kyu Park, Jae Min Im, Hae Sung Park, Heung Sik Seo, Hee Ju Park, Sung Soon Nah
The present study was performed to screen in vitro potential acute inhalation toxicity using an EpiAirwayTM tissue model (human tracheal/bronchial tissue) for the nano-sized titanium dioxide, GST manufactured as a photocatalyst through of sludge recycling and to compare with P-25 a commercialized photocatalytic material. According to the protocol provided by in vitro tissue manufacturer, the GST was exposure to the tissue for 3 hours in 450, 500, 650, 850 mg/mL concentration after preliminary dose range finding study and then tissue viability (%, IC75) was calculated using the MTT assay. Besides, the histopathological observation was performed to compare to the MTT assay. As a result of study, IC75 could not be confirmed at 850 mg/mL in both GST and P-25 and the grade was confirmed to be IC75> 600 mg/mL in vitro model tissue category. Therefore, it was considered that the GHS category could be classified as 'No classification' in screening method for potential acute inhalation toxicity. Also, not the morphological effects of epithelial cells in tissue model were observed compared with the vehicle control and histological findings were similar to the results of MTT Viability assay. Based on these results, the potential acute inhalation toxicity for GST produced through sludge recycling using in vitro tissue model inhalation toxicity showed that it could be non-hazardous substance. However, further study (in vivo study, etc.) is thought to be needed to ascertain whether GST is a toxic effect or safe.
{"title":"In vitro acute inhalation toxicity for TiO2 (GST) using 3D human tissue model (EpiAirwayTM).","authors":"Seong Yong Jang, Myeong Kyu Park, Jae Min Im, Hae Sung Park, Heung Sik Seo, Hee Ju Park, Sung Soon Nah","doi":"10.5620/eaht.2021015","DOIUrl":"https://doi.org/10.5620/eaht.2021015","url":null,"abstract":"<p><p>The present study was performed to screen in vitro potential acute inhalation toxicity using an EpiAirwayTM tissue model (human tracheal/bronchial tissue) for the nano-sized titanium dioxide, GST manufactured as a photocatalyst through of sludge recycling and to compare with P-25 a commercialized photocatalytic material. According to the protocol provided by in vitro tissue manufacturer, the GST was exposure to the tissue for 3 hours in 450, 500, 650, 850 mg/mL concentration after preliminary dose range finding study and then tissue viability (%, IC75) was calculated using the MTT assay. Besides, the histopathological observation was performed to compare to the MTT assay. As a result of study, IC75 could not be confirmed at 850 mg/mL in both GST and P-25 and the grade was confirmed to be IC75> 600 mg/mL in vitro model tissue category. Therefore, it was considered that the GHS category could be classified as 'No classification' in screening method for potential acute inhalation toxicity. Also, not the morphological effects of epithelial cells in tissue model were observed compared with the vehicle control and histological findings were similar to the results of MTT Viability assay. Based on these results, the potential acute inhalation toxicity for GST produced through sludge recycling using in vitro tissue model inhalation toxicity showed that it could be non-hazardous substance. However, further study (in vivo study, etc.) is thought to be needed to ascertain whether GST is a toxic effect or safe.</p>","PeriodicalId":11867,"journal":{"name":"Environmental analysis, health and toxicology","volume":"36 3","pages":"e2021015-0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f0/5c/eaht-36-3-e2021015.PMC8598406.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39278489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-01Epub Date: 2021-08-12DOI: 10.5620/eaht.2021019
Ja Kyung Seol, Myeongkyu Park, Jae Min Im, Heung Sik Seo, Hee Ju Park, Sung Soon Nah
TiO2 was a photocatalyst that used to the most common product because of the high efficiency. TiO2 (P-25, commercial nanomaterial product) is the most typical photocatalyst product and TiO2 (GST) was a sludge recycling product. This study was reported to evaluate an acute toxicity of TiO2 (P-25 and GST) according to OECD test guideline 402 and 423 in Sprague-Dawley (SD) female rats via route of oral and dermal. There was investigated the lethal dose (LD50), and mortality, clinical signs, body weight changes and gross findings were continually monitored for 14 days following the single administration. After administration, TiO2 (P-25) was calculated that LD50 was considered to be a dose of over 2000 mg/kg body weight for both different route of exposure, and TiO2 (GST) was the same. Other items were no observed an adverse effect between P-25 and GST; no mortality and clinical signs, accidental body weight loss, no gross findings. On the basis of the above results, the toxicity of the GST was almost equal to that of the commercial product, P-25 and there was no toxicological evidence.
