Cardiomyopathy is one of complications related to diabetes. Stem cell transplantation shows potential in diabetic cardiomyopathy treatment. Epigallocatechin-3-gallate (EGCG) is one of the major components found in green tea. Although stem cell transplantation and green tea EGCG supplementation show therapeutic effects on cardiomyopathy, the detailed cellular mechanisms in stem cell transplantation coupled with EGCG treatment remain unclear. This study investigates whether adipose-derived stem cells (ADSC) pretreated with EGCG show better protective effect on diabetic cardiomyopathy than ADSC without EGCG pretreatment. A cell model indicated that ADSC pretreated with EGCG increased cell functions including colony formation, migration and survival markers. All of these functions are blocked by small interfering C-X-C motif chemokine receptor 4 (siCXCR4) administration. These findings suggest that ADSC pretreatment with EGCG increases cell functions through CXCR4 expression. A diabetic animal model was designed to verify the above findings, including Sham, DM (diabetes mellitus), DM+ADSC (DM rats receiving autologous transplantation of ADSC) and DM+E-ADSC (DM rats receiving EGCG pretreated ADSC). Compared to the Sham, we found that all of pathophysiological signalings were activated in the DM group, including functional changes (decrease in ejection fraction and fractional shortening), structural changes (disarray and fibrosis) and molecular changes (increases in apoptotic, fibrotic, hypertrophic markers and decreases in survival and longevity markers). E-ADSC (DM+E-ADSC) transplantation shows significant improvement in the above pathophysiological signalings greater than ADSC (DM+ADSC). Therefore, ADSC pretreated with EGCG may contribute to clinical applications for diabetic patients with cardiomyopathy.