{"title":"Acute toxicity assessment for TiO2 photocatalyst (GST) made from wastewater using TiCl4 in rat.","authors":"Ja Kyung Seol, Myeongkyu Park, Jae Min Im, Heung Sik Seo, Hee Ju Park, Sung Soon Nah","doi":"10.5620/eaht.2021019","DOIUrl":"10.5620/eaht.2021019","url":null,"abstract":"<p><p>TiO2 was a photocatalyst that used to the most common product because of the high efficiency. TiO2 (P-25, commercial nanomaterial product) is the most typical photocatalyst product and TiO2 (GST) was a sludge recycling product. This study was reported to evaluate an acute toxicity of TiO2 (P-25 and GST) according to OECD test guideline 402 and 423 in Sprague-Dawley (SD) female rats via route of oral and dermal. There was investigated the lethal dose (LD50), and mortality, clinical signs, body weight changes and gross findings were continually monitored for 14 days following the single administration. After administration, TiO2 (P-25) was calculated that LD50 was considered to be a dose of over 2000 mg/kg body weight for both different route of exposure, and TiO2 (GST) was the same. Other items were no observed an adverse effect between P-25 and GST; no mortality and clinical signs, accidental body weight loss, no gross findings. On the basis of the above results, the toxicity of the GST was almost equal to that of the commercial product, P-25 and there was no toxicological evidence.</p>","PeriodicalId":11867,"journal":{"name":"Environmental analysis, health and toxicology","volume":"36 3","pages":"e2021019-0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c8/30/eaht-36-3-e2021019.PMC8598407.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39301324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-01Epub Date: 2021-09-27DOI: 10.5620/eaht.2021021
Juyoung Park, Handule Lee, Kwangsik Park
Some chemicals commonly used in personal care products, household items, food vessels, cosmetics, and other consumer products are potentially harmful, and several reviews of epidemiological studies have suggested the associations between the chemical exposure from consumer products, and respiratory diseases, skin sensitization, and reproductive problems. Therefore, risk assessment is essential for management of consumer products safety. Necessarily, the estimation of human exposure is an essential step in risk assessment, and the absorption rate of those chemicals via the gastrointestinal tract, respiratory tract, and skin are very critical in determining the internal dose of the exposed chemicals. In this study, parallel artificial membrane permeability assays (PAMPA) for the gastrointestinal tract and skin were performed to evaluate the permeability of parabens (4-hydroxybenzoic acid, methyl-, propyl-, and butyl paraben), bisphenols (bisphenol A, bisphenol F, and bisphenol S), isothiazolinones (methyl-, chloromethyl-, benz-, octyl-, and dichlorooctyl isothiazolinone), and phthalates [diethyl-, dibutyl-, Di-isononyl-, and bis(2-ethylhexyl) phthalate]. Lipid solubility of test chemicals indicated by log P values was shown as the most critical factor and showed a positive association with the permeability of parabens, bisphenols, and isothiazolinones in PAMPA assay. However, phthalate showed a reverse-association between lipophilicity and permeability. The permeability of all the tested chemicals was higher in the gastrointestinal tract membrane than in the skin membrane. The pH in donor solution did not show significant effects on the permeability in all the chemicals, except the chemicals with a free hydrophilic moiety in their chemical structures.
{"title":"Gastrointestinal tract and skin permeability of chemicals in consumer products using parallel artificial membrane permeability assay (PAMPA).","authors":"Juyoung Park, Handule Lee, Kwangsik Park","doi":"10.5620/eaht.2021021","DOIUrl":"https://doi.org/10.5620/eaht.2021021","url":null,"abstract":"<p><p>Some chemicals commonly used in personal care products, household items, food vessels, cosmetics, and other consumer products are potentially harmful, and several reviews of epidemiological studies have suggested the associations between the chemical exposure from consumer products, and respiratory diseases, skin sensitization, and reproductive problems. Therefore, risk assessment is essential for management of consumer products safety. Necessarily, the estimation of human exposure is an essential step in risk assessment, and the absorption rate of those chemicals via the gastrointestinal tract, respiratory tract, and skin are very critical in determining the internal dose of the exposed chemicals. In this study, parallel artificial membrane permeability assays (PAMPA) for the gastrointestinal tract and skin were performed to evaluate the permeability of parabens (4-hydroxybenzoic acid, methyl-, propyl-, and butyl paraben), bisphenols (bisphenol A, bisphenol F, and bisphenol S), isothiazolinones (methyl-, chloromethyl-, benz-, octyl-, and dichlorooctyl isothiazolinone), and phthalates [diethyl-, dibutyl-, Di-isononyl-, and bis(2-ethylhexyl) phthalate]. Lipid solubility of test chemicals indicated by log P values was shown as the most critical factor and showed a positive association with the permeability of parabens, bisphenols, and isothiazolinones in PAMPA assay. However, phthalate showed a reverse-association between lipophilicity and permeability. The permeability of all the tested chemicals was higher in the gastrointestinal tract membrane than in the skin membrane. The pH in donor solution did not show significant effects on the permeability in all the chemicals, except the chemicals with a free hydrophilic moiety in their chemical structures.</p>","PeriodicalId":11867,"journal":{"name":"Environmental analysis, health and toxicology","volume":"36 3","pages":"e2021021-0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/dd/6a/eaht-36-3-e2021021.PMC8598401.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39465935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-09-01Epub Date: 2021-09-28DOI: 10.5620/eaht.2021022
Sang Ho Kim, Myeong Kyu Park, Ja Kyung Seol, Jae Min Im, Hae Sung Park, Heung Sik Seo, Hee Ju Park, Sung Soon Nah
TiO2 NPs photocatalyst is widely used in a variety of applications and products in the environmental and energy fields, including self-cleaning surfaces, air and water purification systems, sterilization, hydrogen evolution, and photoelectrochemical conversion. The possible biological and safety effects of TiO2 dermal exposure and absorption have not been well studied and more investigations on the potential health hazards of the TiO2 are needed. This study aimed to investigate potential effect of local lesions (eye and skin irritation/corrosion) for new TiO2 material powder, GST produced through sludge recycling of the sewage treatment plant in according to the OECD test guideline (TG 404, 405) and imaging evaluation (micro-computed tomography analysis), histopathology examination. Also, P-25, commercial photocatalyst was used to compare with GST. For the eye or skin irritation/corrosion test, the test substances (GST, P-25) showed no irritation/corrosion for local lesions and the GHS category was identified as a "No hazard class". The imaging analysis indicated that GST did not penetrate or distribute in the local lesions (eye, skin) and the treatment-related effect was not observed in histopathology. Therefore, the present study revealed that new TiO2 powder, GST was considered to be no potential effects (irritation/corrosion), penetration or distribution in the local lesions (eye, skin).
{"title":"Evaluation of potential eye or skin irritation/corrosion in rabbit exposed to TiO2 photocatalyst (GST).","authors":"Sang Ho Kim, Myeong Kyu Park, Ja Kyung Seol, Jae Min Im, Hae Sung Park, Heung Sik Seo, Hee Ju Park, Sung Soon Nah","doi":"10.5620/eaht.2021022","DOIUrl":"10.5620/eaht.2021022","url":null,"abstract":"<p><p>TiO2 NPs photocatalyst is widely used in a variety of applications and products in the environmental and energy fields, including self-cleaning surfaces, air and water purification systems, sterilization, hydrogen evolution, and photoelectrochemical conversion. The possible biological and safety effects of TiO2 dermal exposure and absorption have not been well studied and more investigations on the potential health hazards of the TiO2 are needed. This study aimed to investigate potential effect of local lesions (eye and skin irritation/corrosion) for new TiO2 material powder, GST produced through sludge recycling of the sewage treatment plant in according to the OECD test guideline (TG 404, 405) and imaging evaluation (micro-computed tomography analysis), histopathology examination. Also, P-25, commercial photocatalyst was used to compare with GST. For the eye or skin irritation/corrosion test, the test substances (GST, P-25) showed no irritation/corrosion for local lesions and the GHS category was identified as a \"No hazard class\". The imaging analysis indicated that GST did not penetrate or distribute in the local lesions (eye, skin) and the treatment-related effect was not observed in histopathology. Therefore, the present study revealed that new TiO2 powder, GST was considered to be no potential effects (irritation/corrosion), penetration or distribution in the local lesions (eye, skin).</p>","PeriodicalId":11867,"journal":{"name":"Environmental analysis, health and toxicology","volume":"36 3","pages":"e2021022-0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/56/d1/eaht-36-3-e2021022.PMC8598404.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39465936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methyl isocyanate (MIC), a low molecular weight synthetic aliphatic compound, having an isocyanate group (-NCO), has industrial application. In this study, the effects of methyl isocyanate and its mechanism on outer membrane protein of Escherichia coli were observed using experimental and computational methods. In vitro exposure of N-succinimidyl N-methylcarbamate (NSNM) a synthetic analogue of MIC on E. coli to a final concentration of 2 mM was found to affect the growth curve pattern and changes in cell morphology. Molecular docking studies of MIC and NSNM with E. coli outer membrane protein (OmpW, OmpX, OmpF OmpA), and periplasmic domain (PAL) were performed. The in-silico results revealed that outer membrane protein OmpF showed the highest negative binding energy, i.e. ∆G -4.11 kcal/mole and ∆G -3.19 kcal/mole by NSNM and MIC as compared to other proteins. Our study concludes that methyl isocyanate retains lethal toxicity which leads to cell death due to the membrane protein damage of E. coli membrane.
{"title":"Effects of carbamate pesticides intermediates on Escherichia coli membrane architecture: An in vitro and in silico approach.","authors":"Pushpendra Singh, Manish Kumar Tripathi, Mohammad Yasir, Ashish Ranjan, Rahul Shrivastava","doi":"10.5620/eaht.2021020","DOIUrl":"https://doi.org/10.5620/eaht.2021020","url":null,"abstract":"<p><p>Methyl isocyanate (MIC), a low molecular weight synthetic aliphatic compound, having an isocyanate group (-NCO), has industrial application. In this study, the effects of methyl isocyanate and its mechanism on outer membrane protein of Escherichia coli were observed using experimental and computational methods. In vitro exposure of N-succinimidyl N-methylcarbamate (NSNM) a synthetic analogue of MIC on E. coli to a final concentration of 2 mM was found to affect the growth curve pattern and changes in cell morphology. Molecular docking studies of MIC and NSNM with E. coli outer membrane protein (OmpW, OmpX, OmpF OmpA), and periplasmic domain (PAL) were performed. The in-silico results revealed that outer membrane protein OmpF showed the highest negative binding energy, i.e. ∆G -4.11 kcal/mole and ∆G -3.19 kcal/mole by NSNM and MIC as compared to other proteins. Our study concludes that methyl isocyanate retains lethal toxicity which leads to cell death due to the membrane protein damage of E. coli membrane.</p>","PeriodicalId":11867,"journal":{"name":"Environmental analysis, health and toxicology","volume":"36 3","pages":"e2021020-0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a5/c2/eaht-36-3-e2021020.PMC8598408.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39340824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The present study was aimed to compare the effects of exposure to noise, vibration, lighting, and microwave on male mice' sperm parameters. The mice were randomly assigned to five groups of eight, which comprised of the unexposed group and exposure groups including the lighting (1000 lux), noise (100 dB(A)), vibration (acceleration of 1.2 m/s2) and microwave (power density of 5 watts). The exposure groups were subjected to the four agents for 8 hours a day, 5 days a week during a 2-week period. Semen analysis were done according to World Health Organization guidelines. The highest significant mean difference in sperm count (-1.35×106/mL) had being observed between the microwave group and the control one (P=0.001). The highest difference in immotile percent (25.88 %) had being observed between the noise group and the control one (P=0.001). The highest difference in normal morphology (-27.06 %) observed between the lighting exposure group and the control group (P=0.001). The four agents can cause changes in different sperm parameters, however for definite conclusion; more laboratory and field studies are required. In total, exposure to microwave has had the greatest effect on sperm count and exposure to light has had the greatest effect on normal morphology and non-progressive motility. Moreover, exposure to noise has had the greatest effect on progressive motility and immotile percent, respectively.
{"title":"Comparison of mice' sperm parameters exposed to some hazardous physical agents.","authors":"Mohammad-Bagher Abdollahi, Somayeh Farhang Dehghan, Faezeh Abasi Balochkhaneh, Manouchehr Ahmadi Moghadam, Hamzeh Mohammadi","doi":"10.5620/eaht.2021013","DOIUrl":"10.5620/eaht.2021013","url":null,"abstract":"<p><p>The present study was aimed to compare the effects of exposure to noise, vibration, lighting, and microwave on male mice' sperm parameters. The mice were randomly assigned to five groups of eight, which comprised of the unexposed group and exposure groups including the lighting (1000 lux), noise (100 dB(A)), vibration (acceleration of 1.2 m/s2) and microwave (power density of 5 watts). The exposure groups were subjected to the four agents for 8 hours a day, 5 days a week during a 2-week period. Semen analysis were done according to World Health Organization guidelines. The highest significant mean difference in sperm count (-1.35×106/mL) had being observed between the microwave group and the control one (P=0.001). The highest difference in immotile percent (25.88 %) had being observed between the noise group and the control one (P=0.001). The highest difference in normal morphology (-27.06 %) observed between the lighting exposure group and the control group (P=0.001). The four agents can cause changes in different sperm parameters, however for definite conclusion; more laboratory and field studies are required. In total, exposure to microwave has had the greatest effect on sperm count and exposure to light has had the greatest effect on normal morphology and non-progressive motility. Moreover, exposure to noise has had the greatest effect on progressive motility and immotile percent, respectively.</p>","PeriodicalId":11867,"journal":{"name":"Environmental analysis, health and toxicology","volume":"36 3","pages":"e2021013-0"},"PeriodicalIF":0.0,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/90/a6/eaht-36-3-e2021013.PMC8598403.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39278487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-01Epub Date: 2021-05-24DOI: 10.5620/eaht.2021008
Valentine Ifenna Onwukeme, Victor Chukwuemeka Eze
Discriminating contaminant sources is crucial for pollution control. The study aimed at identifying the source(s) of heavy metals in active dumpsite soils from selected areas in Southeastern Nigeria using statistical tools. The dumpsites were Enyimba dumpsite Aba (dumpsite-1), Okpuno-Egbu dumpsite Nnewi (dumpsite-2), Rice mill dumpsite Abakaliki (dumpsite-3) and Nekede dumpsite Owerri (dumpsite-4) in Abia, Anambra, Ebonyi and Imo State respectively. After standard sampling, elemental analysis was carried out using an energy dispersive x-ray fluorescence spectrometer; Chromium (Cr), Manganese (Mn), Cobalt (Co), Iron (Fe), Nickel (Ni), Copper (Cu), Zinc (Zn), Arsenic (As), Lead (Pb) and Cadmium (Cd) were quantified and results showed they were present in high concentrations above control and standard values set by the National Environmental Standards and Regulations Enforcement Agency (NESREA) and the Food and Agriculture Organization of the United Nations (FAO) / World Health Organization (WHO). Metals investigated exhibited variable correlations among themselves suggesting potential multi-element contamination, while soil organic matter (OM) and pH displayed both significant positive and negative influence on the metal availability in the studied soils. Test of significance of the observed correlation were positive and significant (r > 0.9 at p < 0.05/0.01) for Cr/Co, Cr/Fe, Mn/Co, Co/Fe, Cu/Zn, Zn/Pb, Cu/As, Cu/Pb, Zn/As, As/Pb in dumpsite-1; in dumpsite-2, only Ni/Cu; in dumpsite-3, Fe/OM and Cd/OM while in dumpsite-4,Co/Fe, Cu/As, Cu/Pb, Zn/Cd, Ni/OM, and As/Pb. Hierarchical cluster analysis (HCA) and Principal component analysis (PCA) extracted two to three components/groups based on square Euclidean distance and eigenvalues > 1, confirming sources to be from organic pigments in plastics, scrap metals and incinerated biodegradable wastes. This study concludes that statistical methods can provide a scientific basis for monitoring heavy metals accumulation in dumpsite soils.
{"title":"Identification of heavy metals source within selected active dumpsites in southeastern Nigeria.","authors":"Valentine Ifenna Onwukeme, Victor Chukwuemeka Eze","doi":"10.5620/eaht.2021008","DOIUrl":"https://doi.org/10.5620/eaht.2021008","url":null,"abstract":"<p><p>Discriminating contaminant sources is crucial for pollution control. The study aimed at identifying the source(s) of heavy metals in active dumpsite soils from selected areas in Southeastern Nigeria using statistical tools. The dumpsites were Enyimba dumpsite Aba (dumpsite-1), Okpuno-Egbu dumpsite Nnewi (dumpsite-2), Rice mill dumpsite Abakaliki (dumpsite-3) and Nekede dumpsite Owerri (dumpsite-4) in Abia, Anambra, Ebonyi and Imo State respectively. After standard sampling, elemental analysis was carried out using an energy dispersive x-ray fluorescence spectrometer; Chromium (Cr), Manganese (Mn), Cobalt (Co), Iron (Fe), Nickel (Ni), Copper (Cu), Zinc (Zn), Arsenic (As), Lead (Pb) and Cadmium (Cd) were quantified and results showed they were present in high concentrations above control and standard values set by the National Environmental Standards and Regulations Enforcement Agency (NESREA) and the Food and Agriculture Organization of the United Nations (FAO) / World Health Organization (WHO). Metals investigated exhibited variable correlations among themselves suggesting potential multi-element contamination, while soil organic matter (OM) and pH displayed both significant positive and negative influence on the metal availability in the studied soils. Test of significance of the observed correlation were positive and significant (r > 0.9 at p < 0.05/0.01) for Cr/Co, Cr/Fe, Mn/Co, Co/Fe, Cu/Zn, Zn/Pb, Cu/As, Cu/Pb, Zn/As, As/Pb in dumpsite-1; in dumpsite-2, only Ni/Cu; in dumpsite-3, Fe/OM and Cd/OM while in dumpsite-4,Co/Fe, Cu/As, Cu/Pb, Zn/Cd, Ni/OM, and As/Pb. Hierarchical cluster analysis (HCA) and Principal component analysis (PCA) extracted two to three components/groups based on square Euclidean distance and eigenvalues > 1, confirming sources to be from organic pigments in plastics, scrap metals and incinerated biodegradable wastes. This study concludes that statistical methods can provide a scientific basis for monitoring heavy metals accumulation in dumpsite soils.</p>","PeriodicalId":11867,"journal":{"name":"Environmental analysis, health and toxicology","volume":"36 2","pages":"e2021008-0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5f/df/eaht-36-2-e2021008.PMC8421754.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39234455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-01Epub Date: 2021-06-16DOI: 10.5620/eaht.2021012
Dongseok Seo
Dimethyl carbonate (DMC) has been used as a reagent in methylation reactions, can be used as paints, coatings, and adhesives, and is a chemical that is being used increasing, which poses a health hazard to workers who handle it. So, the toxic reactions of F344 rats with inhalation exposure to 600, 1600, and 5000 ppm concentrations for 6 hours, 5 days a week, 4 weeks was evaluated. During the exposure period, general signs were observed, body weight and food consumption were measured, and hematologic and blood biochemical tests, organ weight measurements, necropsy, and histopathological examination were performed after the end of exposure. During the exposure period, dimethyl carbonate was exposed to an average of 599.26±31.40, 1614.64±80.79 and 5106.83±297.13 ppm in the chambers of the T1, T2 and T3 test groups, respectively. During the test period, general signs, weight change, food consumption, organ weight measurement, necropsy, and histopathological examination did not show any effects related to exposure to the test substance. However, as a result of blood and blood biochemical tests, an increase in AST, ALP, APTT, and PT levels was observed. From these results, it is judged that liver is the target organ when repeated inhalation exposure of dimethyl carbonate, the test substance, for 4 weeks, and the exposure-related effects of the test substance were observed at PT and ALP levels up to 600 ppm exposure concentration, but NOEC (No Observed Effect Concentration) was determined to be less than 600 ppm because it was not judged as an adverse effect.
{"title":"Toxicity assessment of dimethyl carbonate following 28 days repeated inhalation exposure.","authors":"Dongseok Seo","doi":"10.5620/eaht.2021012","DOIUrl":"https://doi.org/10.5620/eaht.2021012","url":null,"abstract":"<p><p>Dimethyl carbonate (DMC) has been used as a reagent in methylation reactions, can be used as paints, coatings, and adhesives, and is a chemical that is being used increasing, which poses a health hazard to workers who handle it. So, the toxic reactions of F344 rats with inhalation exposure to 600, 1600, and 5000 ppm concentrations for 6 hours, 5 days a week, 4 weeks was evaluated. During the exposure period, general signs were observed, body weight and food consumption were measured, and hematologic and blood biochemical tests, organ weight measurements, necropsy, and histopathological examination were performed after the end of exposure. During the exposure period, dimethyl carbonate was exposed to an average of 599.26±31.40, 1614.64±80.79 and 5106.83±297.13 ppm in the chambers of the T1, T2 and T3 test groups, respectively. During the test period, general signs, weight change, food consumption, organ weight measurement, necropsy, and histopathological examination did not show any effects related to exposure to the test substance. However, as a result of blood and blood biochemical tests, an increase in AST, ALP, APTT, and PT levels was observed. From these results, it is judged that liver is the target organ when repeated inhalation exposure of dimethyl carbonate, the test substance, for 4 weeks, and the exposure-related effects of the test substance were observed at PT and ALP levels up to 600 ppm exposure concentration, but NOEC (No Observed Effect Concentration) was determined to be less than 600 ppm because it was not judged as an adverse effect.</p>","PeriodicalId":11867,"journal":{"name":"Environmental analysis, health and toxicology","volume":"36 2","pages":"e2021012-0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/41/5d/eaht-36-2-e2021012.PMC8421751.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39234459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-01Epub Date: 2021-06-07DOI: 10.5620/eaht.2021009
Handule Lee, Juyoung Park, Kwangsik Park
Previous research studies on the toxicity of polyhexamethylene guanidine (PHMG) as a humidifier disinfectant majorly focused on lung fibrosis. Considering that disinfectants in humidifiers are released in aerosol form, the eyes are directly exposed and highly vulnerable to the detrimental effects of the PHMG. Therefore, in the present study we investigated the adverse effects of PHMG on the eyes; considering fibrosis as a manifestation of PHMG toxicity in the eye, we evaluated fibrosis-related biomarkers in cultured Statens Seruminstitut Rabbit Cornea (SIRC) cells. Cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, fibrosis-related biomarkers were evaluated through polymerase chain reaction (PCR) and immunoblotting, and oxidative stress was evaluated using 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA). Polyhexamethylene guanidine showed cytotoxicity in a time and concentration-dependent manner. Fibrosis related biomarkers including transforming growth factor-β (TGF-β), α-smooth muscle actin (α-SMA), matrix metalloproteinase (MMP), tissue inhibitor of metalloproteinase (TIMP) and hemeoxygenase-1 (HO-1) increased in both gene and protein levels. Oxidative stress also increased in the PHMG-treated cultured cells. The findings of the present study suggest that PHMG could cause toxicity in the eye as manifested by fibrosis.
{"title":"Fibrosis as a result of polyhexamethylene guanide exposure in cultured Statens Seruminstitut Rabbit Cornea (SIRC) cells.","authors":"Handule Lee, Juyoung Park, Kwangsik Park","doi":"10.5620/eaht.2021009","DOIUrl":"https://doi.org/10.5620/eaht.2021009","url":null,"abstract":"<p><p>Previous research studies on the toxicity of polyhexamethylene guanidine (PHMG) as a humidifier disinfectant majorly focused on lung fibrosis. Considering that disinfectants in humidifiers are released in aerosol form, the eyes are directly exposed and highly vulnerable to the detrimental effects of the PHMG. Therefore, in the present study we investigated the adverse effects of PHMG on the eyes; considering fibrosis as a manifestation of PHMG toxicity in the eye, we evaluated fibrosis-related biomarkers in cultured Statens Seruminstitut Rabbit Cornea (SIRC) cells. Cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, fibrosis-related biomarkers were evaluated through polymerase chain reaction (PCR) and immunoblotting, and oxidative stress was evaluated using 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA). Polyhexamethylene guanidine showed cytotoxicity in a time and concentration-dependent manner. Fibrosis related biomarkers including transforming growth factor-β (TGF-β), α-smooth muscle actin (α-SMA), matrix metalloproteinase (MMP), tissue inhibitor of metalloproteinase (TIMP) and hemeoxygenase-1 (HO-1) increased in both gene and protein levels. Oxidative stress also increased in the PHMG-treated cultured cells. The findings of the present study suggest that PHMG could cause toxicity in the eye as manifested by fibrosis.</p>","PeriodicalId":11867,"journal":{"name":"Environmental analysis, health and toxicology","volume":"36 2","pages":"e2021009-0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/26/30/eaht-36-2-e2021009.PMC8421752.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39234456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-06-01Epub Date: 2021-06-14DOI: 10.5620/eaht.2021010
Chidi Edbert Duru, Haruna Isiyaku Umar Umar, Ijeoma Akunna Duru, Uchechi Emmanuela Enenebeaku, Lynda Chioma Ngozi-Olehi, Christian Ebere Enyoh
The coronavirus disease of 2019 (COVID-19) has become a global pandemic with rapid rate of transmission and fatalities worldwide. Scientists have been investigating a host of drugs that may be rechanneled to fight this malaise. Thus, in this current computational study we carried out molecular docking experiments to assess the bridging potentials of some commercial drugs such as chloroquine, hydroxychloroquine, lopinavir, ritonavir, nafamostat, camostat, famotidine, umifenovir, nitazoxanide, ivermectin, and fluvoxamine at the interface between human ACE2 and the coronavirus spike glycoprotein complex. This is aimed at ascertaining the ability of these drugs to bridge and prevent the complexing of these two proteins. The crystal structure of human ACE2 and the coronavirus spike glycoprotein complex was retrieved from protein database, while the selected drugs were retrieved from PubChem data base. The proteins and drugs were prepared for docking using Cresset Flare software. The docking was completed via AutoDock Vina module in Python Prescription software. The best hit drugs with each receptor were selected and their molecular interactions were analyzed using BIOVIA's Discovery Studio 2020. The best hit compounds on the human ACE2 were the lopinavir (-10.1 kcal/mol), ritonavir (-8.9 kcal/mol), and nafamostat (-8.7 kcal/mol). Ivermectin, nafamostat, and camostat with binding energy values -9.0 kcal/mol, -7.8 kcal/mol, and -7.4 kcal/mol respectively were the hit drugs on the coronavirus spike glycoprotein. Nafamostat showed a dual bridging potential against ACE2 and spike glycoprotein, and could therefore be a promising lead compound in the prevention and control of this disease.
{"title":"Blocking the interactions between human ACE2 and coronavirus spike glycoprotein by selected drugs: a computational perspective.","authors":"Chidi Edbert Duru, Haruna Isiyaku Umar Umar, Ijeoma Akunna Duru, Uchechi Emmanuela Enenebeaku, Lynda Chioma Ngozi-Olehi, Christian Ebere Enyoh","doi":"10.5620/eaht.2021010","DOIUrl":"https://doi.org/10.5620/eaht.2021010","url":null,"abstract":"<p><p>The coronavirus disease of 2019 (COVID-19) has become a global pandemic with rapid rate of transmission and fatalities worldwide. Scientists have been investigating a host of drugs that may be rechanneled to fight this malaise. Thus, in this current computational study we carried out molecular docking experiments to assess the bridging potentials of some commercial drugs such as chloroquine, hydroxychloroquine, lopinavir, ritonavir, nafamostat, camostat, famotidine, umifenovir, nitazoxanide, ivermectin, and fluvoxamine at the interface between human ACE2 and the coronavirus spike glycoprotein complex. This is aimed at ascertaining the ability of these drugs to bridge and prevent the complexing of these two proteins. The crystal structure of human ACE2 and the coronavirus spike glycoprotein complex was retrieved from protein database, while the selected drugs were retrieved from PubChem data base. The proteins and drugs were prepared for docking using Cresset Flare software. The docking was completed via AutoDock Vina module in Python Prescription software. The best hit drugs with each receptor were selected and their molecular interactions were analyzed using BIOVIA's Discovery Studio 2020. The best hit compounds on the human ACE2 were the lopinavir (-10.1 kcal/mol), ritonavir (-8.9 kcal/mol), and nafamostat (-8.7 kcal/mol). Ivermectin, nafamostat, and camostat with binding energy values -9.0 kcal/mol, -7.8 kcal/mol, and -7.4 kcal/mol respectively were the hit drugs on the coronavirus spike glycoprotein. Nafamostat showed a dual bridging potential against ACE2 and spike glycoprotein, and could therefore be a promising lead compound in the prevention and control of this disease.</p>","PeriodicalId":11867,"journal":{"name":"Environmental analysis, health and toxicology","volume":"36 2","pages":"e2021010-0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/79/3b/eaht-36-2-e2021010.PMC8421753.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39234457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}